Programming in Java: lecture 5

= Return Values

= APls, Packages and Javadoc
= More on Program Design

= Declarations

= Something about learning

= Repetition

Slides made for use with "Introuction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from ”Introuction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 3 covers Section 4.4 to 4.7 + some repitition 1

@ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

Return Values

= Function — subroutines with a return value
= Can only return one specific type
= Can be used as expressions or statements

= Statement: return value is ignored
= Test condition: boolean value

The return statement

» return <expression>;

= Should give some result of the same type as
the return value of the function

= Must be inside function
= Example

static double pythagoras(double x, double y) {
// Computes the length of the hypotenuse of a right

// triangle, where the sides of the triangle are x and y.
return Math.sqrt(x*x + y*y);

Function Examples

= The 3N+1 Sequence

static int nextN(int currentll) {
if (currentN % 2 == 1) /] test if current N is odd

return 3*currentN + 1: // if so, return this value
else

return currentll / 2: /[if not, return this instead

}

= return type void.

= return;

One return statement

= Some people prefer having only one return
statement per function

static int nextll(int currentN) {
int answer: // answer will be the value returned
if (currentl % 2 == 1) // test if current N is odd
answer = 3#currentN+1: // if so, this is the answer

else
answer = currentll / 2: // if not, this is the answer

return answer; // (Don’t forget to return the answer!)

Use of Functions

static void print3lNSequence(int startingValue) {

int N; // One of the terms in the sequence.
int count; // The number of terms found.

N = startingValue; // Start the sequence with startingValue.
count = 1;

TextID.putln("The 3N+1 sequence starting from " + I);
TextI0.putln();

TextIO.putln(N); // print initial term of sequence

while (N > 1) {
N = nextN(N J); // Compute next term, using the function neztl.
count++: // Count this term.

TextIO.putln(N); // Print this term.
}

TextI0.putln();
TextI0.putln("There were " + count + " terms in the sequence.");

Return type can be any type

= static boolean 1sPrime (int N);

= statlic String reverse (String str);

static String reverse(String str) {
String copy; // The reversed copy.

int 1i; // One of the positions in str,
I from str.length() - 1 down to O.
copy = ""; // Start with an empty string.

for (i = str.length() - 1; i >=0; i--) {

// Append i-th char of str to copy.
copy = copy + str.charAt(i);
+

return copy;

APls, Packages and Javadoc

= APl — Application Programmers Interface

= What you need to know from the outside
= Windows, MacOS, linux (gtk, gnome), Java
= Math Toolboxes

Packages

= Too much functionality to expose it all at once

java
lang awt u til
Math Graphics
sqrt() drawRect()
random() setColor()
String Color
Integer Font

Subroutines nested in classes nested in two layers of packages.
The full name of sgri() is java.lang.Math.sqgri()

Import directives

= Technically not a statement

= java.lang.”; // automatically imported, contains
String

= Import java.”
= does not import everything
= GUI program: typical import
= import java.awt.”;
= import java.awt.event.”; // still needed

= import javax.swing.”;
= Javax is additions from java 1.2 10

Name conflicts

= Two classes in different packages with the
same name

= Java.awt.List

= java.util.List

= Only importing specific packages or
= Using fully qualified names

11

Create your own package

= Eclipse warns about using the default package
= Packages are stored in Java Archives

= Jar files

12

= Comments used for generating documentation

= Begins with /**

IET:
* This subroutine prints a 3N+1 sequence to standard output, using
* startingValue as the initial value of N. It also prints the number
¥ of terms in the sequence. The value of the parameter, startingValue,
* must be a positive integer.

%/

static void print3NSequence(int startingValue) { ...

13

Semantic description

= Syntactic information in function name, return
type and argument types

= Javadoc can contain HTML code
= doc tags

Gparam (parameter-name) (description-of-parameter)

Greturn (description-of-return-value)

Gthrows (ezception-class-name) (description-of-ezception)

[%%
* This subroutine computes the area of a rectangle, given 1ts width
* and 1ts height. The length and the width should be positive numbers.
* @param width the length of one side of the rectangle
* @param height the length the second side of the rectangle
* @return the area of the rectangle
* @throws IllegalArgumentException 1f either the width or the height
¥ 18 a negative number.
*/
public static double areaOfRectangle(double length, double width) {
if (width < 0 [| height <0)
throw new IllegalArgumentException("Sides must have positive length.");
double area;
area = width * height,;
return area;

More on Program Design

* Preconditions and
= Postcondition

IET:

* Sets the color of one of the rectangles in the window.
%

* Precondition: 7row and col are in the valid range of row and column numbers,
and r, g, and b are in the range 0 to 255, inclusive.

Postcondition: The color of the rectangle in row number row and column
number col has been set to the color specified by r, g,
and b. r gives the amount of red in the color with 0
representing no red and 255 representing the maximum
possible amount of red. The larger the value of r, the
more red in the color. g and b work similarly for the
green and blue color components.

* O #® & ® #* #*

*/

public static void setColor(int row, int col, int r, int g, int b)

Declarations

= |nitialization in declarations

int count: // Declare a variable named count.
count = 0: // Giwve count its initial wvalue.

= |s the same as
int count = 0: // Declare count and give 1t an initial value.

= Multiple initializations

char firstInitial = °‘D’, secondlInitial = 'E?;
int x, y = 1; // OK, but only y has been initialized!

int N =3, M =N+2; // OK, N is initialized
Iy before its value is used.

For loops

= Initialization in for loops

for (int 1 = 0; i < 10; i++) {
System.out.println(i) ;
}

= |s the same as
{

int 1i;
for (i = 0:; i < 10: 41i++) {

System.out.println(i) ;
+

18

Static member variables

= Can be initialized when declared

public class Bank {
static double interestRate = 0.05;
static int maxWithdrawal = 200;

= No statements outside functions

public class Bank {
static double interestRate:

interestRate = 0.05; // ILLEGAL:
// Can’t be outside a subroutine!:

19

Named Constants

Can easily be changed between compiles
final static double interestRate = 0.05;

final static double INTEREST RATE =
0.05;

Math.PI;

Enumerated type constants
Color.RED

20

Naming and Scope Rules

= Scope — Hvad man kan se

= Member variables are in scope in the Class
= Hiding outer variable with the same name

= Game.count to get member variable

public class Game A

static int count; // member wvariable

static void playGame() {
int count; // local variable

// Some statements to define playGame ()

Only one level of nesting

= You can only have one level of nesting of

variables with the same name
void badSub(int y) {

int x:
while (y > 0) {
int x; // ERROR: =z is already defined.

}
}

= Ok with multiple on the same level 2

» static Insanity Insanity(Insanity
Insanity) { ... }

= Do not do this!

= Remember the pragmatics

23

Something about learning

= Repetition — teaches your brain to remember
= Programming is an activity not facts

= Doing is learning

= You should be able to do the exercises

= Watching others do the exercises will not teach
you much

24

Repetition

= Lecture 1

25

Overview of the course

= Purpose: Learn to program

= Basic Programming

= Control structures, data types
= Searching and sorting
= Recursion

= Knowledge of Object Oriented Programming

= Inheritance and Polymorphism
= Later you will have: OOP and OOA&D

= Exam: Written test

Java Virtual Machine

> fthy-arvirtual machine
= What do we mean by “virtual”
= Explain a regular machine
= Java and Java Byte Code

* Fetc
= Mac

C

N execute cycle
nine language

PU

CPU

Program
counker:

(1011100001 |

Mﬂﬂi}l’}f
ooiaii10
11010011
Datatomermary | 01010011
[on1o000
- 1011111
Data fram memoey 10100110
11101001
oooooi11
*[Too0110

Address for
readingwriting | 00010001
data, aoi11110

[Location 0]
[Location 1)
[Location 4
[Location 3)

[Location 10]

Machine Architecture

= Basic Computer Architecture
= Asynchronous events

CPU Ernpks Slak
for futre
¢ ¢ hdermory Expari o
Iripd » l > l » Crata bus
kpuk > * » * » Address bus
Carkroller I * I - I Corkrol bus
Yideo K erebrceard Metwork
i arkraller Irterface
and
b oritar i 1
Metwirk Cable

Java Virtual Machine

= Why a virtual machine?

Java Interpreter

/1 for Mac OS
Java

Java . , Java Interpreter
Program Complar Pyiconda for Windows

Program
\. Java Interpreter

for Linux

Java Byte Code:

0: iconst 2

1 istore 1

2: iload 1

3: sipush 1000
6: if icmpge

o3 iconst 2

10: istore 2

11: 1iload 2

12: 1locad 1

13: 1f icmpge
16: 1iload 1

17: 1load 2

18: 1irem

19: 1ifne 25
22: goto 38
25: iinc 2, 1
28: goto 11
31: getstatic
34: 1iload 1

35: 1invokevirtual
38: 1iinc 1, 1
41: goto 2
44: return

1 e)
System.out.println (i)
}
31
remainder
#84; //Field java/lang/System.out:Ljava/io/PrintStream;
#85; //Method java/io/PrintStream.println: (I)V

Compilation

Java Code:

continue outer;

for (int 1 = 2; 1 < 1000;
for (int j = 2; 7 < 1i; Jt++)
if (14 % 3 == 0)

it+)

{

{

Building blocks of programs

= Data

= Variables
= Types
= |nstructions
= Control structures
= organize code

= Subroutines
" reuse

Java Code:

for (int i = 2; 1 < 1000; i++)

for (int j = 2; j < 1i; J++)

if (14 % 3 == 0)
continue outer;

}
System.out.println

}

(1)

{

{

History of Programming

= Structured programming

= Divide problem into smaller problems
= top-down approach
= Focus on instructions, not data

= QObject Oriented Programming
= Model the problem area

= pottom-up approach
= Focus on data, not instructions

Object Oriented Programming

= What is an object?

= Represents real world objects

= Data and associated methods (functions).
= Data hiding
= Polymorphism
= Classes
= Inheritance

Data Hiding

= Ensuring

= modularity

= data integrity
= Enabling

= reuse
= |local modifications

Polymorphism

= The same message send to different objects
will have different effects

= Code that operates on data types that we have
not defined yet

Classes

= Template
= Description of a group of objects
= Example: Vehicle

Vehicle

!

HasWheels

!

Flying Vehicle

!

Truck

Car

Plane

Helicopter

Command Line Interface

= Windows: Run Program (cmd)
= Linux: xterm, gterm, ...

= Mac OS: Terminal

= Javac — compiler

* > javac HelloWorld. java

= Java — execution

* > java HelloWorld

* Hello Worldl!

Packages

= Packages

* > package mypackage;

= Compilation with packages
= Windows

* > javac mypackage\HellowWorld. java

= Linux

* > javac mypackage/HellowWorld. java

Identifiers

= Structure

13 7

= Must start with letter or *

= Can contain numbers

= Examples: local, x2, variableName
= Simple identifiers — local

= Contains no “.”
= Compound identifiers — “global”

= System.out.printin

Reserved Words

= abstract continue for new switch

= assert default goto package synchronized
= Dboolean do 1if private this

= Dbreak double implements protected throw

= byte else import public throws

= case enum instanceof return transient

= catch extends int short try

= char final interface static void

= class finally long strictfp volatile

= const float native super while

= A box that contains data
= A location in memory
= The data inside the box

= A value
= Example: Data
= X=X+ 2 memory Iocatioa . size

Data

= Java is strongly typed
= Weakly typed: Hope for the best
= Apples and oranges
= Automatic conversion or Compile error
= Types:
= Primitive Types:
= boolean, int, short, ...

= Classes:
= String, ...

Primitive Types

= Not classes
= Describes a single value

= Integer:

= intx=95

= inty =345
= Double

= double y = 3.56 (Bemaerk komma er .)

Primitive Types 2

= Name Dbits = Range

= byte 8 = -128 to 127
= short 16 = 232,768 to 32,767
= Int 32 = -2147,483,648

to

2,147,483,647

= long 64 = -9 223,372,036,854,775,808
to
9,223,372,036,854,775,807

Primitive Types 3

= float 32-bit
= 7 significant digits

= double 64-bit
= 15 significant digits

= boolean 1 bit of information
= true (1) or false (0)

Variable Declarations

= Reserves space in memory

Space for Data

= Makes the name (identifier)
usable after this point.

« <type-name> <variable-name-or-names>

= int numberOfStudents;

= String name; // First, middle and last name

= double x, y; // represents coordinates
= boolean isFinished;
= char firstlnitial, middlelnitial, lastinitial;

Assignment Statements

Putting something into the box
<variable> = <expression>

X =2

y=4*5

myVariable = x/y

More expression later

x

This class i1mplements a simple program that
willl compute the amount of i1nterest that 1s
earned on %17, 000 invested at an interest

rate of 0.07 for one vyear. The interest and
the value of the investment after one wvear are
printed to standard output.|

E A

Sy

public class Interest {

o public static woid main(Stringl[] args) {

J%* Declare the wvarilables, ¥/

double principal; /f The value of the investment.
double rate: S The annual interest rate.
double interest: S/ Interest earned in one year.

/% Do the computations. */

principal - 17000;
rate = 0.07;
interest = principal * rate; S/ Compute the interest.

principal = principal + interest;
/4 Compute wvalue of investment after one year, with interest.
/' (NMote: The new value replaces the old wvalue of principal.)

/% Output the results. */

Sy=stem. cut. print (" The interest earned 1= $");

System. cut. println{interest) ;

System. out. print ("The wvalue of the investment after one year is 5"):
System. out. println(principal) ;

} £ end of main()

} /S end of class Interest

= Numbers

= int: 1200, -30

= long: 1244L, -30L
= Floating point

= double: 55.4
= 12e5 =12 * 1075
= float 12.3F, 24,953f

Literals 2

= String literals
= “This is a String”
= Char literals

= '’ \n', At
= \UOOE9' = ¢
= Boolean
= true

= false

Literals 3

= Hexadecimal—-0...9A ... F
= 0x45 or OxFF7A
= 4*16+5
= Octal-0...7
= 045 = 37
- 4*8+5

Two Purposes of Classes

= Static collections of functions

= Example: Math

= Collection of static members
= Math.PI
= Math.random() // random double between 0 and 1

= Template for Objects

= Example: String
= String.equals()

Subroutine call statement

= <method-name>(<parameters>)

= Examples

= System.out.printin(“This is a String”)
= Math.rand() // no parameters

= String firstName = “Ulrik”;
= firstName.equals("Nyman”);
= false

= s1.equals(s2)

= s1.equalsignoreCase(s2)

= s1.length()
= s1.charAt(N)

= s1.substring(N,M)
= s1.toUpperCase()

Concatenation

= String + anything = String
= Examples:

= int numberOfDays = 7;
= “The week has “ + numberOfDays + “ days”

= numberOfDays * 2 + “ this is 14”

= Math.rand()

= Math.PIl // constant

= Math.sqrt(x) Square root
= Math.sin(y)

= Math.floor(double d) // returns integer

= Special type of classes

= enum <enum-type-name> { <list-of-enum-values> }

= enum Season { SPRING, SUMMER, FALL,
WINTER }

= Season.WINTER

= Season vacation;

= vacation = Season.SUMMER,;
= Season.FALL.ordinal() is 2,

= System.out.printin(vacation);

= plus +: result=4.0+ 3

= multiplication *: x =3 * 4

= division /. z = 5/6 Gives an integer
= 5.0/6 Gives a double

= modulus %: 34577 % 100 = 77

= minus-:t=5-2
= unary minus -: -4

Increment and decrement

= counter = counter + 1;

= goalsScored = goalsScored + 1;
= counter = 4

= X = counter++; // x = 4 old value

= ++counter; // x = 5 new value

= goalsScored--;

Relational Operators

= A== Is A "equal to" B?

= Al=B Is A "not equal to" B?

= A<B Is A "less than" B?

= A>B Is A "greater than" B?

= A<=B Is A "less than or equal to" B?

= A>=B Is A "greater than or equal to" B?
= boolean samesSign;

= sameSign = ((x > 0) == (y > 0));

Boolean Operators

= Comparison

= And &&

= true && false
= Or ||

= true || false
= Not !

= true == lfalse

Conditional Operator

= |f...then...else on a single line
\boolean-ezpression) 7 (ezpressionl) : (ezpression?)

next = (W% 2 ==0) 7 (N/2) : (3*+1);

66

Assignment Operators

X -=Y,; // same as:
X *=y; // same as:
X /=Yy, // same as:
X %=, // same as:

= (for integers x and y)

g &&=p; // same as:

= (for booleans q and p)

X=X-Y,
X=X YV;
X=Xy,
X=X%Y,;
q=q&&p;

Type Casts

= Int A;

= double X;

= short B;

= A=17;

= X=A: //OK: Ais converted to a double
= B=A; //illegal; no automatic conversion
- /] from int to short

Type Casts 2

= Int A;

= short B;

= A=17;

= B =(short)A; [/ OK; A is explicitly type cast
- /[to a value of type short

Precedence Rules

= Unary operators: ++ -- | unary - and +, type-cast
= Multiplication and division: *, /, %

= Addition and subtraction: +, -

= Relational operators: <, >, <=, >=

= Equality and inequality: ==, I=

= Boolean and: &&

= Boolean or: |

= Conditional operator: ?:

= Assignment operators: =, +=, -=, *=, /=, %=

Type Conversion of Strings

= Integer.parselnt(“123")
= Double.parseDouble("3.14%)

= Double.parseDouble(“12.3e-77)
= Same as literals

= Enum
= Season.valueOf("SUMMER?")

TextlO

= Class file from textbook with modifications
= Hides detalls of getting Input

= System.out.printin(“String”)

= TextlO.put(“String”)

TextlO — printf — putf

= System.out.printf("The product of %d and %d is
%d", X, y, X*y);

= Variable number of arguments
= %d — integer (decimal) number

= %12d, minimum 12 characters
= %s — String (converted into string)
= %10s, minimum 10 characters

TextlO — printf — putf 2

= %f — floating point

= %12.3f — 12 chacters, 3 digits after decimal point
= %e — exponential

= %15.8e — 8 digits after the devimal point
= %g — floating point or exponential

= %12.4g — a total of 4 digits in the answer

= v 5.345"
= v 34.453"
= v 123.875"

TextlO 2

] = TextlO.getinInt(); // Reads a value of type int.

y = TextlO.getinDouble(); // Reads a value of type double.

a = TextlO.getInBoolean(); // Reads a value of type boolean.

c = TextlO.getinChar(); // Reads a value of type char.

w = TextlO.getinWord(); // Reads one "word" as a value of
type String.

s = TextlO.getIn(); // Reads an entire input line as a
String.

TextlO - File 1/0

= TextlO.writeFile("result.txt")

= TextlO.writeUserSelectedFile()
= TextlO.writeStandardOutput()
= TextlO.readFile("data.txt")

= TextlO.readUserSelectedFile()
= TextlO.readStandardlnput()

= Grouping things together
= Simple statements and compound statement

= Statements end with ; or }

{
<statements>

}
// This block exchanges the values of x and y
int temp; // A temporary variable for use in this block.
temp = x; // Save a copy of the value of x in temp.
X = V; // Copy the value of y into x.
v = temp; // Copy the value of temp into vy. .

= While loop
= Do while loop
= For loop

= We only need one of these to have a complete
language

= \WWe have several for convenience

79

While loop

= Two variants

while (<boolean—-expression)
<statement>

while (<boolean—-expression) {
<statements>

80

While examples

= Declare variables

= Prime loop
= lterate
int number; // The number to be printed.
number = 1; // Start with 1.
while (number < 6) { // Keep going as long as number is < 6.
System.out.println (number) ;
number = number + 1; // Go on to the next number.

}

System.out .println ("Done!") ;

81

Do ... while loop

= Two variants

do
<statement>
while (<boolean—-expression>);

do {
<statements>
} while (<boolean—expression>);

82

Do .. while examples

= Always executes loop body once

boolean wantsToContinue; // True 1if user wants
// to play again.
do {
Checkers.playGame () ;
TextIO.put ("Do you want to play again? ");
wantsToContinue = TextIO.getlnBoolean ();
} while (wantsToContinue == true);

83

For loops

= Why yet another type?
= Standard form

<linitialization>

while (<continuation-condition>) {
<statements>
<update>

for (<init>;<continuation-cond>; <update>) {
<statements>

}
// Also possible without block statement

84

For loop examples

= Simplification

years = 0; // initialize the variable years
while (years < 5) { // condition for continuing loop
interest = principal * rate; //
principal += interest; // do three statements
System.out.println (principal); //
years++; // update the value of the variable, years
}
Becomes
for (years = 0; years < b; yearstt+) {
interest = principal * rate;

principal += interest;
System.out.println (principal) ;

85

For loop

= Standard form

for (<variable> = <min>;<variable> <= <max>;<variable>++) {
<statements>

}

There is an error below

for (int 1 = 0; i <= 10; 1i++); {
System.out.println (1) ;
}

Off by one errors

for (int i = 1; i < 10; 1i++) {
System.out.println (1) ;
}

86

Several counters

= More advanced for loops

for (i=1, 3=10; i <= 10; i++, J——) {
TextIO.putf ("%5d", 1i); // Output i1 in a 5-character wide column.
TextIO.putf ("%5d", j); // Output j in a 5-character column
TextIO.putln () ; // and end the line.

1 10
2 9
3 8
4 7
5 6
6 5
7 4
8 3
9 2
10 1 87

Iterating over chars

= Printing out the English alphabet

= Unfortunately its more complex for Danish
characters

// Print out the alphabet on one line of output.
char ch; // The loop control variable;
// one of the letters to be printed.
for ((ch = "A"; ch <= "7Z",; ch++)
System.out .print (ch);
System.out.println () ;

88

Nested for loops

for (rowNumber = 1; rowNumber <= 12; rowNumber++) {
for (N =1; N <= 12; N++) {
// print in 4-character columns
System.out.printf("%4d;", N * rowNumber); // No new line!

}

System.out.println(); // Add a carriage return at end of the line.

1; 2; 3; 4; 5; 6; 7; 8; 9, 10; 11; 12;
2; 4, 6; 8; 10; 12; 14; 16; 18, 20, 22; 24;
3; 6; 9; 12; 15; 18, 21, 24, 27; 30, 33; 36;
4, 8; 12; le;, 20, 24, 28; 32, 36; 40; 44, 48;
5; 10; 15; 20, 25, 30, 35; 40; 45; 50; 55; 60;
o, 12, 18, 24, 30; 36; 42; 48; 54; 60; 66; 12;
7; 14, 21; 28; 35; 42; 49; 56; 63; 70, 77; 84;
8; le6; 24, 32; 40; 48; 5606; 6d; 72; 80; 88; 96;
9; 18; 27,; 36; 45,; 54; 63; 72; 81, 90; 99; 108;
10, 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120;
11; 22; 33; 44; 55; 66; 77; 88; 99; 110; 121; 132;
12, 24; 36; 48; 60; 72; 84; 96; 108; 120; 132; 144; 39

Enums and for each loops

for (<enum-type—-name> <variable-name> : <enum-type-name>.values ())
<statements>

}
= Could have been called for each

= Printing out days and their ordinal number

public class Daylterator {
enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)
= public static void main(5tring[] args) |

for (Day d : Day.values()) {
System, out. println(d + " 1s day number " + d.,ordinal()]);

90

{

Branches

« The if statement
= The switch statement

= Branches the computation tree

s

91

The if statement

= Basic form: Selects one of two actions

1f (<boolean—-expression>)
<statement-1>

else
<statement-2>

or

1f (<boolean—-expression>) {
<statement-1>

} else {
<statement-2>

}

92

The dangling else problem

= When is the second case executed

if (x> 0)
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");

The computer reads this as
if (x> 0)
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");

93

The dangling else problem

= Solution:
= use block statements

if (x> 0) |
if (y > 0)
System.out.println("First case");

}

else
System.out.println("Second case");

94

If...else if construction

= Used to chose between more than two things

= Example: Exactly one of the three statements
are executed

1f (<boolean—-expression—1>)
<statement-1>

else 1f (<boolean—-expression—-2>)
<statement-2>

else
<statement-3>

95

If...else if construction

= Can be extended indefinitely
= Last else is optinal

1f (boolean—-expression-1)
statement-1

else 1f (boolean—-expression-2)
statement-2

else 1f (boolean—-expression—-3)
statement-3

. // (more cases)

else 1f (boolean—-expression-N)
statement—N
else

statement— (N+1) 7

The switch statement

= Most common form

switch (expression) {
case constant-1
statements—-1
break;
case constant-2
statements-2
break;

// (more cases)

case constant—-N
statements—N
break;
default: // optional default case
statements— (N+1)
} // end of switch statement 97

case 1:

System.

break;
case 2:
case 4:
case 8:

System.
System.

break;
case 3:
case 6:
case 9:

System.
System.

break;
case b:

System.

break;
default:

System.
System.

out

out
out

out

out

out

out
out

Switch example

.println ("The number is 1.");

.println ("The number 1is 2, 4, or 8.");
.println (" (That’s a power of 2!)");
.println ("The number 1is 3, 6, or 9.");
.println (" (That’s a multiple of 3'")");
.println ("The number is 5.");

.print ("The number is 7 or 1s outside”);

.println (Y the range 1 to 9.");

98

switch (currentSeason) {

case WINTER: // (NOT Season.WINTER !)
System.out.println ("December, January, February");
break;

case SPRING:
System.out.println ("March, April, May");
break;

case SUMMER:
System.out.println ("June, July, August");
break;

case FALL:

System.out.println ("September, October, November");

break;

99

Definite assignment

= A variable must be assign before it is used
= It must be assigned on all possible paths

String computerMove;

switch ((int) (3*Math.random())) {
case O:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
case 2:
computerMove = "Paper";
break;
}
System.out.println ("Computer’s move is " + computerMove); // ERROR!

100

Definite assignment

= Use default

String computerMove;
switch ((int) (3*Math.random())) {
case O0:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
default:
computerMove = "Paper";
break;

}

System.out .println ("Computer’s move is " + computerMove);

101

Definite assignment

= Example 2
= No definite assignment

String computerMove;
int rand;
rand = (int) (3*Math.random()) ;
if (rand ==)
computerMove = "Rock";
else 1f (rand == 1)
computerMove = "Scissors";
else 1f (rand == 2)

computerMove "Paper";

Definite assignment

String computerMove;
int rand;

rand = (int) (3*Math.random()) ;
if (rand ==)
computerMove = "Rock";
else 1f (rand == 1)
computerMove = "Scissors";
else
computerMove = "Paper";

102

Break and continue

= We can exit a loop prematurely

while (true) { // looks like it will run forever!

}

TextIO.put ("Enter a positive number: ");

N = TextIO.getlnInt ();

if (N > 0) // input is OK; Jjump out of loop
break;

TextIO.putln ("Your answer must be > 0.");

// continue here after break

103

Labeled break

= For use in nested loops

boolean nothingInCommon;

nothingInCommon = true; // Assume sl and s2 have no chars in common.

int i, j; // Variables for iterating through the chars in sl and s2.
i = 0y

bigloop: while (i < sl.length()) {
j = 0;
while (] < s2.length()) {
if (sl.charAt (i) == s2.charAt(j)) {//sl and s2 have a common char.
nothingInCommon = false;

break bigloop; // break out of BOTH loops
}

j++; // Go on to the next char in s2.
}

i++; //Go on to the next char in sl.

104

= Jumps to the top of the loop and starts the next
iteration

= Also exists In a labeled version

105

Algorithm development

= Pseudocode
= Stepwise refinement

106

Pseudocode

= English description in steps
= Can be more mathematical

Get the user’s input

while there are more years to process:
Compute the value after the next year
Display the value

107

Stepwise refinement

= Get the user's input

Ask the user for the initial investment
Read the user’s response

Ask the user for the interest rate
Read the user’s response

108

3N+1 Problem

“Given a positive integer, N, define the '3N+1’ sequence start-
iIng from N as follows: If N is an even number, then divide N by
two; but if N is odd, then multiply N by 3 and add 1. Continue
to generate numbers in this way until N becomes equal to 1. For
example, starting from N = 3, which is odd, we multiply by 3 and
add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide
by 2, giving N = 10/2 = 5. We continue in this way, stopping
when we reach 1, giving the complete sequence: 3, 10, 5, 16, 8,
4.2, 1.

“Write a program that will read a positive integer from the
user and will print out the 3N+1 sequence starting from that
Integer. The program should also count and print out the number
of terms in the sequence.”

109

3N+1 Problem

= Get a positive integer N from the user

= Compute, print, and count each number in the
sequence;

= Output the number of terms;

= The second step is still very complex

110

3N+1 Problem

= Get a positive integer N from the user;
= while N is not 1;

= Compute N = next term;
= QOutput N;
= Count this term:;
= Output the number of terms;

111

3N+1 Problem

= Branch on even

Get a positive integer N from the user;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3* N + 1;
Output N;
Count this term;
Output the number of terms;

112

3N+1 Problem

= Adding counter

Get a positive integer N from the user;
Let counter = 0;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3 *N + 1;
Output N;
Add 1 to counter;
Output the counter;

113

3N+1 Problem

= Handling incorrect input

Ask user to input a positive number;
Let N be the user’'s response;
while N is not positive:
Print an error message,;
Read another value for N;
Let counter = 0;
while N is not 1:

if N is even:

Compute N = N/2;
else

Compute N=3*N + 1;
Output N;

Add 1 to counter;
Output the counter; 114

int counter; // for counting the terms
TextIO.put ("Starting point for sequence: ");
N = TextIO.getlnInt();

while (N <= 0) {
TextIO.put ("The starting point must be positive.

N = TextIO.getlnInt ();

}
// At this point, we know that N > 0

counter = 0;
while (N != 1) {
if (N % 2 == 0)
N =N/ 2;
else

N =3 * N + 1;
TextIO.putln (N) ;
counter = counter + 1;
}
TextIO.putln();
TextIO.put ("There were ");
TextIO.put (counter) ;
TextIO.putln (" terms in the sequence.");
} // end of main ()
// end of class ThreeNl

Please try again: ");

115

Debugging

= Debugging statements
= System.out.printin(“x=" + x + “ before the loop”);

116

= Last time: Normal flow of control

= Why do we need something different

= Handle errors somewhere else then where they
happen

= Exception — the exception is an Object
= {ry...catch statements

118

try...catch

= Formal syntax

try |
(statements-1)

}

catch ((exception-class-name) (variable-name)) {
(statements-2)
}

119

try...catch

= Example

try {
double x:
x = Double.parseDouble(str) ;
System.out.println("The number is " + x);

}

catch (NumberFormatException e) {
System.out.println("Not a legal number.");

}

120

Day weekday; // User's response as a value of type Day.
while (true) {

String response; // User’s response as a String.
TextIO.put("Please enter a day of the week: ");
response = TextI0.getln();

response = response.toUpperCase();

try {
weekday = Day.valueOf (response);
break;

}

catch (IllegalArgumentException e) {
TextI0.putln(response + " is not the name of a day of the week.");

}

121

Exceptions in TextlO

= When reading user input TextlO handles error
itself

= When reading from a file, this is not possible.
= Thus is throws an error that you have to catch.

122

Overview

Vehicle

!

HasWheels

!

Flying Vehicle

!

Truck

Car

Plane

Helicopter

123

Object

Applet

MyApplet

SimpleAnimationApplet2

!

MyAnimationApplet

124

Static vs. non-static

MyApplet

RunningApplet

RunningApplet

MyAnimationApplet

125

Math vs. String

= Static memebers

= Math.rand()
= Integer.parselnt(“45”)

= Non-static members

= s1 = "Dette bliver et object”
= s1.equals(“hej’)

126

Example: Integer

= Class vs. Object

Integer Class
static members
parselnt(String s)

Integer Object
non-static member
equals(int i)

127

GUI programming

= GUI = Graphical User Interface
= Applets

= Making an applet class
= When running the applet class an object is created

= Regular programs — as in previous lectures
= public static void main(String[] args) {...

= Applets
= public void paint(Graphics g) {...

128

= Import — packages

= extends

import java.awt.*;
import java.applet.¥*,

public class (name-of-applet) extends Applet {

public void paint(Graphics g) {
(statements)

}

129

= Java.awt vs. javax.swing
= Applet vs. Japplet

= Methods on Graphics obejct

= g.setColor(c)
= c is of type enum Color: ex Color.RED, Color.BLUE
= g.drawRect(x,y,w,h)

= g.fillRect(x,y,w,h)
= Draws rectangles

130

import java.awtb.*;
import java.applet.Applet;

public class StaticRects extends Applet {

public void paint(Graphics g) {

+

// Draw a set of nested black rectangles on a red background.
// Each nested rectangle is separated by 15 pixels on
// all sides from the rectangle that encloses it.

int inset; // Gap between borders of applet
iy and one of the rectangles.
int rectWidth, rectHeight; // The size of one of the rectangles.

g.setColor (Color.red);
g.fil11Rect(0,0,300,160); // Fill the entire applet with red.

g.setColor (Color.black); // Draw the rectangles in black.
inset = 0;

rectWidth = 299; // Set size of first rect to size of applet.
rectHeight = 1595;

while (rectWidth >= 0 && rectHeight >= 0) {
g.drawRect(inset, inset, rectWidth, rectHeight) ;

inset += 15; // Rects are 15 pixels apart.
rectWidth -= 30; // Width decreases by 15 pixels

s on left and 15 on right.
rectHeight —-= 30; // Height decreases by 15 pixels

s on top and 15 on bottom.

¥

// end paint() 131

Y // end class StaticRects

= Extend SimpleAnimationApplet2
= implement drawFrame() method
= use this.getFrameNumer() in some way

132

Black Boxes

= Why?
= Hiding details and complexity

= Well defined interface

= You should not know how it is implemented
= Implementation can e changed later

= The black box should not know how it will be
used later

= It can be used in many unexpected ways

133

= Interface and description can be seen as a
contract

= Read the description
= fillRect(x,y,h,w)
« Not fillRect(x1,y1,x2,y2)

134

Static subroutines and variables

= Subroutine definition

= modifiers — static and public, private, protected
= return-type — void or typename

= parameter-list — next slide

(modifiers) (return-type) (subroutine-name) ((parameter-list)) {
(statements)

}

public static void main(Stringl] args) { ... }
135

Calling subroutines

* |Inside the class
= playGame()
= Qutside the class

= Poker.playGame()
= Integer.parselnt(“33”)

(subroutine-name)((parameters)) ;

{class-name). (subroutine-name)((parameters)) ;

136

Subroutines In programs

= Split problem into smaller parts
= Use the same subroutine in several places

= Simple main loop

public class GuessingGame {

public static void main(String[] args) {
TextI0.putln("Let’s play a game. I’1l pick a number between");

TextIO.putln("1 and 100, and you try to guess it.");

boolean playAgain;

do {
playGame(); // call subroutine to play one game

TextIOD.put("Would you like to play again? ");
playAgain = TextIO0.getlnBoolean();
} while (playAgain);
TextIO.putln("Thanks for playing. Goodbye.");
} // end of main()

137

Member variables

= We only look at static member variables
= for now

= These belong to the class not the individual
object

= Example PI, which is also final

Math Class
static members
Math.PI

138

Static member variables

= Static does not mean final
= Local variables in subroutines
= Global variables in classes

= can be public or private
static String usersllame;

public static int number(fPlayers;
private static double velocity, time;

139

Parameters

= You have called lost of methods with
parameters

= These are called actual parameters
= Formal parameters

= The one you write when you define a subroutine,
that others can call

= Actual parameters are substituted for the formal
ones

140

Parameters

= Formal parameters

= only declared once

static void print3NSequence(int startingValue) {

= Actual parameters

= as many times as you call the method
= print3NSequence(17);

do {
TextIO.putln("Enter a starting value;")
TextIO.put("To end the program, enter 0: ");
K = TextIO.getInt(); // Get starting value from user.
if (K> 0) // Print sequence, but only if K is > 0.
print3NSequence (K) ;
} while (K > 0); // Continue only if K > 0.

141

Subroutine example

static void doTask(int N, double x, boolean test) {
// statements to perform the task go here

}

doTask(17, Math.sqrt(z+1), z >= 10);

{
int N; // Allocate memory locations for the formal parameters.
double x;
boolean test;
N =1T; // Assign 17 to the first formal parameter, N.
X = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it to
!/ the second formal parameter, x.
test = (z >= 10); // Evaluate "z >= 10" and assign the resulting
/ true/false value to the third formal
!/ parameter, test.

// statements to perform the task go here
} 142

Overloading

= Many methods with the same name

= TextlO example
= putin(int)
= putlin(String)
= putin(boolean)
= No overloading on return-type

143

Bad parameter values

= This is an error
= What do you do?
= Throw an exception

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract is violated!
throw new IllegaldrqumentEzception("Starting value must be positive.");

. /| (The rest of the subroutine is the same as before.)

144

