Programming In Java: lecture 7

= Inheritance

= Polymorphism

= Abstract Classes

= this and super

= Interfaces

= Nested Classes and other details
= Example
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= Objects, Classes and Instances

= Getters and setters

= Constructors and object initialization
= Wrapper Classes and Autoboxing

= Garbage collection and the heap



Classes and Objects

= A Class is a template
= Objects are objects

= Objects are instances of a given class

Integer Class
static members
parselnt(String s)

Integer Object
non-static member
equals(int i)




= Objects are instances of a given class

Class A
superclass

|

Class B extends A
subclass

Object of type A

Object of type B




Vehicle

!

HasWheels

!

Flying Vehicle

!

Truck

Car

Plane

Helicopter




= Syntax

public class (subclass-name) extends (ezisting-class-name) {

// Changes and additions.

}
= Extending existing classes

= new methods
= override methods
= new Instance variables



Class hierarchy

= Everything extends Object

class A
class B class C class D

class E




Access modifiers

= Private
= Only in the class itself
= Protected
= Same package and subclasses in other packages
= Default
= Same package
= Public

= Everybody



Polymorphism

= Two concepts

= \WWe can write code that can handle all future
subclasses

= We can have variables without knowing the
exact type of the object that it refers to

A variable that can hold a reference

to an object of class A can also hold a reference
to an object belonging to any subclass of A.



Abstract class

= Cannot make objects from abstract classes
= Can make variables from abstract classes

Abstract Class A

|

Class B extends A

Object of type B
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Abstract example

public abstract class Shape {
Color color; // color of shape.

void setColor(Color newColor) {

// method to change the color of the shape
color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

abstract void redraw():

// abstract method---must be defined in
// concrete subclasses

// more instance variables and methods

} // end of class Shape



this and super

= special variables
= cannot be assigned to
= this — the object we are currently In

= super — used to call methods of the super class
= forgets the exact type of the object
= special use in constructors

= Used as a method name
= Calls other constructors
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this — example

public class Student {
private String name; // Name of the student.

public Student(String name) {
// Constructor. Create a student with specified name.
this.name = name;

// More variables and methods.
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super — example

public class SymmetricBrighten extends RandomBrighten {

void brighten(int row, int col) {
// Brighten the specified square and its horizontal
// and vertical reflections. This overrides the brighten
// method from the RandomBrighten class, which just

// brightens one square.
super.brighten(row, col);

super .brighten(ROWS - 1 - row, col);

super .brighten(row, COLUMNS - 1 - col);

super .brighten(ROWS - 1 - row, COLUMNS - 1 - col);
}

} // end class SymmetricBrighten



Constructor example

public class GraphicalDice extends PairOfDice {
public GraphicalDice() { // Constructor for this class.

super(3,4); // Call the constructor from the
/! Pair0fDice class, with parameters 3, 4.

initializeGraphics(); // Do some initialization specific
// to the GraphicalDice class.

// More constructors, methods, variables...



Multiple inheritance

= Not allowed in Java

class A class B

N class C

class F

Multiple inheritance (NO'T allowed in Java)
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Interfaces

= Describes an aspect

= Completely abstract class
= nothing can be implemented

public interface Drawable {
public void draw(Graphics g) ;

}

public class Line implements Drawable {
public void draw(Graphics g) {
. // do something---presumably, draw a line

+

. // other methods and variables



Interfaces

= Implementing multiple interfaces (serializable)

class FilledCircle extends Circle
implements Drawable, Fillable {

}

= Use of objects

Drawable figure; // Declare a variable of type Drawable. It can
// refer to any object that implements the
//  Drawable interface.

figure = new Line(); // figure now refers to an object of class Line
figure.draw(g); // calls draw() method from class Line

figure = new FilledCircle(); // lNow, figure refers to an object
//  of class FilledCircle. 18
figure.draw(g); // calls draw() method from class FilledCircle



Nested classes

= Classes inside classes

= Static

= Only one new type
= Non-static
= One new type per object

Object o1

same type

Class

static nested class Object 02

same type
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Nested classes

= Classes inside classes

= Static

= Only one new type
= Non-static
= One new type per object

Object o1

different types

Class

nested class Object 02

different types
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Example — static

public class WireFrameModel {
. . . [/ other members of the WireFrameModel class

static public class Line {
// Represents a line from the point (x1,y1,z1)
// to the point (x2,y2,2z2) in 3-dimensional space.
double x1, y1, z1,
double x2, yZ, z2,
} // end class Line

. . . [/ other members of the WireFrameModel class

} // end WireFrameModel .



Example — non static

public class PokerGame { // Represents a game of poker.

private class Player { // Represents one of the players in this game.

} // end class Player

private Deck deck; // A deck of cards for playing the game.
private int pot; // The amount of money that has been bet.

} // end class PokerGame



Anonymous Inner Classes

= If you only need it in one place

new (superclass-or-interface) ( (parameter-list) ) {
(methods-and-variables)

}

Drawable redSquare = new Drawable() {
void draw(Graphics g) {
g.setColor(Color.red) ;
g.fillRect(10,10,100,100) ;
}



Static import

import static (package-name).{class-name).(static-member-name);

import static (package-name).(class-name).*;
import static java.lang.System.out;

import static java.lang.Math.*;
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= Enums are classes

= each enumerated type is a public static final
member
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= Team programming
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