Programming In Java: lecture 3

= Control structures = Algorithm

. Blocks development

- Loops = Pseudocode

= while = Stepwise refinement

= do ... while

= for
= Branches
= if — else
= switch
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Lecture 3 covers Section 3.1 t0 3.6
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= Grouping things together
= Simple statements and compound statement

= Statements end with ; or }

{
<statements>

}
// This block exchanges the values of x and y
int temp; // A temporary variable for use in this block.
temp = x; // Save a copy of the value of x in temp.
X = V; // Copy the value of y into x.
v = temp; // Copy the value of temp into vy. )



= While loop
= Do while loop
= For loop

= We only need one of these to have a complete
language

= \WWe have several for convenience



While loop

= Two variants

while (<boolean—-expression)
<statement>

while (<boolean—-expression) {
<statements>



While examples

= Declare variables

= Prime loop
= lterate
int number; // The number to be printed.
number = 1; // Start with 1.
while ( number < 6 ) { // Keep going as long as number is < 6.
System.out.println (number) ;
number = number + 1; // Go on to the next number.

}

System.out .println ("Done!") ;



Do ... while loop

= Two variants

do
<statement>
while (<boolean—-expression>);

do {
<statements>
} while (<boolean—expression>);



Do .. while examples

= Always executes loop body once

boolean wantsToContinue; // True 1if user wants
// to play again.
do {
Checkers.playGame () ;
TextIO.put ("Do you want to play again? ");
wantsToContinue = TextIO.getlnBoolean ();
} while (wantsToContinue == true);



For loops

= Why yet another type?
= Standard form

<linitialization>

while (<continuation-condition>) {
<statements>
<update>

for (<init>;<continuation-cond>; <update>) {
<statements>

}
// Also possible without block statement



For loop examples

= Simplification

years = 0; // initialize the variable years
while ( years < 5 ) { // condition for continuing loop
interest = principal * rate; //
principal += interest; // do three statements
System.out.println (principal); //
years++; // update the value of the variable, years
}
Becomes
for ( years = 0; years < b; yearstt+ ) {
interest = principal * rate;

principal += interest;
System.out.println (principal) ;



For loop

= Standard form

for (<variable> = <min>;<variable> <= <max>;<variable>++ ) {
<statements>

}

There is an error below

for (int 1 = 0; i <= 10; 1i++); {
System.out.println (1) ;
}

Off by one errors

for (int i = 1; i < 10; 1i++) {
System.out.println (1) ;
}
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Several counters

= More advanced for loops

for ( i=1, 3=10; i <= 10; i++, J—— ) {
TextIO.putf ("%5d", 1i); // Output i1 in a 5-character wide column.
TextIO.putf ("%5d", j); // Output j in a 5-character column
TextIO.putln () ; // and end the line.

1 10
2 9
3 8
4 7
5 6
6 5
7 4
8 3
9 2
10 1 11



Iterating over chars

= Printing out the English alphabet

= Unfortunately its more complex for Danish
characters

// Print out the alphabet on one line of output.
char ch; // The loop control variable;
// one of the letters to be printed.
for (( ch = "A"; ch <= "7Z",; ch++ )
System.out .print (ch);
System.out.println () ;
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Nested for loops

for ( rowNumber = 1; rowNumber <= 12; rowNumber++ ) {
for ( N =1; N <= 12; N++ ) {
// print in 4-character columns
System.out.printf( "%4d;", N * rowNumber ); // No new line!

}

System.out.println(); // Add a carriage return at end of the line.

1; 2; 3; 4; 5; 6; 7; 8; 9, 10; 11; 12;
2; 4, 6; 8; 10; 12; 14; 16; 18, 20, 22; 24;
3; 6; 9; 12; 15; 18, 21, 24, 27; 30, 33; 36;
4, 8; 12; le;, 20, 24, 28; 32, 36; 40; 44, 48;
5; 10; 15; 20, 25, 30, 35; 40; 45; 50; 55; 60;
o, 12, 18, 24, 30; 36; 42; 48; 54; 60; 66; 12;
7; 14, 21; 28; 35; 42; 49; 56; 63; 70, 77; 84;
8; le6; 24, 32; 40; 48; 5606; 6d; 72; 80; 88; 96;
9; 18; 27,; 36; 45,; 54; 63; 72; 81, 90; 99; 108;
10, 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120;
11; 22; 33; 44; 55; 66; 77; 88; 99; 110; 121; 132;
12, 24; 36; 48; 60; 72; 84; 96; 108; 120; 132; 144; 13



Enums and for each loops

for (<enum-type—-name> <variable-name> : <enum-type-name>.values () )
<statements>

}
= Could have been called for each

= Printing out days and their ordinal number

public class Daylterator {
enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY )
= public static void main(5tring[] args) |

for (Day d : Day.values() ) {
System, out. println(d + " 1s day number " + d.,ordinal()]);
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Branches

« The if statement
= The switch statement

= Branches the computation tree

s
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The if statement

= Basic form: Selects one of two actions

1f (<boolean—-expression> )
<statement-1>

else
<statement-2>

or

1f (<boolean—-expression>) {
<statement-1>

} else {
<statement-2>

}
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The dangling else problem

= When is the second case executed

if (x> 0 )
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");

The computer reads this as
if (x> 0 )
if (y > 0)
System.out.println ("First case");
else
System.out.println ("Second case");
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The dangling else problem

= Solution:
= use block statements

if (x> 0 ) |
if (y > 0)
System.out.println("First case");

}

else
System.out.println("Second case");
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If...else if construction

= Used to chose between more than two things

= Example: Exactly one of the three statements
are executed

1f (<boolean—-expression—1>)
<statement-1>

else 1f (<boolean—-expression—-2>)
<statement-2>

else
<statement-3>
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If...else if construction

= Can be extended indefinitely
= Last else is optinal

1f ( boolean—-expression-1 )
statement-1

else 1f ( boolean—-expression-2 )
statement-2

else 1f ( boolean—-expression—-3 )
statement-3

. // (more cases)

else 1f ( boolean—-expression-N )
statement—N
else

statement— (N+1) -



The switch statement

= Most common form

switch ( expression ) {
case constant-1
statements-1
break;
case constant-2
statements-2
break;

// (more cases)

case constant—-N
statements—N
break;
default: // optional default case
statements— (N+1) 1
} // end of switch statement



Switch example

switch ( N ) { // (Assume N 1s an integer variable.)

case 1:
System.out.println ("The number is 1.");
break;

case 2:

case 4:

case 8:
System.out.println ("The number is 2, 4, or 8.");
System.out.println (" (That’s a power of 2!)");
break;

case 3:

case 6:

case 9:
System.out.println ("The number is 3, 6, or 9.");
System.out.println (" (That’s a multiple of 3!)");
break;

case 5:
System.out.println ("The number is 5.");
break;

default:
System.out.print ("The number is 7 or 1s outside”);

System.out.println(“ the range 1 to 9."); 2



switch ( currentSeason ) {

case WINTER: // ( NOT Season.WINTER ! )
System.out.println ("December, January, February");
break;

case SPRING:
System.out.println ("March, April, May");
break;

case SUMMER:
System.out.println ("June, July, August");
break;

case FALL:

System.out.println ("September, October, November");

break;
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Definite assignment

= A variable must be assign before it is used
= It must be assigned on all possible paths

String computerMove;

switch ( (int) (3*Math.random()) ) {
case O:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
case 2:
computerMove = "Paper";
break;
}
System.out.println ("Computer’s move is " + computerMove); // ERROR!
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Definite assignment

= Use default

String computerMove;

switch ( (int) (3*Math.random()) ) {
case 0:
computerMove = "Rock";
break;
case 1:
computerMove = "Scissors";
break;
default:
computerMove = "Paper";
break;
}
System.out .println ("Computer’s move is " + computerMove);
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St

Definite assignment

= Example 2
= No definite assignment

ring computerMove;

int rand;

ra
1f

el

el

nd = (int) (3*Math.random()) ;
( rand == )

computerMove = "Rock";

se 1f ( rand == 1 )
computerMove = "Scissors";

se 1f ( rand == 2 )

computerMove

"Paper";

Definite assignment

String computerMove;
int rand;

rand = (int) (3*Math.random()) ;
if ( rand == )
computerMove = "Rock";
else 1f ( rand == 1 )
computerMove = "Scissors";
else
computerMove = "Paper";
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Break and continue

= We can exit a loop prematurely

while (true) { // looks like it will run forever!

}

TextIO.put ("Enter a positive number: ");

N = TextIO.getlnInt ();

if (N > 0) // input is OK; Jjump out of loop
break;

TextIO.putln ("Your answer must be > 0.");

// continue here after break
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Labeled break

= For use in nested loops

boolean nothingInCommon;

nothingInCommon = true; // Assume sl and s2 have no chars in common.
int i, j; // Variables for iterating through the chars in sl and s2.
i = 0;
bigloop: while (i < sl.length()) {
j = 0;
while (J < s2.length()) {
if (sl.charAt (i) == s2.charAt(j)) {//sl and s2 have a common char.

nothingInCommon = false;

break bigloop; // break out of BOTH loops
}

j++; // Go on to the next char in s2.

}

i++; //Go on to the next char in sl.

28



= Jumps to the top of the loop and starts the next
iteration

= Also exists In a labeled version
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Algorithm development

= Pseudocode
= Stepwise refinement
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Pseudocode

= English description in steps
= Can be more mathematical

Get the user’s input

while there are more years to process:
Compute the value after the next year
Display the value
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Stepwise refinement

= Get the user's input

Ask the user for the initial investment
Read the user’s response

Ask the user for the interest rate
Read the user’s response
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3N+1 Problem

“Given a positive integer, N, define the '3N+1’ sequence start-
iIng from N as follows: If N is an even number, then divide N by
two; but if N is odd, then multiply N by 3 and add 1. Continue
to generate numbers in this way until N becomes equal to 1. For
example, starting from N = 3, which is odd, we multiply by 3 and
add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide
by 2, giving N = 10/2 = 5. We continue in this way, stopping
when we reach 1, giving the complete sequence: 3, 10, 5, 16, 8,
4.2, 1.

“Write a program that will read a positive integer from the
user and will print out the 3N+1 sequence starting from that
Integer. The program should also count and print out the number
of terms in the sequence.”
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3N+1 Problem

= Get a positive integer N from the user

= Compute, print, and count each number in the
sequence;

= Output the number of terms;

= The second step is still very complex
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3N+1 Problem

= Get a positive integer N from the user;
= while N is not 1;

= Compute N = next term;
= QOutput N;
= Count this term:;
= Output the number of terms;
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3N+1 Problem

= Branch on even

Get a positive integer N from the user;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3* N + 1;
Output N;
Count this term;
Output the number of terms;
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3N+1 Problem

= Adding counter

Get a positive integer N from the user;
Let counter = 0;
while N is not 1:
if N is even:
Compute N = N/2;
else
Compute N=3 *N + 1;
Output N;
Add 1 to counter;
Output the counter;
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3N+1 Problem

= Handling incorrect input

Ask user to input a positive number;
Let N be the user’'s response;
while N is not positive:
Print an error message,;
Read another value for N;
Let counter = 0;
while N is not 1:

if N is even:

Compute N = N/2;
else

Compute N=3*N + 1;
Output N;

Add 1 to counter;
Output the counter; 38



}

}

int counter; // for counting the terms

TextIO.put ("Starting point for sequence:

N = TextIO.getlnInt();

while (N <= 0)
TextIO.put ("The starting point must be positive.
N = TextIO.getlnInt ();

}

// At this point,

counter = 0;
while (N != 1)
if (N & 2 ==
N =N/ 2;
else

N=3*N+ 1;
TextIO.putln (N);

we know that N > 0

counter = counter + 1;

}
TextIO.putln();

TextIO.put ("There were
TextIO.put (counter) ;
TextIO.putln (" terms in the sequence.");
// end of main ()

// end of class ThreeNl

ik

Please try again:
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Debugging

= Debugging statements
= System.out.printin(“x=" + x + “ before the loop”);
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