Programming in Java: lecture 9

= Searching and Sorting

= Linear and binary search
= Insertion Sort, Selection Sort

= Multi-dimensional Arrays
= Two dimensional arrays
= Example
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= Finding a particular element

= Linear search
= Association List
= (key,value) pairs

class PhoneEntry {
String name,
String phonelum,;

}



Linear Search

* Searches the array A for the integer N. If N is not in the array,
* then -1 is returned. If N is in the array, then return value 1s
* the first integer i that satisfies A[i] == N.

*
static int find(int[] A, int N) {

for (int index = 0; index < A.length; index++) {
if ( Alindex] == 1l )
return index: // N has been found at this index!

}

// 1f we get this far, then N has not been found
// anywhere in the array. Return a value of -1.

return -1;



Binary Search

= Why?
= Liniear search

= 1000 items, max 1000 comparisons

= 1000000 items, max 1000000 comparisons
= Binary search

= 1000 items, max 10 comparisons

= 1000000 items, max 20 comparisons

= Log2(1000000) =~ 20

= Data must be sorted



* Searches the array A for the integer N.

* Precondition: A must be sorted into increasing order.

* Postcondition: If N is in the array, then the return value, 1,
* satisfies A[i] == N. If N is nmot in the array, then the

* return value is -—1.

*

static int binarySearch(int[] A, int N) {

int lowestPossiblelLoc = 0;
int highestPossibleloc = A.length - 1;

while (highestPossiblelLoc >= lowestPossiblelLoc) {
int middle = (lowestPossiblelLoc + highestPossiblelLoc) / 2;
if (A[middle] == N) {
S/ N has been found at this index!
return middle;
*
else if (A[middle] > N) {
/Y eliminate locations »>= middle
highestPossibleloc = middle — 1;

¥
else {
// eliminate locations <= middle
lowestPossiblelLoc = middle + 1 ;

¥
}
/4 At this point, highestPossibleLoc < LowestPossibleloc,
// which means that N is known to be nmot in the array. Return

/Y a -1 to indicate that N could not be found in the array.

return —1;



= |nsertion sort

= Selection sort



Insertion Sort

Start with a partially sorted list of 1tems:

Sorted Items Items sull to be sorted
o R N
~ e T,

4 111 (13|17 |35 (15| 7 (45112 (19 3 | 22

Copy next unsorted item into Temp.
Temp: | |5 leaving a "hole" in the array.

4 |11 |13 17|35 T 145112119 3 | 22

Move items in sorted part of

Temp: | 15
array to make room for Temp. -

4 |11 |13 [15|17 |35 7 |45|12]|19| 3 |22
4 4

Sorted Items Items still to be sorted

_.-"""""n.__ _h_
— D el T

4 111 (131517 (35| 7 (45 112(19] 3 |22

MNow, the sorted part of the list has

increased in size by one item.



Insertion Sort

static void insertionSort(int[] A) {
// Sort the array A into increasing order.

int itemsSorted:; // Number of items that have been sorted so far.

for (itemsSorted = 1; itemsSorted < A.length; itemsSorted++) {

// Assume that items A[0], A[1], ... AlitemsSorted-1]
// have already been sorted. Insert A[itemsSorted]
// into the sorted part of the list.

int temp = A[itemsSorted]l; // The item to be inserted.
int loc = itemsSorted - 1; // Start at end of list.

while (loc >= 0 && Alloc]l > temp) {
Afloc + 1] = A[loc]; // Bump item from A[loc] up to loc+l.
loc = loc - 1; // Go on to next location.

}

Alloc + 1] = temp; // Put temp in last vacated space.



Selection Sort

static void selectionScort(int[] A) {
// Bort A into increasing order, using selection sort

for (int lastPlace = A.length-1; lastPlace > 0; lastPlace—-) {
// Find the largest item among A[0], A[1]., ...,
// AllastPlace], and move it into position lastPlace
/Y by swapping it with the number that is currently
/{ in position lastPlace.

int maxlLoc = 0O; !/ Location of largest item seen so far.

for (int j = 1; j <= lastPlace; j++) {
if (A[j] > AlmaxLocl) {
// S8ince A[j] is bigger than the maximum we’ve seen
/Y so far, j 1is the new location of the maximum value

// we’ve seen so far.
maxlLoc = j;
¥
¥

int temp = A[maxLeoc]l; // Swap largest item with A[lastPlace].

A[maxloc] = AllastPlace] ;
AllastPlace]l] = temp;

¥} // end of for loop



= Comparing is not always simple
if ( cl.getSuit() < c.getSuit() ||

(c1.getSuit() == c.getSuit() &k cl.getValue() < c.getValue()) ) {
= Implemented on classes

« strl.compareTo(str2)

= A lot already implemented in Java
= java.util.Arrays.binarySearch()
= Collections.sort()
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Multi-dimensional Arrays

= int[][] A;
= A = new int[3][4];
= int[][] A = new int[3][4];

int[]0] &4 = { { 1, 0, 12, -1},
{ 7, -3, 2, 51},
{-5,-2, 2,-9}

};
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But in reality, A holds a reference to
an array of 3 items, where each item
is a reference to an array of 4 ints.
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A0
A1
A2

12
2
2 |-9
[0] 0] [1]
[0] 1] [1]
[0] 2] [1]

Af0] [2
Af1][2
Af2] [2.
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= Team programming

14



	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14

