Programming In Java: lecture 7

= Inheritance

= Polymorphism

= Abstract Classes

= this and super

= Interfaces

= Nested Classes and other details
= Example

Slides made for use with "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 7 covers Section 5.5 to 5.7 1

@ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

= Objects, Classes and Instances

= Getters and setters

= Constructors and object initialization
= Wrapper Classes and Autoboxing

= Garbage collection and the heap

Classes and Objects

= A Class is a template
= Objects are objects

= Objects are instances of a given class

Integer Class
static members
parselnt(String s)

Integer Object
non-static member
equals(int i)

= Objects are instances of a given class

Class A
superclass

|

Class B extends A
subclass

Object of type A

Object of type B

Vehicle

!

HasWheels

!

Flying Vehicle

!

Truck

Car

Plane

Helicopter

= Syntax

public class (subclass-name) extends (ezisting-class-name) {

// Changes and additions.

}
= Extending existing classes

= new methods
= override methods
= new Instance variables

Class hierarchy

= Everything extends Object

class A
class B class C class D

class E

Access modifiers

= Private
= Only in the class itself
= Protected
= Same package and subclasses in other packages
= Default
= Same package
= Public

= Everybody

Polymorphism

= Two concepts

= \WWe can write code that can handle all future
subclasses

= We can have variables without knowing the
exact type of the object that it refers to

A variable that can hold a reference

to an object of class A can also hold a reference
to an object belonging to any subclass of A.

Abstract class

= Cannot make objects from abstract classes
= Can make variables from abstract classes

Abstract Class A

|

Class B extends A

Object of type B

10

Abstract example

public abstract class Shape {
Color color; // color of shape.

void setColor(Color newColor) {

// method to change the color of the shape
color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

abstract void redraw():

// abstract method---must be defined in
// concrete subclasses

// more instance variables and methods

} // end of class Shape

this and super

= special variables
= cannot be assigned to
= this — the object we are currently In

= super — used to call methods of the super class
= forgets the exact type of the object
= special use in constructors

= Used as a method name
= Calls other constructors

12

this — example

public class Student {
private String name; // Name of the student.

public Student(String name) {
// Constructor. Create a student with specified name.
this.name = name;

// More variables and methods.

13

super — example

public class SymmetricBrighten extends RandomBrighten {

void brighten(int row, int col) {
// Brighten the specified square and its horizontal
// and vertical reflections. This overrides the brighten
// method from the RandomBrighten class, which just

// brightens one square.
super.brighten(row, col);

super .brighten(ROWS - 1 - row, col);

super .brighten(row, COLUMNS - 1 - col);

super .brighten(ROWS - 1 - row, COLUMNS - 1 - col);
}

} // end class SymmetricBrighten

Constructor example

public class GraphicalDice extends PairOfDice {
public GraphicalDice() { // Constructor for this class.

super(3,4); // Call the constructor from the
/! Pair0fDice class, with parameters 3, 4.

initializeGraphics(); // Do some initialization specific
// to the GraphicalDice class.

// More constructors, methods, variables...

Multiple inheritance

= Not allowed in Java

class A class B

N class C

class F

Multiple inheritance (NO'T allowed in Java)

16

Interfaces

= Describes an aspect

= Completely abstract class
= nothing can be implemented

public interface Drawable {
public void draw(Graphics g) ;

}

public class Line implements Drawable {
public void draw(Graphics g) {
. // do something---presumably, draw a line

+

. // other methods and variables

Interfaces

= Implementing multiple interfaces (serializable)

class FilledCircle extends Circle
implements Drawable, Fillable {

}

= Use of objects

Drawable figure; // Declare a variable of type Drawable. It can
// refer to any object that implements the
// Drawable interface.

figure = new Line(); // figure now refers to an object of class Line
figure.draw(g); // calls draw() method from class Line

figure = new FilledCircle(); // lNow, figure refers to an object
// of class FilledCircle. 18
figure.draw(g); // calls draw() method from class FilledCircle

Nested classes

= Classes inside classes

= Static

= Only one new type
= Non-static
= One new type per object

Object o1

same type

Class

static nested class Object 02

same type

19

Nested classes

= Classes inside classes

= Static

= Only one new type
= Non-static
= One new type per object

Object o1

different types

Class

nested class Object 02

different types

20

Example — static

public class WireFrameModel {
. . . [/ other members of the WireFrameModel class

static public class Line {
// Represents a line from the point (x1,y1,z1)
// to the point (x2,y2,2z2) in 3-dimensional space.
double x1, y1, z1,
double x2, yZ, z2,
} // end class Line

. . . [/ other members of the WireFrameModel class

} // end WireFrameModel .

Example — non static

public class PokerGame { // Represents a game of poker.

private class Player { // Represents one of the players in this game.

} // end class Player

private Deck deck; // A deck of cards for playing the game.
private int pot; // The amount of money that has been bet.

} // end class PokerGame

Anonymous Inner Classes

= If you only need it in one place

new (superclass-or-interface) ((parameter-list)) {
(methods-and-variables)

}

Drawable redSquare = new Drawable() {
void draw(Graphics g) {
g.setColor(Color.red) ;
g.fillRect(10,10,100,100) ;
}

Static import

import static (package-name).{class-name).(static-member-name);

import static (package-name).(class-name).*;
import static java.lang.System.out;

import static java.lang.Math.*;

24

= Enums are classes

= each enumerated type is a public static final
member

25

= Team programming

26

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24
	Dias 25
	Dias 26

