Programming In Java: lecture 3

= Control structures = Algorithm

. Blocks development

- Loops = Pseudocode

= while = Stepwise refinement

= do ... while

= for
= Branches
= if — else
= switch
Slides made for use with "Introuction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from ”Introuction to Programming Using Java, Version 5.0” by David J. Eck

Lecture 3 covers Section 3.1 t0 3.6

@ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

= Grouping things together
= Simple statements and compound statement

= Statements end with ; or }

{
<statements>

}
// This block exchanges the values of x and y
int temp; // A temporary variable for use in this block.
temp = x; // Save a copy of the value of x in temp.
X = V; // Copy the value of y into x.
v = temp; // Copy the value of temp into vy.)

= While loop
= Do while loop
= For loop

= We only need one of these to have a complete
language

= \WWe have several for convenience

While loop

= Two variants

while (<boolean—-expression)
<statement>

while (<boolean—-expression) {
<statements>

While examples

= Declare variables

= Prime loop
= lterate
int number; // The number to be printed.
number = 1; // Start with 1.
while (number < 6) { // Keep going as long as number is < 6.
System.out.println (number) ;
number = number + 1; // Go on to the next number.

}

System.out .println ("Done!") ;

Do ... while loop

= Two variants

do
<statement>
while (<boolean—-expression>);

do {
<statements>
} while (<boolean—expression>);

Do .. while examples

= Always executes loop body once

boolean wantsToContinue; // True 1if user wants
// to play again.
do {
Checkers.playGame () ;
TextIO.put ("Do you want to play again? ");
wantsToContinue = TextIO.getlnBoolean ();
} while (wantsToContinue == true);

For loops

= Why yet another type?
= Standard form

<linitialization>

while (<continuation-condition>) {
<statements>
<update>

for (<init>;<continuation-cond>; <update>) {
<statements>

}
// Also possible without block statement

For loop examples

= Simplification

years = 0; // initialize the variable years
while (years < 5) { // condition for continuing loop
interest = principal * rate; //
principal += interest; // do three statements
System.out.println (principal); //
years++; // update the value of the variable, years
}
Becomes
for (years = 0; years < b; yearstt+) {
interest = principal * rate;

principal += interest;
System.out.println (principal) ;

For loop

= Standard form

for (<variable> = <min>;<variable> <= <max>;<variable>++) {
<statements>

}

There is an error below

for (int 1 = 0; i <= 10; 1i++); {
System.out.println (1) ;
}

Off by one errors

for (int i = 1; i < 10; 1i++) {
System.out.println (1) ;
}

10

Several counters

= More advanced for loops

for (i=1, 3=10; i <= 10; i++, J——) {
TextIO.putf ("%5d", 1i); // Output i1 in a 5-character wide column.
TextIO.putf ("%5d", j); // Output j in a 5-character column
TextIO.putln () ; // and end the line.

1 10
2 9
3 8
4 7
5 6
6 5
7 4
8 3
9 2
10 1 11

Iterating over chars

= Printing out the English alphabet

= Unfortunately its more complex for Danish
characters

// Print out the alphabet on one line of output.
char ch; // The loop control variable;
// one of the letters to be printed.
for ((ch = "A"; ch <= "7Z",; ch++)
System.out .print (ch);
System.out.println () ;

12

Nested for loops

for (rowNumber = 1; rowNumber <= 12; rowNumber++) {
for (N =1; N <= 12; N++) {
// print in 4-character columns
System.out.printf("%4d;", N * rowNumber); // No new line!

}

System.out.println(); // Add a carriage return at end of the line.

1; 2; 3; 4; 5; 6; 7; 8; 9, 10; 11; 12;
2; 4, 6; 8; 10; 12; 14; 16; 18, 20, 22; 24;
3; 6; 9; 12; 15; 18, 21, 24, 27; 30, 33; 36;
4, 8; 12; le;, 20, 24, 28; 32, 36; 40; 44, 48;
5; 10; 15; 20, 25, 30, 35; 40; 45; 50; 55; 60;
o, 12, 18, 24, 30; 36; 42; 48; 54; 60; 66; 12;
7; 14, 21; 28; 35; 42; 49; 56; 63; 70, 77; 84;
8; le6; 24, 32; 40; 48; 5606; 6d; 72; 80; 88; 96;
9; 18; 27,; 36; 45,; 54; 63; 72; 81, 90; 99; 108;
10, 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120;
11; 22; 33; 44; 55; 66; 77; 88; 99; 110; 121; 132;
12, 24; 36; 48; 60; 72; 84; 96; 108; 120; 132; 144; 13

Enums and for each loops

for (<enum-type—-name> <variable-name> : <enum-type-name>.values ())
<statements>

}
= Could have been called for each

= Printing out days and their ordinal number

public class Daylterator {
enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)
= public static void main(5tring[] args) |

for (Day d : Day.values()) {
System, out. println(d + " 1s day number " + d.,ordinal()]);

14

{

Branches

« The if statement
= The switch statement

= Branches the computation tree

s

15

The if statement

= Basic form: Selects one of two actions

1f (<boolean—-expression>)
<statement-1>

else
<statement-2>

or

1f (<boolean—-expression>) {
<statement-1>

} else {
<statement-2>

}

16

The dangling else problem

= When is the second case executed

if (x> 0)
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");

The computer reads this as
if (x> 0)
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");

17

The dangling else problem

= Solution:
= use block statements

if (x> 0) |
if (y > 0)
System.out.println("First case");

}

else
System.out.println("Second case");

18

If...else if construction

= Used to chose between more than two things

= Example: Exactly one of the three statements
are executed

1f (<boolean—-expression—1>)
<statement-1>

else 1f (<boolean—-expression—-2>)
<statement-2>

else
<statement-3>

19

If...else if construction

= Can be extended indefinitely
= Last else is optinal

1f (boolean—-expression-1)
statement-1

else 1f (boolean—-expression-2)
statement-2

else 1f (boolean—-expression—-3)
statement-3

. // (more cases)

else 1f (boolean—-expression-N)
statement—N
else

statement— (N+1) -

The switch statement

= Most common form

switch (expression) {
case constant-1
statements-1
break;
case constant-2
statements-2
break;

// (more cases)

case constant—-N
statements—N
break;
default: // optional default case
statements— (N+1) 1
} // end of switch statement

Switch example

switch (N) { // (Assume N 1s an integer variable.)

case 1:
System.out.println ("The number is 1.");
break;

case 2:

case 4:

case 8:
System.out.println ("The number is 2, 4, or 8.");
System.out.println (" (That’s a power of 2!)");
break;

case 3:

case 6:

case 9:
System.out.println ("The number is 3, 6, or 9.");
System.out.println (" (That’s a multiple of 3!)");
break;

case 5:
System.out.println ("The number is 5.");
break;

default:
System.out.print ("The number is 7 or 1s outside”);

System.out.println(“ the range 1 to 9."); 2

switch (currentSeason) {

case WINTER: // (NOT Season.WINTER !)
System.out.println ("December, January, February");
break;

case SPRING:
System.out.println ("March, April, May");
break;

case SUMMER:
System.out.println ("June, July, August");
break;

case FALL:

System.out.println ("September, October, November");

break;

23

Definite assignment

= A variable must be assign before it is used
= It must be assigned on all possible paths

String computerMove;

switch ((int) (3*Math.random())) {
case O:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
case 2:
computerMove = "Paper";
break;
}
System.out.println ("Computer’s move is " + computerMove); // ERROR!

24

Definite assignment

= Use default

String computerMove;

switch ((int) (3*Math.random())) {
case 0:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
default:
computerMove = "Paper";
break;
}
System.out .println ("Computer’s move is " + computerMove);

25

St

Definite assignment

= Example 2
= No definite assignment

ring computerMove;

int rand;

ra
1f

el

el

nd = (int) (3*Math.random()) ;
(rand ==)

computerMove = "Rock";

se 1f (rand == 1)
computerMove = "Scissors";

se 1f (rand == 2)

computerMove

"Paper";

Definite assignment

String computerMove;
int rand;

rand = (int) (3*Math.random()) ;
if (rand ==)
computerMove = "Rock";
else 1f (rand == 1)
computerMove = "Scissors";
else
computerMove = "Paper";

26

Break and continue

= We can exit a loop prematurely

while (true) { // looks like it will run forever!

}

TextIO.put ("Enter a positive number: ");

N = TextIO.getlnInt ();

if (N > 0) // input is OK; Jjump out of loop
break;

TextIO.putln ("Your answer must be > 0.");

// continue here after break

27

Labeled break

= For use in nested loops

boolean nothingInCommon;

nothingInCommon = true; // Assume sl and s2 have no chars in common.
int i, j; // Variables for iterating through the chars in sl and s2.
i = 0;
bigloop: while (i < sl.length()) {
j = 0;
while (J < s2.length()) {
if (sl.charAt (i) == s2.charAt(j)) {//sl and s2 have a common char.

nothingInCommon = false;

break bigloop; // break out of BOTH loops
}

j++; // Go on to the next char in s2.

}

i++; //Go on to the next char in sl.

28

= Jumps to the top of the loop and starts the next
iteration

= Also exists In a labeled version

29

Algorithm development

= Pseudocode
= Stepwise refinement

30

Pseudocode

= English description in steps
= Can be more mathematical

Get the user’s input

while there are more years to process:
Compute the value after the next year
Display the value

31

Stepwise refinement

= Get the user's input

Ask the user for the initial investment
Read the user’s response

Ask the user for the interest rate
Read the user’s response

32

3N+1 Problem

“Given a positive integer, N, define the '3N+1’ sequence start-
iIng from N as follows: If N is an even number, then divide N by
two; but if N is odd, then multiply N by 3 and add 1. Continue
to generate numbers in this way until N becomes equal to 1. For
example, starting from N = 3, which is odd, we multiply by 3 and
add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide
by 2, giving N = 10/2 = 5. We continue in this way, stopping
when we reach 1, giving the complete sequence: 3, 10, 5, 16, 8,
4.2, 1.

“Write a program that will read a positive integer from the
user and will print out the 3N+1 sequence starting from that
Integer. The program should also count and print out the number
of terms in the sequence.”

33

3N+1 Problem

= Get a positive integer N from the user

= Compute, print, and count each number in the
sequence;

= Output the number of terms;

= The second step is still very complex

34

3N+1 Problem

= Get a positive integer N from the user;
= while N is not 1;

= Compute N = next term;
= QOutput N;
= Count this term:;
= Output the number of terms;

35

3N+1 Problem

= Branch on even

Get a positive integer N from the user;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3* N + 1;
Output N;
Count this term;
Output the number of terms;

36

3N+1 Problem

= Adding counter

Get a positive integer N from the user;
Let counter = 0;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3 *N + 1;
Output N;
Add 1 to counter;
Output the counter;

37

3N+1 Problem

= Handling incorrect input

Ask user to input a positive number;
Let N be the user’'s response;
while N is not positive:
Print an error message,;
Read another value for N;
Let counter = 0;
while N is not 1:

if N is even:

Compute N = N/2;
else

Compute N=3*N + 1;
Output N;

Add 1 to counter;
Output the counter; 38

}

}

int counter; // for counting the terms

TextIO.put ("Starting point for sequence:

N = TextIO.getlnInt();

while (N <= 0)
TextIO.put ("The starting point must be positive.
N = TextIO.getlnInt ();

}

// At this point,

counter = 0;
while (N != 1)
if (N & 2 ==
N =N/ 2;
else

N=3*N+ 1;
TextIO.putln (N);

we know that N > 0

counter = counter + 1;

}
TextIO.putln();

TextIO.put ("There were
TextIO.put (counter) ;
TextIO.putln (" terms in the sequence.");
// end of main ()

// end of class ThreeNl

ik

Please try again:

39

Debugging

= Debugging statements
= System.out.printin(“x=" + x + “ before the loop”);

40

