Programming in Java: lecture 5

= Return Values

= APls, Packages and Javadoc
= More on Program Design

= Declarations

= Something about learning

= Repetition

Slides made for use with "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 3 covers Section 4.4 to 4.7 + some repetition 1

@ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

= Exceptions and try...catch

= Overview — static vs. non static
= GUI programming — Applets

= Black Boxes

= Subroutines

= Local and Global variables

= Parameters — formal and actual
= Overloading

= Lecture 3: Normal flow of control

= Why do we need something different

= Handle errors somewhere else then where they
happen

= Exception — the exception is an Object
= {ry...catch statements

try...catch

= Formal syntax

try |
(statements-1)

}

catch ((exception-class-name) (variable-name)) {
(statements-2)

}

try...catch

= Example

try {
double x:
x = Double.parseDouble(str) ;
System.out.println("The number is " + x);

}

catch (NumberFormatException e) {
System.out.println("Not a legal number.");

}

Bad parameter values

= This is an error
= What do you do?
= Throw an exception

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract is violated!
throw new IllegaldrqumentEzception("Starting value must be positive.");

. /| (The rest of the subroutine is the same as before.)

Return Values

= Function — subroutines with a return value
= Can only return one specific type
= Can be used as expressions or statements

= Statement: return value is ignored
= Test condition: boolean value

The return statement

» return <expression>;

= Should give some result of the same type as
the return value of the function

= Must be inside function
= Example

static double pythagoras(double x, double y) {
// Computes the length of the hypotenuse of a right

// triangle, where the sides of the triangle are x and y.
return Math.sqrt(x*x + y*y);

Function Examples

= The 3N+1 Sequence

static int nextN(int currentll) {
if (currentN % 2 == 1) /] test if current N is odd

return 3*currentN + 1: // if so, return this value
else

return currentll / 2: /[if not, return this instead

}

= return type void.

= return;,

One return statement

= Some people prefer having only one return
statement per function

static int nextll(int currentN) {
int answer: // answer will be the value returned
if (currentl % 2 == 1) // test if current N is odd
answer = 3#currentN+1: // if so, this is the answer

else
answer = currentll / 2: // if not, this is the answer

return answer; // (Don’t forget to return the answer!)

10

Use of Functions

static void print3lNSequence(int startingValue) {

int N; // One of the terms in the sequence.
int count; // The number of terms found.

N = startingValue; // Start the sequence with startingValue.
count = 1;

TextID.putln("The 3N+1 sequence starting from " + I);
TextI0.putln();

TextIO.putln(N); // print initial term of sequence

while (N > 1) {
N = nextN(N J); // Compute next term, using the function neztl.
count++: // Count this term.

TextIO.putln(N); // Print this term.
}

TextI0.putln();
TextI0.putln("There were " + count + " terms in the sequence.");

Return type can be any type

= static boolean 1sPrime (int N);

= static String reverse (String str);

static String reverse(String str) {
String copy; // The reversed copy.

int 1i; // One of the positions in str,
I from str.length() - 1 down to O.
copy = ""; // Start with an empty string.

for (i = str.length() - 1; i >=0; i--) {

// Append i-th char of str to copy.
copy = copy + str.charAt(i);
+

return copy;

APls, Packages and Javadoc

= APl — Application Programmers Interface

= What you need to know from the outside
= Windows, MacOS, linux (gtk, gnome), Java
= Math Toolboxes

13

Packages

= Too much functionality to expose it all at once

java
lang awt u til
Math Graphics
sqrt() drawRect()
random() setColor()
String Color
Integer Font

Subroutines nested in classes nested in two layers of packages.
The full name of sgri() is java.lang.Math.sqgri()

Import directives

= Technically not a statement

= java.lang.”; // automatically imported, contains
String

= Import java.”
= does not import everything
= GUI program: typical import
= import java.awt.”;
= import java.awt.event.”; // still needed

= import javax.swing.”;
= Javax is additions from java 1.2 13

Name conflicts

= Two classes in different packages with the
same name

= Java.awt.List

= java.util.List

= Only importing specific packages or
= Using fully qualified names

16

Create your own package

= Eclipse warns about using the default package
= Packages are stored in Java Archives

= Jar files

17

= Comments used for generating documentation

= Begins with /**

IET:
* This subroutine prints a 3N+1 sequence to standard output, using
* startingValue as the initial value of N. It also prints the number
¥ of terms in the sequence. The value of the parameter, startingValue,
* must be a positive integer.

%/

static void print3NSequence(int startingValue) { ...

18

Semantic description

= Syntactic information in function name, return
type and argument types

= Javadoc can contain HTML code
= doc tags

Gparam (parameter-name) (description-of-parameter)

Greturn (description-of-return-value)

Gthrows (ezception-class-name) (description-of-ezception)

[%%
* This subroutine computes the area of a rectangle, given 1ts width
* and 1ts height. The length and the width should be positive numbers.
* @param width the length of one side of the rectangle
* @param height the length the second side of the rectangle
* @return the area of the rectangle
* @throws IllegalArgumentException 1f either the width or the height
¥ 18 a negative number.
*/
public static double areaOfRectangle(double length, double width) {
if (width < 0 [| height <0)
throw new IllegalArgumentException("Sides must have positive length.");
double area;
area = width * height,;
return area;

More on Program Design

* Preconditions and
= Postcondition

IET:

* Sets the color of one of the rectangles in the window.
%

* Precondition: 7row and col are in the valid range of row and column numbers,
and r, g, and b are in the range 0 to 255, inclusive.

Postcondition: The color of the rectangle in row number row and column
number col has been set to the color specified by r, g,
and b. r gives the amount of red in the color with 0
representing no red and 255 representing the maximum
possible amount of red. The larger the value of r, the
more red in the color. g and b work similarly for the
green and blue color components.

* O #® & ® #* #*

*/

public static void setColor(int row, int col, int r, int g, int b)

Declarations

= |nitialization in declarations

int count: // Declare a variable named count.
count = 0: // Giwve count its initial wvalue.

= |s the same as
int count = 0: // Declare count and give 1t an initial value.

= Multiple initializations

char firstInitial = °‘D’, secondlInitial = 'E?;
int x, y = 1; // OK, but only y has been initialized!

int N =3, M =N+2; // OK, N is initialized
Iy before its value is used.

For loops

= Initialization in for loops

for (int 1 = 0; i < 10; i++) {
System.out.println(i) ;
}

= |s the same as
{

int 1i;
for (i = 0:; i < 10: 41i++) {

System.out.println(i) ;
+

23

Static member variables

= Can be initialized when declared

public class Bank {
static double interestRate = 0.05;
static int maxWithdrawal = 200;

= No statements outside functions

public class Bank {
static double interestRate:

interestRate = 0.05; // ILLEGAL:
// Can’t be outside a subroutine!:

24

Named Constants

Can easily be changed between compiles
final static double interestRate = 0.05;

final static double INTEREST RATE =
0.05;

Math.PI;

Enumerated type constants
Color.RED

25

Naming and Scope Rules

= Scope — Hvad man kan se

= Member variables are in scope in the Class
= Hiding outer variable with the same name

= Game.count to get member variable

public class Game A

static int count; // member wvariable

static void playGame() {
int count; // local variable

// Some statements to define playGame ()

Only one level of nesting

= You can only have one level of nesting of

variables with the same name
void badSub(int y) {

int x:
while (y > 0) {
int x; // ERROR: =z is already defined.

}
}

= Ok with multiple on the same level 27

» static Insanity Insanity(Insanity
Insanity) { ... }

= Do not do this!

= Remember the pragmatics

28

Something about learning

= Repetition — teaches your brain to remember
= Programming is an activity not facts

= Doing is learning

= You should be able to do the exercises

= Watching others do the exercises will not teach
you much

29

Repetition

30

Java Virtual Machine

= Why a virtual machine?

Java Interpreter

/1 for Mac OS
Java

Java . , Java Interpreter
Program Complar Pyiconda for Windows

Program
\. Java Interpreter

for Linux

Identifiers

= Structure

13 7

= Must start with letter or *

= Can contain numbers

= Examples: local, x2, variableName
= Simple identifiers — local

= Contains no “.”
= Compound identifiers — “global”

= System.out.printin

Reserved Words

= abstract continue for new switch

= assert default goto package synchronized
= Dboolean do 1if private this

= Dbreak double implements protected throw

= Dbyte else import public throws

= case enum instanceof return transient

= catch extends int short try

= char final interface static void

= class finally long strictfp volatile

= const float native super while

= A box that contains data
= A location in memory
= The data inside the box

= A value
= Example: Data
= X=X+ 2 memory Iocatioa . size

Data

= Java is strongly typed
= Weakly typed: Hope for the best
= Apples and oranges
= Automatic conversion or Compile error
= Types:
= Primitive Types:
= boolean, int, short, ...

= Classes:
= String, ...

Variable Declarations

= Reserves space in memory

Space for Data

= Makes the name (identifier)
usable after this point.

« <type-name> <variable-name-or-names>

= int numberOfStudents;

= String name; // First, middle and last name

= double x, y; // represents coordinates
= boolean isFinished;
= char firstlnitial, middlelnitial, lastinitial;

Type Conversion of Strings

= Integer.parselnt(“123")
= Double.parseDouble("3.14%)

= Double.parseDouble(“12.3e-77)
= Same as literals

= Enum
= Season.valueOf("SUMMER?")

TextlO

= Class file from textbook with modifications
= Hides detalls of getting Input

= System.out.printin(“String”)

= TextlO.put(“String”)

TextlO — printf — putf

= System.out.printf("The product of %d and %d is
%d", X, y, X*y);

= Variable number of arguments
= %d — integer (decimal) number

= %12d, minimum 12 characters
= %s — String (converted into string)
= %10s, minimum 10 characters

TextlO — printf — putf 2

= %f — floating point

= %12.3f — 12 characters, 3 digits after decimal point
= %e — exponential

= %15.8e — 8 digits after the decimal point
= %g — floating point or exponential

= %12.4g — a total of 4 digits in the answer

= v 5.345"
= v 34.453"
= v 123.875"

TextlO 2

] = TextlO.getinInt(); // Reads a value of type int.

y = TextlO.getinDouble(); // Reads a value of type double.

a = TextlO.getInBoolean(); // Reads a value of type boolean.

c = TextlO.getinChar(); // Reads a value of type char.

w = TextlO.getinWord(); // Reads one "word" as a value of
type String.

s = TextlO.getIn(); // Reads an entire input line as a
String.

TextlO - File 1/0

= TextlO.writeFile("result.txt")

= TextlO.writeUserSelectedFile()
= TextlO.writeStandardOutput()
= TextlO.readFile("data.txt")

= TextlO.readUserSelectedFile()
= TextlO.readStandardlnput()

= While loop
= Do while loop
= For loop

= We only need one of these to have a complete
language

= \WWe have several for convenience

43

While loops

= Two variants

while (<boolean—-expression) {
<statement>

J

do {
<statements>
} while (<boolean—expression)

44

For loop examples

= Simplification

years = 0; // initialize the variable years
while (years < 5) { // condition for continuing loop
interest = principal * rate; //
principal += interest; // do three statements
System.out.println(principal); //
years++; // update the value of the variable, years
}
Becomes
for (years = 0; years < 5; years++) {
interest = princilipal * rate;

principal += interest;
System.out.println(principal) ;

45

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24
	Dias 25
	Dias 26
	Dias 27
	Dias 28
	Dias 29
	Dias 30
	Dias 31
	Dias 32
	Dias 33
	Dias 34
	Dias 35
	Dias 36
	Dias 37
	Dias 38
	Dias 39
	Dias 40
	Dias 41
	Dias 42
	Dias 43
	Dias 44
	Dias 45

