
1

Programming in Java: lecture 5

 Return Values
 APIs, Packages and Javadoc
 More on Program Design
 Declarations
 Something about learning
 Repetition

Slides made for use with ”Introuction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from ”Introuction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 3 covers Section 4.4 to 4.7 + some repitition

2

Lecture 4

 Exceptions and try...catch
 Overview – static vs. non static
 GUI programming – Applets
 Black Boxes

 Subroutines
 Local and Global variables
 Parameters – formal and actual
 Overloading

3

Exceptions

 Lecture 3: Normal flow of control
 Why do we need something different
 Handle errors somewhere else then where they

happen

 Exception – the exception is an Object
 try...catch statements

4

try...catch

 Formal syntax

5

try...catch

 Example

6

Bad parameter values

 This is an error
 What do you do?
 Throw an exception

7

Return Values

 Function – subroutines with a return value
 Can only return one specific type

 Can be used as expressions or statements
 Statement: return value is ignored
 Test condition: boolean value

8

The return statement

 return <expression>;
 Should give some result of the same type as

the return value of the function
 Must be inside function
 Example

9

Function Examples

 The 3N+1 Sequence

 return type void.
 return;

10

One return statement

 Some people prefer having only one return
statement per function

11

Use of Functions

12

Return type can be any type

 static boolean isPrime(int N);

 static String reverse(String str);

13

APIs, Packages and Javadoc

 API – Application Programmers Interface
 What you need to know from the outside
 Windows, MacOS, linux (gtk, gnome), Java
 Math Toolboxes

14

Packages

 Too much functionality to expose it all at once

15

Import directives

 Technically not a statement
 java.lang.*; // automatically imported, contains

String

 Import java.*
 does not import everything

 GUI program: typical import
 import java.awt.*;
 import java.awt.event.*; // still needed
 import javax.swing.*;

 Javax is additions from java 1.2

16

Name conflicts

 Two classes in different packages with the
same name

 java.awt.List
 java.util.List
 Only importing specific packages or
 Using fully qualified names

17

Create your own package

 Eclipse warns about using the default package
 Packages are stored in Java Archives

 .jar files

18

Javadoc

 Comments used for generating documentation
 Begins with /**

19

Semantic description

 Syntactic information in function name, return
type and argument types

 Javadoc can contain HTML code
 doc tags

20

Example

21

More on Program Design

 Preconditions and
 Postcondition

22

Declarations

 Initialization in declarations

 is the same as

 Multiple initializations

23

For loops

 Initialization in for loops

 is the same as

24

Static member variables

 Can be initialized when declared

 No statements outside functions

25

Named Constants

 Can easily be changed between compiles

 final static double interestRate = 0.05;

 final static double INTEREST_RATE =
0.05;

 Math.PI;

 Enumerated type constants

 Color.RED

26

Naming and Scope Rules

 Scope – Hvad man kan se
 Member variables are in scope in the Class
 Hiding outer variable with the same name
 Game.count to get member variable

27

Only one level of nesting

 You can only have one level of nesting of
variables with the same name

 Ok with multiple on the same level

28

Insanity

 static Insanity Insanity(Insanity
Insanity) { ... }

 Do not do this!
 Remember the pragmatics

29

Something about learning

 Repetition – teaches your brain to remember
 Programming is an activity not facts
 Doing is learning
 You should be able to do the exercises
 Watching others do the exercises will not teach

you much

30

Repetition

Java Virtual Machine

 Why a virtual machine?

Identifiers

 Structure
 Must start with letter or “_”
 Can contain numbers
 Examples: _local, x2, variableName

 Simple identifiers – local
 Contains no “.”

 Compound identifiers – “global”
 System.out.println

Reserved Words

 abstract continue for new switch

 assert default goto package synchronized

 boolean do if private this

 break double implements protected throw

 byte else import public throws

 case enum instanceof return transient

 catch extends int short try

 char final interface static void

 class finally long strictfp volatile

 const float native super while

Variables

 A box that contains data
 A location in memory

 The data inside the box
 A value

 Example:
 x = x + 2 5

Data

Data

memory location
size

Types

 Java is strongly typed
 Weakly typed: Hope for the best

 Apples and oranges
 Automatic conversion or Compile error

 Types:
 Primitive Types:

 boolean, int, short, ...
 Classes:

 String, ...

Variable Declarations

 Reserves space in memory
 Makes the name (identifier)

usable after this point.
 <type-name> <variable-name-or-names>

 int numberOfStudents;
 String name; // First, middle and last name
 double x, y; // represents coordinates
 boolean isFinished;
 char firstInitial, middleInitial, lastInitial;

Space for Data

Type Conversion of Strings

 Integer.parseInt(“123”)
 Double.parseDouble(“3.14”)
 Double.parseDouble(“12.3e-7”)
 Same as literals
 Enum

 Season.valueOf(“SUMMER”)

TextIO

 Class file from textbook with modifications
 Hides details of getting Input
 System.out.println(“String”)
 TextIO.put(“String”)

TextIO – printf – putf

 System.out.printf("The product of %d and %d is
%d", x, y, x*y);

 Variable number of arguments
 %d – integer (decimal) number

 %12d, minimum 12 characters
 %s – String (converted into string)

 %10s, minimum 10 characters

TextIO – printf – putf 2

 %f – floating point
 %12.3f – 12 characters, 3 digits after decimal point

 %e – exponential
 %15.8e – 8 digits after the decimal point

 %g – floating point or exponential
 %12.4g – a total of 4 digits in the answer

 “ 5.345”

 “ 34.453”

 “ 123.875”

TextIO 2

 j = TextIO.getlnInt(); // Reads a value of type int.

 y = TextIO.getlnDouble(); // Reads a value of type double.

 a = TextIO.getlnBoolean(); // Reads a value of type boolean.

 c = TextIO.getlnChar(); // Reads a value of type char.

 w = TextIO.getlnWord(); // Reads one "word" as a value of
type String.

 s = TextIO.getln(); // Reads an entire input line as a
String.

TextIO – File I/O

 TextIO.writeFile("result.txt")
 TextIO.writeUserSelectedFile()
 TextIO.writeStandardOutput()
 TextIO.readFile("data.txt")
 TextIO.readUserSelectedFile()
 TextIO.readStandardInput()

43

Loops

 While loop

 Do while loop

 For loop

 We only need one of these to have a complete
language

 We have several for convenience

44

While loops

do {
<statements>

} while (<boolean-expression)

while (<boolean-expression) {
<statement>

}

 Two variants

45

For loop examples

 Simplification
years = 0; // initialize the variable years
while (years < 5) { // condition for continuing loop
 interest = principal * rate; //
 principal += interest; // do three statements
 System.out.println(principal); //
 years++; // update the value of the variable, years
}

for (years = 0; years < 5; years++) {
 interest = principal * rate;
 principal += interest;
 System.out.println(principal);
}

Becomes

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24
	Dias 25
	Dias 26
	Dias 27
	Dias 28
	Dias 29
	Dias 30
	Dias 31
	Dias 32
	Dias 33
	Dias 34
	Dias 35
	Dias 36
	Dias 37
	Dias 38
	Dias 39
	Dias 40
	Dias 41
	Dias 42
	Dias 43
	Dias 44
	Dias 45

