Programming in Java: lecture 5
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= APls, Packages and Javadoc
= More on Program Design

= Declarations

= Something about learning

= Repetition
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Return Values

= Function — subroutines with a return value
= Can only return one specific type
= Can be used as expressions or statements

= Statement: return value is ignored
= Test condition: boolean value



The return statement

» return <expression>;

= Should give some result of the same type as
the return value of the function

= Must be inside function
= Example

static double pythagoras(double x, double y) {
// Computes the length of the hypotenuse of a right

// triangle, where the sides of the triangle are x and y.
return Math.sqrt( x*x + y*y );



Function Examples

= The 3N+1 Sequence

static int nextN(int currentll) {
if (currentN % 2 == 1) /] test if current N is odd

return 3*currentN + 1: // if so, return this value
else

return currentll / 2: /[ if not, return this instead

}

= return type void.

= return;



One return statement

= Some people prefer having only one return
statement per function

static int nextll(int currentN) {
int answer: // answer will be the value returned
if (currentl % 2 == 1) // test if current N is odd
answer = 3#currentN+1: // if so, this is the answer

else
answer = currentll / 2: // if not, this is the answer

return answer; // (Don’t forget to return the answer!)



Use of Functions

static void print3lNSequence(int startingValue) {

int N; // One of the terms in the sequence.
int count; // The number of terms found.

N = startingValue; // Start the sequence with startingValue.
count = 1;

TextID.putln("The 3N+1 sequence starting from " + I);
TextI0.putln();

TextIO.putln(N); // print initial term of sequence

while (N > 1) {
N = nextN( N J); // Compute next term, using the function neztl.
count++: // Count this term.

TextIO.putln(N); // Print this term.
}

TextI0.putln();
TextI0.putln("There were " + count + " terms in the sequence.");



Return type can be any type

= static boolean 1sPrime (int N);

= statlic String reverse (String str);

static String reverse(String str) {
String copy; // The reversed copy.

int 1i; // One of the positions in str,
I from str.length() - 1 down to O.
copy = ""; // Start with an empty string.

for ( i = str.length() - 1; i >=0; i-- ) {

// Append i-th char of str to copy.
copy = copy + str.charAt(i);
+

return copy;



APls, Packages and Javadoc

= APl — Application Programmers Interface

= What you need to know from the outside
= Windows, MacOS, linux (gtk, gnome), Java
= Math Toolboxes



Packages

= Too much functionality to expose it all at once

java
lang awt u til
Math Graphics
sqrt() drawRect()
random() setColor()
String Color
Integer Font

Subroutines nested in classes nested in two layers of packages.
The full name of sgri() is java.lang.Math.sqgri()



Import directives

= Technically not a statement

= java.lang.”; // automatically imported, contains
String

= Import java.”
= does not import everything
= GUI program: typical import
= import java.awt.”;
= import java.awt.event.”; // still needed

= import javax.swing.”;
= Javax is additions from java 1.2 10



Name conflicts

= Two classes in different packages with the
same name

= Java.awt.List

= java.util.List

= Only importing specific packages or
= Using fully qualified names
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Create your own package

= Eclipse warns about using the default package
= Packages are stored in Java Archives

= Jar files
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= Comments used for generating documentation

= Begins with /**

IET:
* This subroutine prints a 3N+1 sequence to standard output, using
* startingValue as the initial value of N. It also prints the number
¥ of terms in the sequence. The value of the parameter, startingValue,
* must be a positive integer.

%/

static void print3NSequence(int startingValue) { ...

13



Semantic description

= Syntactic information in function name, return
type and argument types

= Javadoc can contain HTML code
= doc tags

Gparam (parameter-name) (description-of-parameter)

Greturn (description-of-return-value)

Gthrows (ezception-class-name) (description-of-ezception)



[ %%
* This subroutine computes the area of a rectangle, given 1ts width
* and 1ts height. The length and the width should be positive numbers.
* @param width the length of one side of the rectangle
* @param height the length the second side of the rectangle
* @return the area of the rectangle
* @throws IllegalArgumentException 1f either the width or the height
¥ 18 a negative number.
*/
public static double areaOfRectangle( double length, double width ) {
if (width < 0 [| height <0 )
throw new IllegalArgumentException("Sides must have positive length.");
double area;
area = width * height,;
return area;



More on Program Design

* Preconditions and
= Postcondition

IET:

* Sets the color of one of the rectangles in the window.
%

* Precondition: 7row and col are in the valid range of row and column numbers,
and r, g, and b are in the range 0 to 255, inclusive.

Postcondition: The color of the rectangle in row number row and column
number col has been set to the color specified by r, g,
and b. r gives the amount of red in the color with 0
representing no red and 255 representing the maximum
possible amount of red. The larger the value of r, the
more red in the color. g and b work similarly for the
green and blue color components.

* O #® & ® #* #*

*/

public static void setColor(int row, int col, int r, int g, int b)



Declarations

= |nitialization in declarations

int count: // Declare a variable named count.
count = 0: // Giwve count its initial wvalue.

= |s the same as
int count = 0: // Declare count and give 1t an initial value.

= Multiple initializations

char firstInitial = °‘D’, secondlInitial = 'E?;
int x, y = 1; // OK, but only y has been initialized!

int N =3, M =N+2; // OK, N is initialized
Iy before its value is used.



For loops

= Initialization in for loops

for ( int 1 = 0; i < 10; i++ ) {
System.out.println(i) ;
}

= |s the same as
{

int 1i;
for ( i = 0:; i < 10: 41i++ ) {

System.out.println(i) ;
+
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Static member variables

= Can be initialized when declared

public class Bank {
static double interestRate = 0.05;
static int maxWithdrawal = 200;

= No statements outside functions

public class Bank {
static double interestRate:

interestRate = 0.05; // ILLEGAL:
// Can’t be outside a subroutine!:

19



Named Constants

Can easily be changed between compiles
final static double interestRate = 0.05;

final static double INTEREST RATE =
0.05;

Math.PI;

Enumerated type constants
Color.RED

20



Naming and Scope Rules

= Scope — Hvad man kan se

= Member variables are in scope in the Class
= Hiding outer variable with the same name

= Game.count to get member variable

public class Game A

static int count; // member wvariable

static void playGame() {
int count; // local variable

// Some statements to define playGame ()



Only one level of nesting

= You can only have one level of nesting of

variables with the same name
void badSub(int y) {

int x:
while (y > 0) {
int x; // ERROR: =z is already defined.

}
}

= Ok with multiple on the same level 2



» static Insanity Insanity( Insanity
Insanity) { ... }

= Do not do this!

= Remember the pragmatics
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Something about learning

= Repetition — teaches your brain to remember
= Programming is an activity not facts

= Doing is learning

= You should be able to do the exercises

= Watching others do the exercises will not teach
you much

24



Repetition

= Lecture 1
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Overview of the course

= Purpose: Learn to program

= Basic Programming

= Control structures, data types
= Searching and sorting
= Recursion

= Knowledge of Object Oriented Programming

= Inheritance and Polymorphism
= Later you will have: OOP and OOA&D

= Exam: Written test



Java Virtual Machine

> fthy-arvirtual machine
= What do we mean by “virtual”
= Explain a regular machine
= Java and Java Byte Code
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Machine Architecture

= Basic Computer Architecture
= Asynchronous events
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Java Virtual Machine

= Why a virtual machine?

Java Interpreter

/1 for Mac OS
Java

Java . , Java Interpreter
Program Complar Pyiconda for Windows

Program
\. Java Interpreter

for Linux




Java Byte Code:

0: iconst 2

1 istore 1

2: iload 1

3: sipush 1000
6: if icmpge

o3 iconst 2

10: istore 2

11: 1iload 2

12: 1locad 1

13: 1f icmpge
16: 1iload 1

17: 1load 2

18: 1irem

19: 1ifne 25
22: goto 38
25: iinc 2, 1
28: goto 11
31: getstatic
34: 1iload 1

35: 1invokevirtual
38: 1iinc 1, 1
41: goto 2
44: return

1 e )
System.out.println (i)
}
31
# remainder
#84; //Field java/lang/System.out:Ljava/io/PrintStream;
#85; //Method java/io/PrintStream.println: (I)V

Compilation

Java Code:

continue outer;

for (int 1 = 2; 1 < 1000;
for (int j = 2; 7 < 1i; Jt++)
if (14 % 3 == 0)

it+)

{

{




Building blocks of programs

= Data

= Variables
= Types
= |nstructions
= Control structures
= organize code

= Subroutines
" reuse

Java Code:

for (int i = 2; 1 < 1000; i++)

for (int j = 2; j < 1i; J++)

if (14 % 3 == 0)
continue outer;

}
System.out.println

}

(1)

{

{




History of Programming

= Structured programming

= Divide problem into smaller problems
= top-down approach
= Focus on instructions, not data

= QObject Oriented Programming
= Model the problem area

= pottom-up approach
= Focus on data, not instructions



Object Oriented Programming

= What is an object?

= Represents real world objects

= Data and associated methods (functions).
= Data hiding
= Polymorphism
= Classes
= Inheritance



Data Hiding

= Ensuring

= modularity

= data integrity
= Enabling

= reuse
= |local modifications



Polymorphism

= The same message send to different objects
will have different effects

= Code that operates on data types that we have
not defined yet



Classes

= Template
= Description of a group of objects
= Example: Vehicle



Vehicle

!

HasWheels

!

Flying Vehicle

!

Truck

Car

Plane

Helicopter




Command Line Interface

= Windows: Run Program (cmd)
= Linux: xterm, gterm, ...

= Mac OS: Terminal

= Javac — compiler

* > javac HelloWorld. java

= Java — execution

* > java HelloWorld

* Hello Worldl!



Packages

= Packages

* > package mypackage;

= Compilation with packages
= Windows

* > javac mypackage\HellowWorld. java

= Linux

* > javac mypackage/HellowWorld. java






Identifiers

= Structure

13 7

= Must start with letter or *

= Can contain numbers

= Examples: local, x2, variableName
= Simple identifiers — local

= Contains no “.”
= Compound identifiers — “global”

= System.out.printin



Reserved Words

= abstract continue for new switch

= assert default goto package synchronized
= Dboolean do 1if private this

= Dbreak double implements protected throw

= byte else import public throws

= case enum instanceof return transient

= catch extends int short try

= char final interface static void

= class finally long strictfp volatile

= const float native super while



= A box that contains data
= A location in memory
= The data inside the box

= A value
= Example: Data
= X=X+ 2 memory Iocatioa . size

Data




= Java is strongly typed
= Weakly typed: Hope for the best
= Apples and oranges
= Automatic conversion or Compile error
= Types:
= Primitive Types:
= boolean, int, short, ...

= Classes:
= String, ...



Primitive Types

= Not classes
= Describes a single value

= Integer:

= intx=95

= inty =345
= Double

= double y = 3.56 (Bemaerk komma er .)



Primitive Types 2

= Name Dbits = Range

= byte 8 = -128 to 127
= short 16 = 232,768 to 32,767
= Int 32 = -2147,483,648

to

2,147,483,647

= long 64 = -9 223,372,036,854,775,808
to
9,223,372,036,854,775,807



Primitive Types 3

= float 32-bit
= 7 significant digits

= double 64-bit
= 15 significant digits

= boolean 1 bit of information
= true (1) or false (0)



Variable Declarations

= Reserves space in memory

Space for Data

= Makes the name (identifier)
usable after this point.

« <type-name> <variable-name-or-names>

= int numberOfStudents;

= String name; // First, middle and last name

= double x, y; // represents coordinates
= boolean isFinished;
= char firstlnitial, middlelnitial, lastinitial;




Assignment Statements

Putting something into the box
<variable> = <expression>

X =2

y=4*5

myVariable = x/y

More expression later



x

This class i1mplements a simple program that
willl compute the amount of i1nterest that 1s
earned on %17, 000 invested at an interest

rate of 0.07 for one vyear. The interest and
the value of the investment after one wvear are
printed to standard output.|

E A

Sy

public class Interest {

o public static woid main(Stringl[] args) {

J%* Declare the wvarilables, ¥/

double principal; /f The value of the investment.
double rate: S The annual interest rate.
double interest: S/ Interest earned in one year.

/% Do the computations. */

principal - 17000;
rate = 0.07;
interest = principal * rate; S/ Compute the interest.

principal = principal + interest;
/4 Compute wvalue of investment after one year, with interest.
/' (NMote: The new value replaces the old wvalue of principal.)

/% Output the results. */

Sy=stem. cut. print (" The interest earned 1= $");

System. cut. println{interest) ;

System. out. print ("The wvalue of the investment after one year is 5"):
System. out. println(principal) ;

} £ end of main()

} /S end of class Interest



= Numbers

= int: 1200, -30

= long: 1244L, -30L
= Floating point

= double: 55.4
= 12e5 =12 * 1075
= float 12.3F, 24,953f



Literals 2

= String literals
= “This is a String”
= Char literals

= '’ \n', At
= \UOOE9' = ¢
= Boolean
= true

= false



Literals 3

= Hexadecimal—-0...9A ... F
= 0x45 or OxFF7A
= 4*16+5
= Octal-0...7
= 045 = 37
- 4*8+5



Two Purposes of Classes

= Static collections of functions

= Example: Math

= Collection of static members
= Math.PI
= Math.random() // random double between 0 and 1

= Template for Objects

= Example: String
= String.equals()



Subroutine call statement

= <method-name>(<parameters>)

= Examples

= System.out.printin(“This is a String”)
= Math.rand() // no parameters



= String firstName = “Ulrik”;
= firstName.equals("Nyman”);
= false



= s1.equals(s2)

= s1.equalsignoreCase(s2)

= s1.length()
= s1.charAt(N)

= s1.substring(N,M)
= s1.toUpperCase()



Concatenation

= String + anything = String
= Examples:

= int numberOfDays = 7;
= “The week has “ + numberOfDays + “ days”

= numberOfDays * 2 + “ this is 14”



= Math.rand()

= Math.PIl // constant

= Math.sqrt(x) Square root
= Math.sin(y)

= Math.floor(double d) // returns integer



= Special type of classes

= enum <enum-type-name> { <list-of-enum-values> }

= enum Season { SPRING, SUMMER, FALL,
WINTER }

= Season.WINTER

= Season vacation;

= vacation = Season.SUMMER,;
= Season.FALL.ordinal() is 2,

= System.out.printin(vacation);



= plus +: result=4.0+ 3

= multiplication *: x =3 * 4

= division /. z = 5/6 Gives an integer
= 5.0/6 Gives a double

= modulus %: 34577 % 100 = 77

= minus-:t=5-2
= unary minus -: -4



Increment and decrement

= counter = counter + 1;

= goalsScored = goalsScored + 1;
= counter = 4

= X = counter++; // x = 4 old value

= ++counter; // x = 5 new value

= goalsScored--;



Relational Operators

= A== Is A "equal to" B?

= Al=B Is A "not equal to" B?

= A<B Is A "less than" B?

= A>B Is A "greater than" B?

= A<=B Is A "less than or equal to" B?

= A>=B Is A "greater than or equal to" B?
= boolean samesSign;

= sameSign = ((x > 0) == (y > 0));



Boolean Operators

= Comparison

= And &&

= true && false
= Or ||

= true || false
= Not !

= true == lfalse



Conditional Operator

= |f...then...else on a single line
\boolean-ezpression) 7 (ezpressionl) : (ezpression?)

next = (W% 2 ==0) 7 (N/2) : (3*+1);
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Assignment Operators

X -=Y,; // same as:
X *=y; // same as:
X /=Yy, // same as:
X %=, // same as:

= (for integers x and y)

g &&=p; // same as:

= (for booleans q and p)

X=X-Y,
X=X YV;
X=Xy,
X=X%Y,;
q=q&&p;



Type Casts

= Int A;

= double X;

= short B;

= A=17;

= X=A: //OK: Ais converted to a double
= B=A; //illegal; no automatic conversion
- /] from int to short



Type Casts 2

= Int A;

= short B;

= A=17;

= B =(short)A; [/ OK; A is explicitly type cast
- /[ to a value of type short



Precedence Rules

= Unary operators: ++ -- | unary - and +, type-cast
= Multiplication and division: *, /, %

= Addition and subtraction: +, -

= Relational operators: <, >, <=, >=

= Equality and inequality: ==, I=

= Boolean and: &&

= Boolean or: |

= Conditional operator: ?:

= Assignment operators: =, +=, -=, *=, /=, %=



Type Conversion of Strings

= Integer.parselnt(“123")
= Double.parseDouble("3.14%)

= Double.parseDouble(“12.3e-77)
= Same as literals

= Enum
= Season.valueOf("SUMMER?")



TextlO

= Class file from textbook with modifications
= Hides detalls of getting Input

= System.out.printin(“String”)

= TextlO.put(“String”)



TextlO — printf — putf

= System.out.printf("The product of %d and %d is
%d", X, y, X*y);

= Variable number of arguments
= %d — integer (decimal) number

= %12d, minimum 12 characters
= %s — String (converted into string)
= %10s, minimum 10 characters



TextlO — printf — putf 2

= %f — floating point

= %12.3f — 12 chacters, 3 digits after decimal point
= %e — exponential

= %15.8e — 8 digits after the devimal point
= %g — floating point or exponential

= %12.4g — a total of 4 digits in the answer

= v 5.345"
= v 34.453"
= v 123.875"



TextlO 2

] = TextlO.getinInt(); // Reads a value of type int.

y = TextlO.getinDouble(); // Reads a value of type double.

a = TextlO.getInBoolean(); // Reads a value of type boolean.

c = TextlO.getinChar();  // Reads a value of type char.

w = TextlO.getinWord(); // Reads one "word" as a value of
type String.

s = TextlO.getIn(); // Reads an entire input line as a
String.



TextlO - File 1/0

= TextlO.writeFile("result.txt")

= TextlO.writeUserSelectedFile()
= TextlO.writeStandardOutput()
= TextlO.readFile("data.txt")

= TextlO.readUserSelectedFile()
= TextlO.readStandardlnput()






= Grouping things together
= Simple statements and compound statement

= Statements end with ; or }

{
<statements>

}
// This block exchanges the values of x and y
int temp; // A temporary variable for use in this block.
temp = x; // Save a copy of the value of x in temp.
X = V; // Copy the value of y into x.
v = temp; // Copy the value of temp into vy. .



= While loop
= Do while loop
= For loop

= We only need one of these to have a complete
language

= \WWe have several for convenience
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While loop

= Two variants

while (<boolean—-expression)
<statement>

while (<boolean—-expression) {
<statements>

80



While examples

= Declare variables

= Prime loop
= lterate
int number; // The number to be printed.
number = 1; // Start with 1.
while ( number < 6 ) { // Keep going as long as number is < 6.
System.out.println (number) ;
number = number + 1; // Go on to the next number.

}

System.out .println ("Done!") ;
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Do ... while loop

= Two variants

do
<statement>
while (<boolean—-expression>);

do {
<statements>
} while (<boolean—expression>);
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Do .. while examples

= Always executes loop body once

boolean wantsToContinue; // True 1if user wants
// to play again.
do {
Checkers.playGame () ;
TextIO.put ("Do you want to play again? ");
wantsToContinue = TextIO.getlnBoolean ();
} while (wantsToContinue == true);
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For loops

= Why yet another type?
= Standard form

<linitialization>

while (<continuation-condition>) {
<statements>
<update>

for (<init>;<continuation-cond>; <update>) {
<statements>

}
// Also possible without block statement

84



For loop examples

= Simplification

years = 0; // initialize the variable years
while ( years < 5 ) { // condition for continuing loop
interest = principal * rate; //
principal += interest; // do three statements
System.out.println (principal); //
years++; // update the value of the variable, years
}
Becomes
for ( years = 0; years < b; yearstt+ ) {
interest = principal * rate;

principal += interest;
System.out.println (principal) ;

85



For loop

= Standard form

for (<variable> = <min>;<variable> <= <max>;<variable>++ ) {
<statements>

}

There is an error below

for (int 1 = 0; i <= 10; 1i++); {
System.out.println (1) ;
}

Off by one errors

for (int i = 1; i < 10; 1i++) {
System.out.println (1) ;
}

86



Several counters

= More advanced for loops

for ( i=1, 3=10; i <= 10; i++, J—— ) {
TextIO.putf ("%5d", 1i); // Output i1 in a 5-character wide column.
TextIO.putf ("%5d", j); // Output j in a 5-character column
TextIO.putln () ; // and end the line.

1 10
2 9
3 8
4 7
5 6
6 5
7 4
8 3
9 2
10 1 87



Iterating over chars

= Printing out the English alphabet

= Unfortunately its more complex for Danish
characters

// Print out the alphabet on one line of output.
char ch; // The loop control variable;
// one of the letters to be printed.
for (( ch = "A"; ch <= "7Z",; ch++ )
System.out .print (ch);
System.out.println () ;
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Nested for loops

for ( rowNumber = 1; rowNumber <= 12; rowNumber++ ) {
for ( N =1; N <= 12; N++ ) {
// print in 4-character columns
System.out.printf( "%4d;", N * rowNumber ); // No new line!

}

System.out.println(); // Add a carriage return at end of the line.

1; 2; 3; 4; 5; 6; 7; 8; 9, 10; 11; 12;
2; 4, 6; 8; 10; 12; 14; 16; 18, 20, 22; 24;
3; 6; 9; 12; 15; 18, 21, 24, 27; 30, 33; 36;
4, 8; 12; le;, 20, 24, 28; 32, 36; 40; 44, 48;
5; 10; 15; 20, 25, 30, 35; 40; 45; 50; 55; 60;
o, 12, 18, 24, 30; 36; 42; 48; 54; 60; 66; 12;
7; 14, 21; 28; 35; 42; 49; 56; 63; 70, 77; 84;
8; le6; 24, 32; 40; 48; 5606; 6d; 72; 80; 88; 96;
9; 18; 27,; 36; 45,; 54; 63; 72; 81, 90; 99; 108;
10, 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120;
11; 22; 33; 44; 55; 66; 77; 88; 99; 110; 121; 132;
12, 24; 36; 48; 60; 72; 84; 96; 108; 120; 132; 144; 39



Enums and for each loops

for (<enum-type—-name> <variable-name> : <enum-type-name>.values () )
<statements>

}
= Could have been called for each

= Printing out days and their ordinal number

public class Daylterator {
enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY )
= public static void main(5tring[] args) |

for (Day d : Day.values() ) {
System, out. println(d + " 1s day number " + d.,ordinal()]);

90
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Branches

« The if statement
= The switch statement

= Branches the computation tree

s
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The if statement

= Basic form: Selects one of two actions

1f (<boolean—-expression> )
<statement-1>

else
<statement-2>

or

1f (<boolean—-expression>) {
<statement-1>

} else {
<statement-2>

}

92



The dangling else problem

= When is the second case executed

if (x> 0 )
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");

The computer reads this as
if (x> 0 )
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");
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The dangling else problem

= Solution:
= use block statements

if (x> 0 ) |
if (y > 0)
System.out.println("First case");

}

else
System.out.println("Second case");
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If...else if construction

= Used to chose between more than two things

= Example: Exactly one of the three statements
are executed

1f (<boolean—-expression—1>)
<statement-1>

else 1f (<boolean—-expression—-2>)
<statement-2>

else
<statement-3>
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If...else if construction

= Can be extended indefinitely
= Last else is optinal

1f ( boolean—-expression-1 )
statement-1

else 1f ( boolean—-expression-2 )
statement-2

else 1f ( boolean—-expression—-3 )
statement-3

. // (more cases)

else 1f ( boolean—-expression-N )
statement—N
else

statement— (N+1) 7



The switch statement

= Most common form

switch ( expression ) {
case constant-1
statements—-1
break;
case constant-2
statements-2
break;

// (more cases)

case constant—-N
statements—N
break;
default: // optional default case
statements— (N+1)
} // end of switch statement 97



case 1:

System.

break;
case 2:
case 4:
case 8:

System.
System.

break;
case 3:
case 6:
case 9:

System.
System.

break;
case b:

System.

break;
default:

System.
System.

out

out
out

out

out

out

out
out

Switch example

.println ("The number is 1.");

.println ("The number 1is 2, 4, or 8.");
.println (" (That’s a power of 2!)");
.println ("The number 1is 3, 6, or 9.");
.println (" (That’s a multiple of 3'")");
.println ("The number is 5.");

.print ("The number is 7 or 1s outside”);

.println (Y the range 1 to 9.");
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switch ( currentSeason ) {

case WINTER: // ( NOT Season.WINTER ! )
System.out.println ("December, January, February");
break;

case SPRING:
System.out.println ("March, April, May");
break;

case SUMMER:
System.out.println ("June, July, August");
break;

case FALL:

System.out.println ("September, October, November");

break;
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Definite assignment

= A variable must be assign before it is used
= It must be assigned on all possible paths

String computerMove;

switch ( (int) (3*Math.random()) ) {
case O:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
case 2:
computerMove = "Paper";
break;
}
System.out.println ("Computer’s move is " + computerMove); // ERROR!
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Definite assignment

= Use default

String computerMove;
switch ( (int) (3*Math.random()) ) {
case O0:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
default:
computerMove = "Paper";
break;

}

System.out .println ("Computer’s move is " + computerMove);
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Definite assignment

= Example 2
= No definite assignment

String computerMove;
int rand;
rand = (int) (3*Math.random()) ;
if ( rand == )
computerMove = "Rock";
else 1f ( rand == 1 )
computerMove = "Scissors";
else 1f ( rand == 2 )

computerMove "Paper";

Definite assignment

String computerMove;
int rand;

rand = (int) (3*Math.random()) ;
if ( rand == )
computerMove = "Rock";
else 1f ( rand == 1 )
computerMove = "Scissors";
else
computerMove = "Paper";
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Break and continue

= We can exit a loop prematurely

while (true) { // looks like it will run forever!

}

TextIO.put ("Enter a positive number: ");

N = TextIO.getlnInt ();

if (N > 0) // input is OK; Jjump out of loop
break;

TextIO.putln ("Your answer must be > 0.");

// continue here after break
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Labeled break

= For use in nested loops

boolean nothingInCommon;

nothingInCommon = true; // Assume sl and s2 have no chars in common.

int i, j; // Variables for iterating through the chars in sl and s2.
i = 0y

bigloop: while (i < sl.length()) {
j = 0;
while (] < s2.length()) {
if (sl.charAt (i) == s2.charAt(j)) {//sl and s2 have a common char.
nothingInCommon = false;

break bigloop; // break out of BOTH loops
}

j++; // Go on to the next char in s2.
}

i++; //Go on to the next char in sl.
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= Jumps to the top of the loop and starts the next
iteration

= Also exists In a labeled version
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Algorithm development

= Pseudocode
= Stepwise refinement
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Pseudocode

= English description in steps
= Can be more mathematical

Get the user’s input

while there are more years to process:
Compute the value after the next year
Display the value
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Stepwise refinement

= Get the user's input

Ask the user for the initial investment
Read the user’s response

Ask the user for the interest rate
Read the user’s response
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3N+1 Problem

“Given a positive integer, N, define the '3N+1’ sequence start-
iIng from N as follows: If N is an even number, then divide N by
two; but if N is odd, then multiply N by 3 and add 1. Continue
to generate numbers in this way until N becomes equal to 1. For
example, starting from N = 3, which is odd, we multiply by 3 and
add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide
by 2, giving N = 10/2 = 5. We continue in this way, stopping
when we reach 1, giving the complete sequence: 3, 10, 5, 16, 8,
4.2, 1.

“Write a program that will read a positive integer from the
user and will print out the 3N+1 sequence starting from that
Integer. The program should also count and print out the number
of terms in the sequence.”
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3N+1 Problem

= Get a positive integer N from the user

= Compute, print, and count each number in the
sequence;

= Output the number of terms;

= The second step is still very complex

110



3N+1 Problem

= Get a positive integer N from the user;
= while N is not 1;

= Compute N = next term;
= QOutput N;
= Count this term:;
= Output the number of terms;
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3N+1 Problem

= Branch on even

Get a positive integer N from the user;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3* N + 1;
Output N;
Count this term;
Output the number of terms;
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3N+1 Problem

= Adding counter

Get a positive integer N from the user;
Let counter = 0;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3 *N + 1;
Output N;
Add 1 to counter;
Output the counter;
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3N+1 Problem

= Handling incorrect input

Ask user to input a positive number;
Let N be the user’'s response;
while N is not positive:
Print an error message,;
Read another value for N;
Let counter = 0;
while N is not 1:

if N is even:

Compute N = N/2;
else

Compute N=3*N + 1;
Output N;

Add 1 to counter;
Output the counter; 114



int counter; // for counting the terms
TextIO.put ("Starting point for sequence: ");
N = TextIO.getlnInt();

while (N <= 0) {
TextIO.put ("The starting point must be positive.

N = TextIO.getlnInt ();

}
// At this point, we know that N > 0

counter = 0;
while (N != 1) {
if (N % 2 == 0)
N =N/ 2;
else

N =3 * N + 1;
TextIO.putln (N) ;
counter = counter + 1;
}
TextIO.putln();
TextIO.put ("There were ");
TextIO.put (counter) ;
TextIO.putln (" terms in the sequence.");
}  // end of main ()
// end of class ThreeNl

Please try again: ");
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Debugging

= Debugging statements
= System.out.printin(“x=" + x + “ before the loop”);
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= Last time: Normal flow of control

= Why do we need something different

= Handle errors somewhere else then where they
happen

= Exception — the exception is an Object
= {ry...catch statements
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try...catch

= Formal syntax

try |
(statements-1)

}

catch ( (exception-class-name) (variable-name) ) {
(statements-2)
}
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try...catch

= Example

try {
double x:
x = Double.parseDouble(str) ;
System.out.println( "The number is " + x );

}

catch ( NumberFormatException e ) {
System.out.println( "Not a legal number." );

}
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Day weekday; // User's response as a value of type Day.
while ( true ) {

String response; // User’s response as a String.
TextIO.put("Please enter a day of the week: ");
response = TextI0.getln();

response = response.toUpperCase();

try {
weekday = Day.valueOf (response);
break;

}

catch ( IllegalArgumentException e ) {
TextI0.putln( response + " is not the name of a day of the week." );

}
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Exceptions in TextlO

= When reading user input TextlO handles error
itself

= When reading from a file, this is not possible.
= Thus is throws an error that you have to catch.
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Overview

Vehicle

!

HasWheels

!

Flying Vehicle

!

Truck

Car

Plane

Helicopter
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Object

Applet

MyApplet

SimpleAnimationApplet2

!

MyAnimationApplet
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Static vs. non-static

MyApplet

RunningApplet

RunningApplet

MyAnimationApplet
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Math vs. String

= Static memebers

= Math.rand()
= Integer.parselnt(“45”)

= Non-static members

= s1 = "Dette bliver et object”
= s1.equals(“hej’)

126



Example: Integer

= Class vs. Object

Integer Class
static members
parselnt(String s)

Integer Object
non-static member
equals(int i)
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GUI programming

= GUI = Graphical User Interface
= Applets

= Making an applet class
= When running the applet class an object is created

= Regular programs — as in previous lectures
= public static void main(String[] args) {...

= Applets
= public void paint(Graphics g) {...
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= Import — packages

= extends

import java.awt.*;
import java.applet.¥*,

public class (name-of-applet) extends Applet {

public void paint(Graphics g) {
(statements)

}
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= Java.awt vs. javax.swing
= Applet vs. Japplet

= Methods on Graphics obejct

= g.setColor(c)
= c is of type enum Color: ex Color.RED, Color.BLUE
= g.drawRect(x,y,w,h)

= g.fillRect(x,y,w,h)
= Draws rectangles
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import java.awtb.*;
import java.applet.Applet;

public class StaticRects extends Applet {

public void paint(Graphics g) {

+

// Draw a set of nested black rectangles on a red background.
// Each nested rectangle is separated by 15 pixels on
// all sides from the rectangle that encloses it.

int inset; // Gap between borders of applet
iy and one of the rectangles.
int rectWidth, rectHeight; // The size of one of the rectangles.

g.setColor (Color.red);
g.fil11Rect(0,0,300,160); // Fill the entire applet with red.

g.setColor (Color.black); // Draw the rectangles in black.
inset = 0;

rectWidth = 299; // Set size of first rect to size of applet.
rectHeight = 1595;

while (rectWidth >= 0 && rectHeight >= 0) {
g.drawRect(inset, inset, rectWidth, rectHeight) ;

inset += 15; // Rects are 15 pixels apart.
rectWidth -= 30; // Width decreases by 15 pixels

s on left and 15 on right.
rectHeight —-= 30; // Height decreases by 15 pixels

s on top and 15 on bottom.

¥

// end paint() 131
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= Extend SimpleAnimationApplet2
= implement drawFrame() method
= use this.getFrameNumer() in some way
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Black Boxes

= Why?
= Hiding details and complexity

= Well defined interface

= You should not know how it is implemented
= Implementation can e changed later

= The black box should not know how it will be
used later

= It can be used in many unexpected ways
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= Interface and description can be seen as a
contract

= Read the description
= fillRect(x,y,h,w)
« Not fillRect(x1,y1,x2,y2)
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Static subroutines and variables

= Subroutine definition

= modifiers — static and public, private, protected
= return-type — void or typename

= parameter-list — next slide

(modifiers) (return-type) (subroutine-name) ( (parameter-list) ) {
(statements)

}

public static void main(Stringl] args) { ... }
135



Calling subroutines

* |Inside the class
= playGame()
= Qutside the class

= Poker.playGame()
= Integer.parselnt(“33”)

(subroutine-name)((parameters)) ;

{class-name). (subroutine-name)((parameters)) ;
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Subroutines In programs

= Split problem into smaller parts
= Use the same subroutine in several places

= Simple main loop

public class GuessingGame {

public static void main(String[] args) {
TextI0.putln("Let’s play a game. I’1l pick a number between");

TextIO.putln("1 and 100, and you try to guess it.");

boolean playAgain;

do {
playGame(); // call subroutine to play one game

TextIOD.put("Would you like to play again? ");
playAgain = TextIO0.getlnBoolean();
} while (playAgain);
TextIO.putln("Thanks for playing. Goodbye.");
} // end of main()
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Member variables

= We only look at static member variables
= for now

= These belong to the class not the individual
object

= Example PI, which is also final

Math Class
static members
Math.PI
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Static member variables

= Static does not mean final
= Local variables in subroutines
= Global variables in classes

= can be public or private
static String usersllame;

public static int number(fPlayers;
private static double velocity, time;
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Parameters

= You have called lost of methods with
parameters

= These are called actual parameters
= Formal parameters

= The one you write when you define a subroutine,
that others can call

= Actual parameters are substituted for the formal
ones
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Parameters

= Formal parameters

= only declared once

static void print3NSequence(int startingValue) {

= Actual parameters

= as many times as you call the method
= print3NSequence(17);

do {
TextIO.putln("Enter a starting value;")
TextIO.put("To end the program, enter 0: ");
K = TextIO.getInt(); // Get starting value from user.
if (K> 0) // Print sequence, but only if K is > 0.
print3NSequence (K) ;
} while (K > 0); // Continue only if K > 0.
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Subroutine example

static void doTask(int N, double x, boolean test) {
// statements to perform the task go here

}

doTask(17, Math.sqrt(z+1), z >= 10);

{
int N; // Allocate memory locations for the formal parameters.
double x;
boolean test;
N =1T; // Assign 17 to the first formal parameter, N.
X = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it to
!/ the second formal parameter, x.
test = (z >= 10); // Evaluate "z >= 10" and assign the resulting
/ true/false value to the third formal
!/ parameter, test.

// statements to perform the task go here
} 142



Overloading

= Many methods with the same name

= TextlO example
= putin(int)
= putlin(String)
= putin(boolean)
= No overloading on return-type
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Bad parameter values

= This is an error
= What do you do?
= Throw an exception

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract is violated!
throw new IllegaldrqumentEzception( "Starting value must be positive." );

. /| (The rest of the subroutine is the same as before.)
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