          Lecture 3 - Page 33 : 42
 Functional Programming in SchemeName binding, Recursion, Iteration, and Continuations * Name binding constructs The let name binding expression The equivalent meaning of let Examples with let name binding The let* name binding construct An example with let* The letrec namebinding construct LAML time functions * Conditional expressions Conditional expressions Examples with if Example with cond: leap-year? Example with cond: american-time Example with cond: as-string * Recursion and iteration Recursion List processing Tree processing (1) Tree processing (2) Recursion versus iteration Example of recursion: number-interval Examples of recursion: string-merge Examples with recursion: string-of-char-list? Exercises * Example of recursion: Hilbert Curves Hilbert Curves Building Hilbert Curves of order 1 Building Hilbert Curves of order 2 Building Hilbert Curves of order 3 Building Hilbert Curves of order 4 A program making Hilbert Curves * Continuations Introduction and motivation The catch and throw idea A catch and throw example The intuition behind continuations Being more precise The capturing of continuations Capturing, storing, and applying continuations Use of continuations for escaping purposes Practical example: Length of an improper list Practical example: Searching a binary tree
 Introduction and motivation We start by motivating our interest in continuations. One part of the story is the usefulness of a mechanism that allows us to 'jump out of a deep subexpression'. Another part is the possibility of controlling and manipulating the 'remaining part of the calculation' relative to some given control point.
 It is sometimes necessary to escape from a deep expression, for instance in an exceptional caseWe are interested in a primitive which allows us to control the remaining part of a calculation - a so-called continuation.
 Exit or exception mechanism:The need to abandon some deep evaluation
 ContinuationCapturing of continuationsExploring new control mechanisms by use of continuations

 Scheme support first class continuations dressed as functions