Programming in Java: lecture 2

= Program Structure
= Variables

= Types

= The String Class

= EXxpressions

= TextlO

Slides made for use with "Introuction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from ”Introuction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 2 covers Section 2.1 to 2.5

® @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

Program Structure

= Source Code — Kilde kode T —
* Syntax — Syntaks Tonedumpeivon- ey

= Define what is a “correct”
program

public class MultiPapeEditorExample extends Mult:
IGotoMarker |

= Syntax coloring

private TextEditor editor;

: <n0tation> ik S sdibemamy < 85
= Semantics — Betydning

private StyledText text;

= Does the program do what it
IS meant to?

public MultiPageEditorExample() {
super () ;

|[El Problems 2 . Javadoc|Declaration

Pragmatics

= Traditions
- COnVentionS Pl-ﬂﬂll': E%:iiuﬁi;ifa?eEdimrExample extends Mul:
= camelCase + the text edicor used in pag

= Classes: capital first e
Ietter pl":l.‘ln.l"E.l.i:.E int editorIndex - 0;
= variables: lower case
first letter

= JavaDoc

public class MultiPageEditorExample extends MultiPageEditorPart implements

 autogenerated o
dOCU mentation private TextEditor editor;

Comments and JavaDoc

-
L - - - — - - - I- . T ¥ I- -
----- —te = - A - S e - - — chn
-
4] - S, [[T —
AN example ywing how to create a multi-page edito
1s example has 3 page
a1 = e = - - =4 = + | + —
AT L5 S - - — =1 _:.H. =1 - 4
* «<]1i>page allows you to change ynt used in page
. i £ e e TTNT e ; T B gl I
i '_'.=:. -_] L= s =7 - W '_I - -_'.:1 '_] — L= - - - -_I - '_I -

public class MultiPageEditorExample extends MultiPageEditorPart implements
IGotoMarker {
nhe text editor used in page 0.

private TextEdltor edltor;

Identifiers

= Structure

13 7

= Must start with letter or *

= Can contain numbers

= Examples: local, x2, variableName
= Simple identifiers — local

= Contains no “.”
= Compound identifiers — “global”

= System.out.printin

Reserved Words

= abstract continue for new switch

= assert default goto package synchronized
= Dboolean do 1if private this

= Dbreak double implements protected throw

= Dbyte else import public throws

= case enum instanceof return transient

= catch extends int short try

= char final interface static void

= class finally long strictfp volatile

= const float native super while

= A box that contains data
= A location in memory
= The data inside the box

= A value
= Example: Data
= X=X+ 2 memory Iocatioa . size

Data

= Java is strongly typed
= Weakly typed: Hope for the best
= Apples and oranges
= Automatic conversion or Compile error
= Types:
= Primitive Types:
= boolean, int, short, ...

= Classes:
= String, ...

Primitive Types

= Not classes
= Describes a single value

= Integer:

= intx=95

= inty =345
= Double

= double y = 3.56 (Bemaerk komma er .)

Primitive Types 2

= Name Dbits = Range

= byte 8 = -128 to 127
= short 16 = 232,768 to 32,767
= Int 32 = -2147,483,648

to

2,147,483,647

= long 64 = -9 223,372,036,854,775,808
to
9,223,372,036,854,775,807

Primitive Types 3

= float 32-bit
= 7 significant digits

= double 64-bit
= 15 significant digits

= boolean 1 bit of information
= true (1) or false (0)

Variable Declarations

= Reserves space in memory

Space for Data

= Makes the name (identifier)
usable after this point.

« <type-name> <variable-name-or-names>

= int numberOfStudents;

= String name; // First, middle and last name

= double x, y; // represents coordinates
= boolean isFinished;
= char firstlnitial, middlelnitial, lastinitial;

Assignment Statements

Putting something into the box
<variable> = <expression>

X =2

y=4*5

myVariable = x/y

More expression later

*

Thi=s class implements a simple program that
wlll compute the amount of interest that 1s
earned on $17, 000 invested at an interest

rate of 0.07 for one wear. The interest and
the value of the investment after one wvear are
printed to standard output.|

L S

o

public class Interest {

=] public static wvoid main(string|[] args) {

F%* Declare the wvariables, */

double principal; /Y The value of the investment.
double rate: Y The annual interest rate.
double interest: S Interest earned in one year.

/% Do the computations. */

principal = 17000;
rate = 0,07;
interest = principal * rate; /4 Compute the interest.

principal = principal + interest;
// Compute wvalue of 1nvestment after one year, with interest.
/f (Note: The new value replaces the old value of principal.)

S* Output the results. */

System. out. print ("The interest earned 1= §");

System. cut.println(interest) ;

System. cout. print ("The wvalue of the investment after one year 1s £");
System. cout., println(principal) ;

Y /4 end of main()

1 /F end of class Interest

= Numbers

= int: 1200, -30

= long: 1244L, -30L
= Floating point

= double: 55.4
= 12e5 =12 * 1075
= float 12.3F, 24,953f

Literals 2

= String literals
= “This is a String”
= Char literals

= '’ \n', At
= \UOOE9' = ¢
= Boolean
= true

= false

Literals 3

= Hexadecimal—-0...9A ... F
= 0x45 or OxFF7A
= 4*16+5
= Octal-0...7
= 045 = 37
- 4*8+5

Two Purposes of Classes

= Static collections of functions

= Example: Math

= Collection of static members
= Math.PI
= Math.random() // random double between 0 and 1

= Template for Objects

= Example: String
= String.equals()

Subroutine call statement

= <method-name>(<parameters>)

= Examples

= System.out.printin(“This is a String”)
= Math.rand() // no parameters

= String firstName = “Ulrik”;
= firstName.equals("Nyman”);
= false

= s1.equals(s2)

= s1.equalsignoreCase(s2)

= s1.length()
= s1.charAt(N)

= s1.substring(N,M)
= s1.toUpperCase()

Concatenation

= String + anything = String
= Examples:

= int numberOfDays = 7;
= “The week has “ + numberOfDays + “ days”

= numberOfDays * 2 + “ this is 14”

= Math.rand()

= Math.PIl // constant

= Math.sqrt(x) Square root
= Math.sin(y)

= Math.floor(double d) // returns integer

= Special type of classes

= enum <enum-type-name> { <list-of-enum-values> }

= enum Season { SPRING, SUMMER, FALL,
WINTER }

= Season.WINTER

= Season vacation;

= vacation = Season.SUMMER,;
= Season.FALL.ordinal() is 2,

= System.out.printin(vacation);

= plus +: result=4.0+ 3

= multiplication *: x =3 * 4

= division /. z = 5/6 Gives an integer
= 5.0/6 Gives a double

= modulus %: 34577 % 100 = 77

= minus-:t=5-2
= unary minus -: -4

Increment and decrement

= counter = counter + 1;

= goalsScored = goalsScored + 1;
= counter = 4

= X = counter++; // x = 4 old value

= X = ++counter; // x = 5 new value
= goalsScored--;

Relational Operators

= A== Is A "equal to" B?

= Al=B Is A "not equal to" B?

= A<B Is A "less than" B?

= A>B Is A "greater than" B?

= A<=B Is A "less than or equal to" B?

= A>=B Is A "greater than or equal to" B?
= boolean samesSign;

= sameSign = ((x > 0) == (y > 0));

Boolean Operators

= Comparison

= And &&

= true && false
= Or ||

= true || false
= Not !

= true == lfalse

Conditional Operator

= \We save this for later

Assignment Operators

X -=Y,; // same as:
X *=y; // same as:
X /=Yy, // same as:
X %=, // same as:

= (for integers x and y)

g &&=p; // same as:

= (for booleans q and p)

X=X-Y,
X=X YV;
X=Xy,
X=X%Y,;
q=q&&p;

Type Casts

= Int A;

= double X;

= short B;

= A=17;

= X=A: //OK: Ais converted to a double
= B=A; //illegal; no automatic conversion
- /] from int to short

Type Casts 2

= Int A;

= short B;

= A=17;

= B =(short)A; [/ OK; A is explicitly type cast
- /[to a value of type short

Precedence Rules

= Unary operators: ++ -- | unary - and +, type-cast
= Multiplication and division: *, /, %

= Addition and subtraction: +, -

= Relational operators: <, >, <=, >=

= Equality and inequality: ==, I=

= Boolean and: &&

= Boolean or: |

= Conditional operator: ?:

= Assignment operators: =, +=, -=, *=, /=, %=

Type Conversion of Strings

= Integer.parselnt(“123")
= Double.parseDouble("3.14%)

= Double.parseDouble(“12.3e-77)
= Same as literals

= Enum
= Season.valueOf("SUMMER?")

TextlO

= Class file from textbook with modifications
= Hides detalls of getting Input

= System.out.printin(“String”)

= TextlO.put(“String”)

TextlO — printf — putf

= System.out.printf("The product of %d and %d is
%d", X, y, X*y);

= Variable number of arguments
= %d — integer (decimal) number

= %12d, minimum 12 characters
= %s — String (converted into string)
= %10s, minimum 10 characters

TextlO — printf — putf 2

= %f — floating point

= %12.3f — 12 chacters, 3 digits after decimal point
= %e — exponential

= %15.8e — 8 digits after the decimal point
= %g — floating point or exponential

= %12.4g — a total of 4 digits in the answer

= v 5.345"
= v 34.453"
= v 123.875"

TextlO 2

] = TextlO.getinInt(); // Reads a value of type int.

y = TextlO.getinDouble(); // Reads a value of type double.

a = TextlO.getInBoolean(); // Reads a value of type boolean.

c = TextlO.getinChar(); // Reads a value of type char.

w = TextlO.getinWord(); // Reads one "word" as a value of
type String.

s = TextlO.getIn(); // Reads an entire input line as a
String.

TextlO - File 1/0

= TextlO.writeFile("result.txt")

= TextlO.writeUserSelectedFile()
= TextlO.writeStandardOutput()
= TextlO.readFile("data.txt")

= TextlO.readUserSelectedFile()
= TextlO.readStandardlnput()

This class implements a simple program that willl compute
* the amount of interest that 1= earned on an investment owver
¥ g perlod of one wear. The initial amount of the investment
* and the interest rate are input by the user. The walue of
* the investment at the end of the yvear 1= ocutput. The
* rate mast be input as a decimal, not a percentage (for
¥ pxample, 0.05 rather than 5).

public class InterestiZ {

public static wveoid main(5tring[] args) {

double principal; The value of the investment.
double rate; '/ The annual interest rate.
double interest; '/ The interest earned during the year.

TextIO. put ("Enter the initial investment: ");
principal = TextIO.getlnDouble();

TextLIO. put ("Enter the annual interest rate (decimal, not percentagel): ")
rate = TextIO.getlnDouble();

interest = principal * rate; "/ Compute this year's
principal = principal + interest; '/ Add it to principa

TextIO. put ("The value of the investment after one year 1s §");
TextIO. putln(new Double (principal));

= Program Structure
= Variables

= Types

= The String Class

= Expresions

= TextlO

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24
	Dias 25
	Dias 26
	Dias 27
	Dias 28
	Dias 29
	Dias 30
	Dias 31
	Dias 32
	Dias 33
	Dias 34
	Dias 35
	Dias 36
	Dias 37
	Dias 38
	Dias 39
	Dias 40
	Dias 41

