Programming in Java: lecture 9

= Searching and Sorting

= Linear and binary search
= Insertion Sort, Selection Sort

= Multi-dimensional Arrays
= Two dimensional arrays
= Example

Slides made for use with "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 9 covers Section 7.4 to 7.5 1

@ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

= Finding a particular element

= Linear search
= Association List
= (key,value) pairs

class PhoneEntry {
String name,
String phonelum,;

}

Linear Search

* Searches the array A for the integer N. If N is not in the array,
* then -1 is returned. If N is in the array, then return value 1s
* the first integer i that satisfies A[i] == N.

*
static int find(int[] A, int N) {

for (int index = 0; index < A.length; index++) {
if (Alindex] == 1l)
return index: // N has been found at this index!

}

// 1f we get this far, then N has not been found
// anywhere in the array. Return a value of -1.

return -1;

Binary Search

= Why?
= Liniear search

= 1000 items, max 1000 comparisons

= 1000000 items, max 1000000 comparisons
= Binary search

= 1000 items, max 10 comparisons

= 1000000 items, max 20 comparisons

= Log2(1000000) =~ 20

= Data must be sorted

* Searches the array A for the integer N.

* Precondition: A must be sorted into increasing order.

* Postcondition: If N is in the array, then the return value, 1,
* satisfies A[i] == N. If N is nmot in the array, then the

* return value is -—1.

*

static int binarySearch(int[] A, int N) {

int lowestPossiblelLoc = 0;
int highestPossibleloc = A.length - 1;

while (highestPossiblelLoc >= lowestPossiblelLoc) {
int middle = (lowestPossiblelLoc + highestPossiblelLoc) / 2;
if (A[middle] == N) {
S/ N has been found at this index!
return middle;
*
else if (A[middle] > N) {
/Y eliminate locations »>= middle
highestPossibleloc = middle — 1;

¥
else {
// eliminate locations <= middle
lowestPossiblelLoc = middle + 1 ;

¥
}
/4 At this point, highestPossibleLoc < LowestPossibleloc,
// which means that N is known to be nmot in the array. Return

/Y a -1 to indicate that N could not be found in the array.

return —1;

= |nsertion sort

= Selection sort

Insertion Sort

Start with a partially sorted list of 1tems:

Sorted Items Items sull to be sorted
o R N
~ e T,

4 111 (13|17 |35 (15| 7 (45112 (19 3 | 22

Copy next unsorted item into Temp.
Temp: | |5 leaving a "hole" in the array.

4 |11 |13 17|35 T 145112119 3 | 22

Move items in sorted part of

Temp: | 15
array to make room for Temp. -

4 |11 |13 [15|17 |35 7 |45|12]|19| 3 |22
4 4

Sorted Items Items still to be sorted

_.-"""""n.__ _h_
— D el T

4 111 (131517 (35| 7 (45 112(19] 3 |22

MNow, the sorted part of the list has

increased in size by one item.

Insertion Sort

static void insertionSort(int[] A) {
// Sort the array A into increasing order.

int itemsSorted:; // Number of items that have been sorted so far.

for (itemsSorted = 1; itemsSorted < A.length; itemsSorted++) {

// Assume that items A[0], A[1], ... AlitemsSorted-1]
// have already been sorted. Insert A[itemsSorted]
// into the sorted part of the list.

int temp = A[itemsSorted]l; // The item to be inserted.
int loc = itemsSorted - 1; // Start at end of list.

while (loc >= 0 && Alloc]l > temp) {
Afloc + 1] = A[loc]; // Bump item from A[loc] up to loc+l.
loc = loc - 1; // Go on to next location.

}

Alloc + 1] = temp; // Put temp in last vacated space.

Selection Sort

static void selectionScort(int[] A) {
// Bort A into increasing order, using selection sort

for (int lastPlace = A.length-1; lastPlace > 0; lastPlace—-) {
// Find the largest item among A[0], A[1]., ...,
// AllastPlace], and move it into position lastPlace
/Y by swapping it with the number that is currently
/{ in position lastPlace.

int maxlLoc = 0O; !/ Location of largest item seen so far.

for (int j = 1; j <= lastPlace; j++) {
if (A[j] > AlmaxLocl) {
// S8ince A[j] is bigger than the maximum we’ve seen
/Y so far, j 1is the new location of the maximum value

// we’ve seen so far.
maxlLoc = j;
¥
¥

int temp = A[maxLeoc]l; // Swap largest item with A[lastPlace].

A[maxloc] = AllastPlace] ;
AllastPlace]l] = temp;

¥} // end of for loop

= Comparing is not always simple
if (cl.getSuit() < c.getSuit() ||

(c1.getSuit() == c.getSuit() &k cl.getValue() < c.getValue())) {
= Implemented on classes

« strl.compareTo(str2)

= A lot already implemented in Java
= java.util.Arrays.binarySearch()
= Collections.sort()

10

Multi-dimensional Arrays

= int[][] A;
= A = new int[3][4];
= int[][] A = new int[3][4];

int[]0] &4 = { { 1, 0, 12, -1},
{ 7, -3, 2, 51},
{-5,-2, 2,-9}

};

11

A [=

But in reality, A holds a reference to
an array of 3 items, where each item
is a reference to an array of 4 ints.

(3)

*ple

(4)

(4)

=]

i
Ll

| b2

A0
A1
A2

12
2
2 |-9
[0] 0] [1]
[0] 1] [1]
[0] 2] [1]

Af0] [2
Af1][2
Af2] [2.

13

= Team programming

14

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14

