
1

Programming in Java: lecture 5

 Return Values
 APIs, Packages and Javadoc
 More on Program Design
 Declarations
 Something about learning
 Repetition

Slides made for use with ”Introduction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from ”Introduction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 3 covers Section 4.4 to 4.7 + some repetition

2

Lecture 4

 Exceptions and try...catch
 Overview – static vs. non static
 GUI programming – Applets
 Black Boxes

 Subroutines
 Local and Global variables
 Parameters – formal and actual
 Overloading

3

Exceptions

 Lecture 3: Normal flow of control
 Why do we need something different
 Handle errors somewhere else then where they

happen

 Exception – the exception is an Object
 try...catch statements

4

try...catch

 Formal syntax

5

try...catch

 Example

6

Bad parameter values

 This is an error
 What do you do?
 Throw an exception



7

Return Values

 Function – subroutines with a return value
 Can only return one specific type

 Can be used as expressions or statements
 Statement: return value is ignored
 Test condition: boolean value

8

The return statement

 return <expression>;
 Should give some result of the same type as

the return value of the function
 Must be inside function
 Example

9

Function Examples

 The 3N+1 Sequence










 return type void.
 return;

10

One return statement

 Some people prefer having only one return
statement per function

11

Use of Functions

12

Return type can be any type

 static boolean isPrime(int N);

 static String reverse(String str);

13

APIs, Packages and Javadoc

 API – Application Programmers Interface
 What you need to know from the outside
 Windows, MacOS, linux (gtk, gnome), Java
 Math Toolboxes

14

Packages

 Too much functionality to expose it all at once

15

Import directives

 Technically not a statement
 java.lang.*; // automatically imported, contains

String

 Import java.*
 does not import everything

 GUI program: typical import
 import java.awt.*;
 import java.awt.event.*; // still needed
 import javax.swing.*;

 Javax is additions from java 1.2

16

Name conflicts

 Two classes in different packages with the
same name

 java.awt.List
 java.util.List
 Only importing specific packages or
 Using fully qualified names

17

Create your own package

 Eclipse warns about using the default package
 Packages are stored in Java Archives

 .jar files

18

Javadoc

 Comments used for generating documentation
 Begins with /**

19

Semantic description

 Syntactic information in function name, return
type and argument types

 Javadoc can contain HTML code
 doc tags


20

Example

21

More on Program Design

 Preconditions and
 Postcondition

22

Declarations

 Initialization in declarations




 is the same as


 Multiple initializations

23

For loops

 Initialization in for loops




 is the same as

24

Static member variables

 Can be initialized when declared






 No statements outside functions

25

Named Constants

 Can easily be changed between compiles

 final static double interestRate = 0.05;

 final static double INTEREST_RATE =
0.05;

 Math.PI;

 Enumerated type constants

 Color.RED

26

Naming and Scope Rules

 Scope – Hvad man kan se
 Member variables are in scope in the Class
 Hiding outer variable with the same name
 Game.count to get member variable

27

Only one level of nesting

 You can only have one level of nesting of
variables with the same name













 Ok with multiple on the same level

28

Insanity

 static Insanity Insanity(Insanity
Insanity) { ... }

 Do not do this!
 Remember the pragmatics

29

Something about learning

 Repetition – teaches your brain to remember
 Programming is an activity not facts
 Doing is learning
 You should be able to do the exercises
 Watching others do the exercises will not teach

you much

30

Repetition

Java Virtual Machine

 Why a virtual machine?

Identifiers

 Structure
 Must start with letter or “_”
 Can contain numbers
 Examples: _local, x2, variableName

 Simple identifiers – local
 Contains no “.”

 Compound identifiers – “global”
 System.out.println

Reserved Words

 abstract continue for new switch

 assert default goto package synchronized

 boolean do if private this

 break double implements protected throw

 byte else import public throws

 case enum instanceof return transient

 catch extends int short try

 char final interface static void

 class finally long strictfp volatile

 const float native super while

Variables

 A box that contains data
 A location in memory

 The data inside the box
 A value

 Example:
 x = x + 2 5

Data

Data

memory location
size

Types

 Java is strongly typed
 Weakly typed: Hope for the best

 Apples and oranges
 Automatic conversion or Compile error

 Types:
 Primitive Types:

 boolean, int, short, ...
 Classes:

 String, ...

Variable Declarations

 Reserves space in memory
 Makes the name (identifier)

usable after this point.
 <type-name> <variable-name-or-names>

 int numberOfStudents;
 String name; // First, middle and last name
 double x, y; // represents coordinates
 boolean isFinished;
 char firstInitial, middleInitial, lastInitial;

Space for Data

Type Conversion of Strings

 Integer.parseInt(“123”)
 Double.parseDouble(“3.14”)
 Double.parseDouble(“12.3e-7”)
 Same as literals
 Enum

 Season.valueOf(“SUMMER”)

TextIO

 Class file from textbook with modifications
 Hides details of getting Input
 System.out.println(“String”)
 TextIO.put(“String”)

TextIO – printf – putf

 System.out.printf("The product of %d and %d is
%d", x, y, x*y);

 Variable number of arguments
 %d – integer (decimal) number

 %12d, minimum 12 characters
 %s – String (converted into string)

 %10s, minimum 10 characters

TextIO – printf – putf 2

 %f – floating point
 %12.3f – 12 characters, 3 digits after decimal point

 %e – exponential
 %15.8e – 8 digits after the decimal point

 %g – floating point or exponential
 %12.4g – a total of 4 digits in the answer

 “ 5.345”

 “ 34.453”

 “ 123.875”

TextIO 2

 j = TextIO.getlnInt(); // Reads a value of type int.

 y = TextIO.getlnDouble(); // Reads a value of type double.

 a = TextIO.getlnBoolean(); // Reads a value of type boolean.

 c = TextIO.getlnChar(); // Reads a value of type char.

 w = TextIO.getlnWord(); // Reads one "word" as a value of
type String.

 s = TextIO.getln(); // Reads an entire input line as a
String.

TextIO – File I/O

 TextIO.writeFile("result.txt")
 TextIO.writeUserSelectedFile()
 TextIO.writeStandardOutput()
 TextIO.readFile("data.txt")
 TextIO.readUserSelectedFile()
 TextIO.readStandardInput()

43

Loops

 While loop

 Do while loop

 For loop

 We only need one of these to have a complete
language

 We have several for convenience

44

While loops

do {
<statements>

} while (<boolean-expression)

while (<boolean-expression) {
<statement>

}

 Two variants

45

For loop examples

 Simplification
years = 0; // initialize the variable years
while (years < 5) { // condition for continuing loop
 interest = principal * rate; //
 principal += interest; // do three statements
 System.out.println(principal); //
 years++; // update the value of the variable, years
}

for (years = 0; years < 5; years++) {
 interest = principal * rate;
 principal += interest;
 System.out.println(principal);
}

Becomes

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24
	Dias 25
	Dias 26
	Dias 27
	Dias 28
	Dias 29
	Dias 30
	Dias 31
	Dias 32
	Dias 33
	Dias 34
	Dias 35
	Dias 36
	Dias 37
	Dias 38
	Dias 39
	Dias 40
	Dias 41
	Dias 42
	Dias 43
	Dias 44
	Dias 45

