
1

Programming in Java: lecture 5

 Return Values
 APIs, Packages and Javadoc
 More on Program Design
 Declarations
 Something about learning
 Repetition

Slides made for use with ”Introuction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from ”Introuction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 3 covers Section 4.4 to 4.7 + some repitition

2

Return Values

 Function – subroutines with a return value
 Can only return one specific type

 Can be used as expressions or statements
 Statement: return value is ignored
 Test condition: boolean value

3

The return statement

 return <expression>;
 Should give some result of the same type as

the return value of the function
 Must be inside function
 Example

4

Function Examples

 The 3N+1 Sequence

 return type void.
 return;

5

One return statement

 Some people prefer having only one return
statement per function

6

Use of Functions

7

Return type can be any type

 static boolean isPrime(int N);

 static String reverse(String str);

8

APIs, Packages and Javadoc

 API – Application Programmers Interface
 What you need to know from the outside
 Windows, MacOS, linux (gtk, gnome), Java
 Math Toolboxes

9

Packages

 Too much functionality to expose it all at once

10

Import directives

 Technically not a statement
 java.lang.*; // automatically imported, contains

String

 Import java.*
 does not import everything

 GUI program: typical import
 import java.awt.*;
 import java.awt.event.*; // still needed
 import javax.swing.*;

 Javax is additions from java 1.2

11

Name conflicts

 Two classes in different packages with the
same name

 java.awt.List
 java.util.List
 Only importing specific packages or
 Using fully qualified names

12

Create your own package

 Eclipse warns about using the default package
 Packages are stored in Java Archives

 .jar files

13

Javadoc

 Comments used for generating documentation
 Begins with /**

14

Semantic description

 Syntactic information in function name, return
type and argument types

 Javadoc can contain HTML code
 doc tags

15

Example

16

More on Program Design

 Preconditions and
 Postcondition

17

Declarations

 Initialization in declarations

 is the same as

 Multiple initializations

18

For loops

 Initialization in for loops

 is the same as

19

Static member variables

 Can be initialized when declared

 No statements outside functions

20

Named Constants

 Can easily be changed between compiles

 final static double interestRate = 0.05;

 final static double INTEREST_RATE =
0.05;

 Math.PI;

 Enumerated type constants

 Color.RED

21

Naming and Scope Rules

 Scope – Hvad man kan se
 Member variables are in scope in the Class
 Hiding outer variable with the same name
 Game.count to get member variable

22

Only one level of nesting

 You can only have one level of nesting of
variables with the same name

 Ok with multiple on the same level

23

Insanity

 static Insanity Insanity(Insanity
Insanity) { ... }

 Do not do this!
 Remember the pragmatics

24

Something about learning

 Repetition – teaches your brain to remember
 Programming is an activity not facts
 Doing is learning
 You should be able to do the exercises
 Watching others do the exercises will not teach

you much

25

Repetition

 Lecture 1

Overview of the course

 Purpose: Learn to program
 Basic Programming

 Control structures, data types
 Searching and sorting
 Recursion

 Knowledge of Object Oriented Programming
 Inheritance and Polymorphism
 Later you will have: OOP and OOA&D

 Exam: Written test

Java Virtual Machine

 Why a virtual machine
 What do we mean by “virtual”
 Explain a regular machine
 Java and Java Byte Code

CPU

 Fetch execute cycle
 Machine language

Machine Architecture

 Basic Computer Architecture
 Asynchronous events

Java Virtual Machine

 Why a virtual machine?

Compilation

Java Byte Code:
 0: iconst_2
 1: istore_1
 2: iload_1
 3: sipush 1000
 6: if_icmpge 44
 9: iconst_2
 10: istore_2
 11: iload_2
 12: iload_1
 13: if_icmpge 31
 16: iload_1
 17: iload_2
 18: irem # remainder
 19: ifne 25
 22: goto 38
 25: iinc 2, 1
 28: goto 11
 31: getstatic #84; //Field java/lang/System.out:Ljava/io/PrintStream;
 34: iload_1
 35: invokevirtual #85; //Method java/io/PrintStream.println:(I)V
 38: iinc 1, 1
 41: goto 2
 44: return

Java Code:
 for (int i = 2; i < 1000; i++) {
 for (int j = 2; j < i; j++) {
 if (i % j == 0)
 continue outer;
 }
 System.out.println (i);
 }

Building blocks of programs

 Data
 Variables
 Types

 Instructions
 Control structures

 organize code
 Subroutines

 reuse

Java Code:
 for (int i = 2; i < 1000; i++) {
 for (int j = 2; j < i; j++) {
 if (i % j == 0)
 continue outer;
 }
 System.out.println (i);
 }

History of Programming

 Structured programming
 Divide problem into smaller problems
 top-down approach
 Focus on instructions, not data

 Object Oriented Programming
 Model the problem area
 bottom-up approach
 Focus on data, not instructions

Object Oriented Programming

 What is an object?
 Represents real world objects
 Data and associated methods (functions).

 Data hiding
 Polymorphism
 Classes
 Inheritance

Data Hiding

 Ensuring
 modularity
 data integrity

 Enabling
 reuse
 local modifications

Polymorphism

 The same message send to different objects
will have different effects

 Code that operates on data types that we have
not defined yet

Classes

 Template
 Description of a group of objects
 Example: Vehicle

Inheritance

Vehicle

HasWheels Flying Vehicle

Plane HelicopterTruck Car

Command Line Interface

 Windows: Run Program (cmd)
 Linux: xterm, gterm, ...
 Mac OS: Terminal
 Javac – compiler

● > javac HelloWorld.java

 Java – execution
● > java HelloWorld
● Hello World!

Packages

 Packages
● > package mypackage;

 Compilation with packages
 Windows
● > javac mypackage\HellowWorld.java

 Linux
● > javac mypackage/HellowWorld.java

Lecture 2

Identifiers

 Structure
 Must start with letter or “_”
 Can contain numbers
 Examples: _local, x2, variableName

 Simple identifiers – local
 Contains no “.”

 Compound identifiers – “global”
 System.out.println

Reserved Words

 abstract continue for new switch

 assert default goto package synchronized

 boolean do if private this

 break double implements protected throw

 byte else import public throws

 case enum instanceof return transient

 catch extends int short try

 char final interface static void

 class finally long strictfp volatile

 const float native super while

Variables

 A box that contains data
 A location in memory

 The data inside the box
 A value

 Example:
 x = x + 2 5

Data

Data

memory location
size

Types

 Java is strongly typed
 Weakly typed: Hope for the best

 Apples and oranges
 Automatic conversion or Compile error

 Types:
 Primitive Types:

 boolean, int, short, ...
 Classes:

 String, ...

Primitive Types

 Not classes
 Describes a single value
 Integer:

 int x = 5
 int y = 345

 Double
 double y = 3.56 (Bemærk komma er .)

 Name bits
 byte 8
 short 16
 int 32

 long 64

Primitive Types 2

 Range
 -128 to 127
 -32,768 to 32,767
 -2,147,483,648

to
2,147,483,647

 -9,223,372,036,854,775,808
to

9,223,372,036,854,775,807

Primitive Types 3

 float 32-bit
 7 significant digits

 double 64-bit
 15 significant digits

 boolean 1 bit of information
 true (1) or false (0)

Variable Declarations

 Reserves space in memory
 Makes the name (identifier)

usable after this point.
 <type-name> <variable-name-or-names>

 int numberOfStudents;
 String name; // First, middle and last name
 double x, y; // represents coordinates
 boolean isFinished;
 char firstInitial, middleInitial, lastInitial;

Space for Data

Assignment Statements

 Putting something into the box
 <variable> = <expression>
 x = 2
 y = 4 * 5
 myVariable = x / y
 More expression later

Example

Literals

 Numbers
 int: 1200, -30
 long: 1244L, -30L

 Floating point
 double: 55.4

 12e5 = 12 * 10^5
 float 12.3F, 24,953f

Literals 2

 String literals
 “This is a String”

 Char literals
 'a', '\n', '\t', '\\'
 '\u00E9' = é

 Boolean
 true
 false

Literals 3

 Hexadecimal – 0 ... 9 A ... F
 0x45 or 0xFF7A
 4 * 16 + 5

 Octal – 0 ... 7
 045 = 37
 4 * 8 + 5

Two Purposes of Classes

 Static collections of functions
 Example: Math

 Collection of static members
 Math.PI
 Math.random() // random double between 0 and 1

 Template for Objects
 Example: String

 String.equals()

Subroutine call statement

 <method-name>(<parameters>)
 Examples

 System.out.println(“This is a String”)
 Math.rand() // no parameters

String

 String firstName = “Ulrik”;
 firstName.equals(“Nyman”);
 false

String 2

 s1.equals(s2)
 s1.equalsIgnoreCase(s2)
 s1.length()
 s1.charAt(N)
 s1.substring(N,M)
 s1.toUpperCase()

Concatenation

 String + anything = String
 Examples:

 int numberOfDays = 7;
 “The week has “ + numberOfDays + “ days”

 numberOfDays * 2 + “ this is 14”

Math

 Math.rand()
 Math.PI // constant
 Math.sqrt(x) Square root
 Math.sin(y)
 Math.floor(double d) // returns integer

Enums

 Special type of classes
 enum <enum-type-name> { <list-of-enum-values> }
 enum Season { SPRING, SUMMER, FALL,

WINTER }
 Season.WINTER
 Season vacation;
 vacation = Season.SUMMER;
 Season.FALL.ordinal() is 2,
 System.out.println(vacation);

Expressions

 plus +: result = 4.0 + 3
 multiplication *: x = 3 * 4
 division /: z = 5/6 Gives an integer

 5.0/6 Gives a double

 modulus %: 34577 % 100 = 77
 minus -: t = 5 - 2
 unary minus -: -4

Increment and decrement

 counter = counter + 1;
 goalsScored = goalsScored + 1;
 counter = 4
 x = counter++; // x = 4 old value
 ++counter; // x = 5 new value
 goalsScored--;

Relational Operators

 A == B Is A "equal to" B?
 A != B Is A "not equal to" B?
 A < B Is A "less than" B?
 A > B Is A "greater than" B?
 A <= B Is A "less than or equal to" B?
 A >= B Is A "greater than or equal to" B?
 boolean sameSign;
 sameSign = ((x > 0) == (y > 0));

Boolean Operators

 Comparison
 ==
 !=

 And &&
 true && false

 Or ||
 true || false

 Not !
 true == !false

66

Conditional Operator

 If...then...else on a single line

Assignment Operators

 x -= y; // same as: x = x - y;
 x *= y; // same as: x = x * y;
 x /= y; // same as: x = x / y;
 x %= y; // same as: x = x % y;

 (for integers x and y)

 q &&= p; // same as: q = q && p;
 (for booleans q and p)

Type Casts

 int A;
 double X;
 short B;
 A = 17;
 X = A; // OK; A is converted to a double
 B = A; // illegal; no automatic conversion
 // from int to short

Type Casts 2

 int A;
 short B;
 A = 17;
 B = (short)A; // OK; A is explicitly type cast
 // to a value of type short

Precedence Rules

 Unary operators: ++, --, !, unary - and +, type-cast

 Multiplication and division: *, /, %

 Addition and subtraction: +, -

 Relational operators: <, >, <=, >=

 Equality and inequality: ==, !=

 Boolean and: &&

 Boolean or: ||

 Conditional operator: ?:

 Assignment operators: =, +=, -=, *=, /=, %=

Type Conversion of Strings

 Integer.parseInt(“123”)
 Double.parseDouble(“3.14”)
 Double.parseDouble(“12.3e-7”)
 Same as literals
 Enum

 Season.valueOf(“SUMMER”)

TextIO

 Class file from textbook with modifications
 Hides details of getting Input
 System.out.println(“String”)
 TextIO.put(“String”)

TextIO – printf – putf

 System.out.printf("The product of %d and %d is
%d", x, y, x*y);

 Variable number of arguments
 %d – integer (decimal) number

 %12d, minimum 12 characters
 %s – String (converted into string)

 %10s, minimum 10 characters

TextIO – printf – putf 2

 %f – floating point
 %12.3f – 12 chacters, 3 digits after decimal point

 %e – exponential
 %15.8e – 8 digits after the devimal point

 %g – floating point or exponential
 %12.4g – a total of 4 digits in the answer

 “ 5.345”

 “ 34.453”

 “ 123.875”

TextIO 2

 j = TextIO.getlnInt(); // Reads a value of type int.

 y = TextIO.getlnDouble(); // Reads a value of type double.

 a = TextIO.getlnBoolean(); // Reads a value of type boolean.

 c = TextIO.getlnChar(); // Reads a value of type char.

 w = TextIO.getlnWord(); // Reads one "word" as a value of
type String.

 s = TextIO.getln(); // Reads an entire input line as a
String.

TextIO – File I/O

 TextIO.writeFile("result.txt")
 TextIO.writeUserSelectedFile()
 TextIO.writeStandardOutput()
 TextIO.readFile("data.txt")
 TextIO.readUserSelectedFile()
 TextIO.readStandardInput()

Lecture 3

78

Blocks

 Grouping things together
 Simple statements and compound statement
 Statements end with ; or }

{
<statements>

}

{ // This block exchanges the values of x and y
 int temp; // A temporary variable for use in this block.
 temp = x; // Save a copy of the value of x in temp.
 x = y; // Copy the value of y into x.
 y = temp; // Copy the value of temp into y.
}

79

Loops

 While loop

 Do while loop

 For loop

 We only need one of these to have a complete
language

 We have several for convenience

80

While loop

while (<boolean-expression) {
<statements>

}

while (<boolean-expression)
<statement>

 Two variants

81

While examples

 Declare variables
 Prime loop
 Iterate

int number; // The number to be printed.
number = 1; // Start with 1.
while (number < 6) { // Keep going as long as number is < 6.
 System.out.println(number);
 number = number + 1; // Go on to the next number.
}
System.out.println("Done!");

82

Do ... while loop

do {
 <statements>
} while (<boolean-expression>);

do
 <statement>
while (<boolean-expression>);

 Two variants

83

Do .. while examples

 Always executes loop body once

boolean wantsToContinue; // True if user wants
 // to play again.

do {
 Checkers.playGame();
 TextIO.put("Do you want to play again? ");
 wantsToContinue = TextIO.getlnBoolean();
} while (wantsToContinue == true);

84

For loops

 Why yet another type?
 Standard form

<initialization>
while (<continuation-condition>) {

<statements>
<update>

}

for (<init>;<continuation-cond>; <update>) {
<statements>

}
// Also possible without block statement

85

For loop examples

 Simplification
years = 0; // initialize the variable years
while (years < 5) { // condition for continuing loop
 interest = principal * rate; //
 principal += interest; // do three statements
 System.out.println(principal); //
 years++; // update the value of the variable, years
}

for (years = 0; years < 5; years++) {
 interest = principal * rate;
 principal += interest;
 System.out.println(principal);
}

Becomes

86

For loop

 Standard form
for (<variable> = <min>;<variable> <= <max>;<variable>++) {
 <statements>
}

for (int i = 0; i <= 10; i++); {
 System.out.println(i);
}

There is an error below

Off by one errors
for (int i = 1; i < 10; i++) {
 System.out.println(i);
}

87

Several counters

 More advanced for loops

for (i=1, j=10; i <= 10; i++, j--) {
 TextIO.putf("%5d", i); // Output i in a 5-character wide column.
 TextIO.putf("%5d", j); // Output j in a 5-character column
 TextIO.putln(); // and end the line.
}

 1 10
 2 9
 3 8
 4 7
 5 6
 6 5
 7 4
 8 3
 9 2
 10 1

88

Iterating over chars

 Printing out the English alphabet
 Unfortunately its more complex for Danish

characters
// Print out the alphabet on one line of output.
char ch; // The loop control variable;
 // one of the letters to be printed.
for (ch = ’A’; ch <= ’Z’; ch++)
 System.out.print(ch);
System.out.println();

89

Nested for loops
for (rowNumber = 1; rowNumber <= 12; rowNumber++) {
 for (N = 1; N <= 12; N++) {
 // print in 4-character columns
 System.out.printf("%4d;", N * rowNumber); // No new line!
 }
 System.out.println(); // Add a carriage return at end of the line.
}

 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12;
 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24;
 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36;
 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48;
 5; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60;
 6; 12; 18; 24; 30; 36; 42; 48; 54; 60; 66; 72;
 7; 14; 21; 28; 35; 42; 49; 56; 63; 70; 77; 84;
 8; 16; 24; 32; 40; 48; 56; 64; 72; 80; 88; 96;
 9; 18; 27; 36; 45; 54; 63; 72; 81; 90; 99; 108;
 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120;
 11; 22; 33; 44; 55; 66; 77; 88; 99; 110; 121; 132;
 12; 24; 36; 48; 60; 72; 84; 96; 108; 120; 132; 144;

90

Enums and for each loops

 Could have been called for each
 Printing out days and their ordinal number

for (<enum-type-name> <variable-name> : <enum-type-name>.values()) {
 <statements>
}

91

Branches

 The if statement

 The switch statement

 Branches the computation tree

92

The if statement

 Basic form: Selects one of two actions

if (<boolean-expression>)
 <statement-1>
else
 <statement-2>

if (<boolean-expression>) {
 <statement-1>
} else {
 <statement-2>
}

or

93

The dangling else problem

 When is the second case executed
if (x > 0)
 if (y > 0)
 System.out.println("First case");
else
 System.out.println("Second case");

if (x > 0)
 if (y > 0)
 System.out.println("First case");
 else
 System.out.println("Second case");

The computer reads this as

94

The dangling else problem

 Solution:
 use block statements

if (x > 0) {
 if (y > 0)
 System.out.println("First case");
}
else
 System.out.println("Second case");

95

If...else if construction

 Used to chose between more than two things
 Example: Exactly one of the three statements

are executed

if (<boolean-expression-1>)
 <statement-1>
else if (<boolean-expression-2>)
 <statement-2>
else
 <statement-3>

96

If...else if construction

 Can be extended indefinitely
 Last else is optinal

if (boolean-expression-1)
 statement-1
else if (boolean-expression-2)
 statement-2
else if (boolean-expression-3)
 statement-3
 .
 . // (more cases)
 .
else if (boolean-expression-N)
 statement-N
else
 statement-(N+1)

97

The switch statement

 Most common form
switch (expression) {
 case constant-1 :
 statements-1
 break;
 case constant-2 :
 statements-2
 break;
 .
 . // (more cases)
 .
 case constant-N :
 statements-N
 break;
 default: // optional default case
 statements-(N+1)
} // end of switch statement

98

Switch example
switch (N) { // (Assume N is an integer variable.)
 case 1:
 System.out.println("The number is 1.");
 break;
 case 2:
 case 4:
 case 8:
 System.out.println("The number is 2, 4, or 8.");
 System.out.println("(That’s a power of 2!)");
 break;
 case 3:
 case 6:
 case 9:
 System.out.println("The number is 3, 6, or 9.");
 System.out.println("(That’s a multiple of 3!)");
 break;
 case 5:
 System.out.println("The number is 5.");
 break;
 default:
 System.out.print("The number is 7 or is outside”);
 System.out.println(“ the range 1 to 9.");
}

99

Enums and switch

switch (currentSeason) {
 case WINTER: // (NOT Season.WINTER !)
 System.out.println("December, January, February");
 break;
 case SPRING:
 System.out.println("March, April, May");
 break;
 case SUMMER:
 System.out.println("June, July, August");
 break;
 case FALL:
 System.out.println("September, October, November");
 break;
}

100

Definite assignment

 A variable must be assign before it is used
 It must be assigned on all possible paths

String computerMove;
switch ((int)(3*Math.random())) {
 case 0:
 computerMove = "Rock";
 break;
 case 1:
 computerMove = "Scissors";
 break;
 case 2:
 computerMove = "Paper";
 break;
}
System.out.println("Computer’s move is " + computerMove); // ERROR!

101

Definite assignment

 Use default

String computerMove;
switch ((int)(3*Math.random())) {
 case 0:
 computerMove = "Rock";
 break;
 case 1:
 computerMove = "Scissors";
 break;
 default:
 computerMove = "Paper";
 break;
}
System.out.println("Computer’s move is " + computerMove);

102

Definite assignment

 Example 2
 No definite assignment Definite assignment

String computerMove; String computerMove;
int rand; int rand;
rand = (int)(3*Math.random()); rand = (int)(3*Math.random());
if (rand == 0) if (rand == 0)
 computerMove = "Rock"; computerMove = "Rock";
else if (rand == 1) else if (rand == 1)
 computerMove = "Scissors"; computerMove = "Scissors";
else if (rand == 2) else
 computerMove = "Paper"; computerMove = "Paper";

103

Break and continue

 We can exit a loop prematurely

while (true) { // looks like it will run forever!
 TextIO.put("Enter a positive number: ");
 N = TextIO.getlnInt();
 if (N > 0) // input is OK; jump out of loop
 break;
 TextIO.putln("Your answer must be > 0.");
}
// continue here after break

104

Labeled break

 For use in nested loops
boolean nothingInCommon;
nothingInCommon = true; // Assume s1 and s2 have no chars in common.
int i,j; // Variables for iterating through the chars in s1 and s2.
i = 0;
bigloop: while (i < s1.length()) {
 j = 0;
 while (j < s2.length()) {
 if (s1.charAt(i) == s2.charAt(j)) {//s1 and s2 have a common char.
 nothingInCommon = false;
 break bigloop; // break out of BOTH loops
 }
 j++; // Go on to the next char in s2.
 }
 i++; //Go on to the next char in s1.
}

105

Continue

 Jumps to the top of the loop and starts the next
iteration

 Also exists in a labeled version

106

Algorithm development

 Pseudocode
 Stepwise refinement

107

Pseudocode

 English description in steps
 Can be more mathematical

Get the user’s input
while there are more years to process:
 Compute the value after the next year
 Display the value

108

Stepwise refinement

 Get the user's input

Ask the user for the initial investment
Read the user’s response
Ask the user for the interest rate
Read the user’s response

109

3N+1 Problem

 “Given a positive integer, N, define the ’3N+1’ sequence start-
ing from N as follows: If N is an even number, then divide N by
two; but if N is odd, then multiply N by 3 and add 1. Continue
to generate numbers in this way until N becomes equal to 1. For
example, starting from N = 3, which is odd, we multiply by 3 and
add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide
by 2, giving N = 10/2 = 5. We continue in this way, stopping
when we reach 1, giving the complete sequence: 3, 10, 5, 16, 8,
4,2, 1.
 “Write a program that will read a positive integer from the
user and will print out the 3N+1 sequence starting from that
integer. The program should also count and print out the number
of terms in the sequence.”

110

3N+1 Problem

 Get a positive integer N from the user
 Compute, print, and count each number in the

sequence;
 Output the number of terms;

 The second step is still very complex

111

3N+1 Problem

 Get a positive integer N from the user;
 while N is not 1;

 Compute N = next term;
 Output N;
 Count this term;

 Output the number of terms;

112

3N+1 Problem

Get a positive integer N from the user;
while N is not 1:
 if N is even:
 Compute N = N/2;
 else
 Compute N = 3 * N + 1;
 Output N;
 Count this term;
Output the number of terms;

 Branch on even

113

3N+1 Problem

 Adding counter

Get a positive integer N from the user;
Let counter = 0;
while N is not 1:
 if N is even:
 Compute N = N/2;
 else
 Compute N = 3 * N + 1;
 Output N;
 Add 1 to counter;
Output the counter;

114

3N+1 Problem

 Handling incorrect input
Ask user to input a positive number;
Let N be the user’s response;
while N is not positive:
 Print an error message;
 Read another value for N;
Let counter = 0;
while N is not 1:
 if N is even:
 Compute N = N/2;
 else
 Compute N = 3 * N + 1;
 Output N;
 Add 1 to counter;
Output the counter;

115

public class ThreeN1 {
 public static void main(String[] args) {
 int N; // for computing terms in the sequence
 int counter; // for counting the terms
 TextIO.put("Starting point for sequence: ");
 N = TextIO.getlnInt();
 while (N <= 0) {
 TextIO.put("The starting point must be positive. Please try again: ");
 N = TextIO.getlnInt();
 }
 // At this point, we know that N > 0
 counter = 0;
 while (N != 1) {
 if (N % 2 == 0)
 N = N / 2;
 else
 N = 3 * N + 1;
 TextIO.putln(N);
 counter = counter + 1;
 }
 TextIO.putln();
 TextIO.put("There were ");
 TextIO.put(counter);
 TextIO.putln(" terms in the sequence.");
 } // end of main()
} // end of class ThreeN1

116

Debugging

 Debugging statements
 System.out.println(“x=“ + x + “ before the loop”);

117

Lecture 4

118

Exceptions

 Last time: Normal flow of control
 Why do we need something different
 Handle errors somewhere else then where they

happen

 Exception – the exception is an Object
 try...catch statements

119

try...catch

 Formal syntax

120

try...catch

 Example

121

Example 2

122

Exceptions in TextIO

 When reading user input TextIO handles error
itself

 When reading from a file, this is not possible.
 Thus is throws an error that you have to catch.

123

Overview

Vehicle

HasWheels Flying Vehicle

Plane HelicopterTruck Car

124

Classes

Applet

MyApplet SimpleAnimationApplet2

MyAnimationApplet

Object

125

Static vs. non-static

MyApplet

MyAnimationAppletRunningApplet

RunningApplet

126

Math vs. String

 Static memebers
 Math.rand()
 Integer.parseInt(“45”)

 Non-static members
 s1 = “Dette bliver et object”
 s1.equals(“hej”)

127

Example: Integer

Integer Class
static members

parseInt(String s)

Integer Object
non-static member

equals(int i)

 Class vs. Object

128

GUI programming

 GUI = Graphical User Interface
 Applets

 Making an applet class
 When running the applet class an object is created

 Regular programs – as in previous lectures
 public static void main(String[] args) {...

 Applets
 public void paint(Graphics g) {...

129

Syntax

 import – packages
 extends

130

Graphics

 java.awt vs. javax.swing
 Applet vs. Japplet
 Methods on Graphics obejct

 g.setColor(c)
 c is of type enum Color: ex Color.RED, Color.BLUE

 g.drawRect(x,y,w,h)
 g.fillRect(x,y,w,h)
 Draws rectangles

131

StaticRects

132

Animation

 Extend SimpleAnimationApplet2
 implement drawFrame() method
 use this.getFrameNumer() in some way

133

Black Boxes

 Why?
 Hiding details and complexity

 Well defined interface
 You should not know how it is implemented

 implementation can e changed later

 The black box should not know how it will be
used later
 it can be used in many unexpected ways

134

Contract

 Interface and description can be seen as a
contract

 Read the description
 fillRect(x,y,h,w)
 Not fillRect(x1,y1,x2,y2)

135

Static subroutines and variables

 Subroutine definition
 modifiers – static and public, private, protected
 return-type – void or typename
 parameter-list – next slide

136

Calling subroutines

 Inside the class
 playGame()

 Outside the class
 Poker.playGame()
 Integer.parseInt(“33”)

137

Subroutines in programs

 Split problem into smaller parts
 Use the same subroutine in several places
 Simple main loop

138

Member variables

 We only look at static member variables
 for now

 These belong to the class not the individual
object

 Example PI, which is also final

Math Class
static members

Math.PI

139

Static member variables

 Static does not mean final
 Local variables in subroutines
 Global variables in classes

 can be public or private

140

Parameters

 You have called lost of methods with
parameters

 These are called actual parameters
 Formal parameters

 The one you write when you define a subroutine,
that others can call

 Actual parameters are substituted for the formal
ones

141

Parameters

 Formal parameters
 only declared once

 Actual parameters
 as many times as you call the method
 print3NSequence(17);

142

Subroutine example

143

Overloading

 Many methods with the same name
 TextIO example

 putln(int)
 putln(String)
 putln(boolean)

 No overloading on return-type

144

Bad parameter values

 This is an error
 What do you do?
 Throw an exception

