
Basic Spin Manual

Modeling Language
Control Flow
Advanced Usage
Spin
Summary
Appendix: Building a Verification Suite

References
Japanese translation of this page

Spin is a tool for analyzing the logical consistency of concurrent systems,
specifically of data communication protocols. The system is described in a
modeling language called Promela (Process Meta Language). The language
allows for the dynamic creation of concurrent processes. Communication via
message channels can be defined to be synchronous (i.e., rendezvous), or
asynchronous (i.e., buffered).

Given a model system specified in Promela, Spin can either perform random
simulations of the system's execution or it can generate a C program that
performs an efficient online verification of the system's correctness properties.
During simulation and verification Spin checks for the absence of deadlocks,
unspecified receptions, and unexecutable code. The verifier can also be used
to verify the correctness of system invariants, it can find non-progress
execution cycles, and it can verify correctness properties expressed in
next-time free linear temporal logic formulae.

The verifier is setup to be efficient and to use a minimal amount of memory.
An exhaustive verification performed by Spin can establish with mathematical
certainty whether or not a given behavior is error-free. Very large verification
problems, that can ordinarily not be solved within the constraints of a given
computer system, can be attacked with a frugal ``bit state storage'' technique,
also known as supertrace. With this method the state space can be collapsed to
a small number of bits per reachable system state, with minimal side-effects.

The first part of this memo gives an introduction to Promela, the second part
discusses the usage of Spin. A concise reference to Promela can be found in a
companion document. In the Appendix some examples are used to illustrate
the construction of a basic Promela model for Spin verification.

This manual discusses only the most basic use of Spin. It does not discuss
extensions to the language that are part of more recent versions of the tool
(see the notes at the end of this manual). It also does not discuss the builtin
support for the verification of linear temporal logic formulae.

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

1 of 40 2010-04-20 13:29

Modeling Language

Promela is a verification modeling language. It provides a vehicle for making
abstractions of protocols (or distributed systems in general) that suppress
details that are unrelated to process interaction. The intended use of Spin is to
verify fractions of process behavior, that for one reason or another are
considered suspect. The relevant behavior is modeled in Promela and verified. A
complete verification is therefore typically performed in a series of steps, with
the construction of increasingly detailed Promela models. Each model can be
verified with Spin under different types of assumptions about the environment
(e.g., message loss, message duplications etc). Once the correctness of a
model has been established with Spin, that fact can be used in the construction
and verification of all subsequent models.

Promela programs consist of processes, message channels, and variables.
Processes are global objects. Message channels and variables can be declared
either globally or locally within a process. Processes specify behavior, channels
and global variables define the environment in which the processes run.

Executability

In Promela there is no difference between conditions and statements, even
isolated boolean conditions can be used as statements. The execution of every
statement is conditional on its executability . Statements are either executable
or blocked. The executability is the basic means of synchronization. A process
can wait for an event to happen by waiting for a statement to become
executable. For instance, instead of writing a busy wait loop:

while (a != b)

skip /* wait for a==b */

one can achieve the same effect in Promela with the statement

(a == b)

A condition can only be executed (passed) when it holds. If the condition does
not hold, execution blocks until it does.

Variables are used to store either global information about the system as a
whole, or information local to one specific process, depending on where the
declaration for the variable is placed. The declarations

bool flag;

int state;

byte msg;

define variables that can store integer values in three different ranges. The

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

2 of 40 2010-04-20 13:29

scope of a variable is global if it is declared outside all process declarations,
and local if it is declared within a process declaration.

Data Types

The table below summarizes the basic data types, sizes, and typical value
ranges on a 32-bit wordsize computer. (See also datatypes.)

Table 1 - Data Types

Typename

bit or bool
byte
short
int

C-equivalent

bit-field
uchar
short
int

Macro in limits.h

-
CHAR_BIT (width in
bits)
SHRT_MIN..SHRT_MAX
INT_MIN..INT_MAX

Typical Range

0..1
0..255
-2^15 - 1 .. 2^15 - 1
-2^31 - 1 .. 2^31 - 1

The names bit and bool are synonyms for a single bit of information. A byte is an
unsigned quantity that can store a value between 0 and 255. shorts and ints are
signed quantities that differ only in the range of values they can hold.

An mtype variable can be assigned symbolic values that are declared in an mtype =
{ ... } statement, to be discussed below.

Array Variables

Variables can be declared as arrays. For instance,

byte state[N]

declares an array of N bytes that can be accessed in statements such as

state[0] = state[3] + 5 * state[3*2/n]

wheren is a constant or a variable declared elsewhere. The index to an array
can be any expression that determines a unique integer value. The effect of an
index value outside the range 0.. N-1 is undefined; most likely it will cause a
runtime error. (Multi-dimensional arrays can be defined indirectly with the
help of the typedef construct, see WhatsNew.html, Section 2.1.7)

So far we have seen examples of variable declarations and of two types of
statements: boolean conditions and assignments. Declarations and
assignments are always executable. Conditions are only executable when they
hold.

Process Types

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

3 of 40 2010-04-20 13:29

The state of a variable or of a message channel can only be changed or
inspected by processes. The behavior of a process is defined in a proctype
declaration. The following, for instance, declares a process with one local
variable state.

proctype A()

{ byte state;

state = 3

}

The process type is named A. The body of the declaration is enclosed in curly
braces. The declaration body consists of a list of zero or more declarations of
local variables and/or statements. The declaration above contains one local
variable declaration and a single statement: an assignment of the value 3 to
variable state.

The semicolon is a statement separator (not a statement terminator, hence
there is no semicolon after the last statement). Promela accepts two different
statement separators: an arrow `->'and the semicolon `;'. The two statement
separators are equivalent. The arrow is sometimes used as an informal way to
indicate a causal relation between two statements. Consider the following
example.

byte state = 2;

proctype A()

{ (state == 1) -> state = 3

}

proctype B()

{ state = state - 1

}

In this example we declared two types of processes, A and B. Variable state is
now a global, initialized to the value two. Process type A contains two
statements, separated by an arrow. In the example, process declaration B
contains a single statement that decrements the value of the state variable by
one. Since the assignment is always executable, processes of type B can always
complete without delay. Processes of type A, however, are delayed at the
condition until the variable state contains the proper value.

Process Instantiation

A proctype definition only declares process behavior, it does not execute it.
Initially, in the Promela model, just one process will be executed: a process of
type init, that must be declared explicitly in every Promela specification. The
smallest possible Promela specification, therefore, is:

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

4 of 40 2010-04-20 13:29

init { skip }

where skip is a dummy, null statement. More interestingly, however, the initial
process can initialize global variables, and instantiate processes. An init
declaration for the above system, for instance, could look as follows.

init

{ run A(); run B()

}

run is used as a unary operator that takes the name of a process type (e.g. A). It
is executable only if a process of the type specified can be instantiated. It is
unexecutable if this cannot be done, for instance if too many processes are
already running.

The run statement can pass parameter values of all basic data types to the new
process. The declarations are then written, for instance, as follows:

proctype A(byte state; short foo)

{

(state == 1) -> state = foo

}

init

{

run A(1, 3)

}

Data arrays or process types can not be passed as parameters. As we will see
below, there is just one other data type that can be used as a parameter: a
message channel.

Run statements can be used in any process to spawn new processes, not just in
the initial process. Processes are created with the run statements. An executing
process disappears again when it terminates (i.e., reaches the end of the body
of its process type declaration), but not before all processes that it started
have terminated.

With the run statement we can create any number of copies of the process
types A and B. If, however, more than one concurrent process is allowed to both
read and write the value of a global variable a well-known set of problems can
result; for example see [2]. Consider, for instance, the following system of two
processes, sharing access to the global variable state.

byte state = 1;

proctype A()

{ byte tmp;

(state==1) -> tmp = state; tmp = tmp+1; state = tmp

}

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

5 of 40 2010-04-20 13:29

proctype B()

{ byte tmp;

(state==1) -> tmp = state; tmp = tmp-1; state = tmp

}

init

{ run A(); run B()

}

If one of the two processes completes before its competitor has started, the
other process will block forever on the initial condition. If both pass the
condition simultaneously, both will complete, but the resulting value of state is
unpredictable. It can be any of the values 0, 1, or 2.

Many solutions to this problem have been considered, ranging from an
abolishment of global variables to the provision of special machine instructions
that can guarantee an indivisible test and set sequence on a shared variable.
The example below was one of the first solutions published. It is due to the
Dutch mathematician Dekker. It grants two processes mutually exclusion
access to an arbitrary critical section in their code, by manipulation three
additional global variables. The first four lines in the Promela specification below
are C-style macro definitions. The first two macros define true to be a constant
value equal to 1 and false to be a constant 0. Similarly, Aturn and Bturn are
defined as constants.

#define true 1

#define false 0

#define Aturn false

#define Bturn true

bool x, y, t;

proctype A()

{ x = true;

t = Bturn;

(y == false || t == Aturn);

/* critical section */

x = false

}

proctype B()

{ y = true;

t = Aturn;

(x == false || t == Bturn);

/* critical section */

y = false

}

init

{ run A(); run B()

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

6 of 40 2010-04-20 13:29

}

The algorithm can be executed repeatedly and is independent of the relative
speeds of the two processes.

Atomic Sequences

In Promela there is also another way to avoid the test and set problem: atomic
sequences. By prefixing a sequence of statements enclosed in curly braces
with the keyword atomic the user can indicate that the sequence is to be
executed as one indivisible unit, non-interleaved with any other processes. It
causes a run-time error if any statement, other than the first statement, blocks
in an atomic sequence. This is how we can use atomic sequences to protect the
concurrent access to the global variable state in the earlier example.

byte state = 1;

proctype A()

{ atomic {

 (state==1) -> state = state+1

}

}

proctype B()

{ atomic {

 (state==1) -> state = state-1

}

}

init

{ run A(); run B()

}

In this case the final value of state is either zero or two, depending on which
process executes. The other process will be blocked forever.

Atomic sequences can be an important tool in reducing the complexity of
verification models. Note that atomic sequence restricts the amount of
interleaving that is allowed in a distributed system. Otherwise untractable
models can be made tractable by, for instance, labeling all manipulations of
local variables with atomic sequences. The reduction in complexity can be
dramatic.

Message Passing

Message channels are used to model the transfer of data from one process to
another. They are declared either locally or globally, for instance as follows:

chan qname = [16] of { short }

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

7 of 40 2010-04-20 13:29

This declares a channel that can store up to 16 messages of type short. Channel
names can be passed from one process to another via channels or as
parameters in process instantiations. If the messages to be passed by the
channel have more than one field, the declaration may look as follows:

chan qname = [16] of { byte, int, chan, byte }

This time the channel stores up to sixteen messages, each consisting of two
8-bit values, one 32-bit value, and a channel name.

The statement

qname!expr

sends the value of expression expr to the channel that we just created, that is: it
appends the value to the tail of the channel.

qname?msg

receives the message, it retrieves it from the head of the channel, and stores it
in a variable msg. The channels pass messages in first-in-first-out order. In the
above cases only a single value is passed through the channel. If more than one
value is to be transferred per message, they are specified in a comma
separated list

qname!expr1,expr2,expr3

qname?var1,var2,var3

It is an error to send or receive either more or fewer parameters per message
than was declared for the message channel used.
By convention, the first message field is often used to specify the message
type (i.e. a constant). An alternative, and equivalent, notation for the send and
receive operations is therefore to specify the message type, followed by a list
of message fields enclosed in braces. In general:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

The send operation is executable only when the channel addressed is not full.
The receive operation, similarly, is only executable when the channel is non
empty. Optionally, some of the arguments of the receive operation can be
constants:

qname?cons1,var2,cons2

in this case, a further condition on the executability of the receive operation is
that the value of all message fields that are specified as constants match the
value of the corresponding fields in the message that is at the head of the
channel. Again, nothing bad will happen if a statement happens to be
non-executable. The process trying to execute it will be delayed until the

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

8 of 40 2010-04-20 13:29

statement, or, more likely, an alternative statement, becomes executable.

Here is an example that uses some of the mechanisms introduced so far.

proctype A(chan q1)

{ chan q2;

q1?q2;

q2!123

}

proctype B(chan qforb)

{ int x;

qforb?x;

printf("x = %d\n", x)

}

init {

chan qname = [1] of { chan };

chan qforb = [1] of { int };

run A(qname);

run B(qforb);

qname!qforb

}

The value printed will be 123.

A predefined function len(qname) returns the number of messages currently
stored in channel qname. Note that if len is used as a statement, rather than on
the right hand side of an assignment, it will be unexecutable if the channel is
empty: it returns a zero result, which by definition means that the statement is
temporarily unexecutable. Composite conditions such as

(qname?var == 0) /* syntax error */

or

(a > b && qname!123) /* syntax error */

are invalid in Promela (note that these conditions can not be evaluated without
side-effects). For a receive statement there is an alternative, using square
brackets around the clause behind the question mark.

qname?[ack,var]

is evaluated as a condition. It returns 1 if the corresponding receive statement

qname?ack,var

is executable, i.e., if there is indeed a message ack at the head of the channel.
It returns 0 otherwise. In neither case has the evaluation of a statement such
as

qname?[ack,var]

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

9 of 40 2010-04-20 13:29

any side-effects: the receive is evaluated, not executed.

Note carefully that in non-atomic sequences of two statements such as

(len(qname) < MAX) -> qname!msgtype

or

qname?[msgtype] -> qname?msgtype

the second statement is not necessarily executable after the first one has been
executed. There may be race conditions if access to the channels is shared
between several processes. In the first case another process can send a
message to channel qname just after this process determined that the channel
was not full. In the second case, the other process can steal away the message
just after our process determined its presence.

Rendez-Vous Communication

So far we have talked about asynchronous communication between processes
via message channels, declared in statements such as

chan qname = [N] of { byte }

where N is a positive constant that defines the buffer size. A logical extension is
to allow for the declaration

chan port = [0] of { byte }

to define a rendezvous port that can pass single byte messages. The channel
size is zero, that is, the channel port can pass, but can not store messages.
Message interactions via such rendezvous ports are by definition synchronous.
Consider the following example.

#define msgtype 33

chan name = [0] of { byte, byte };

proctype A()

{ name!msgtype(124);

name!msgtype(121)

}

proctype B()

{ byte state;

name?msgtype(state)

}

init

{ atomic { run A(); run B() }

}

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

10 of 40 2010-04-20 13:29

Channel name is a global rendezvous port. The two processes will synchronously
execute their first statement: a handshake on message msgtype and a transfer of
the value 124 to local variable state. The second statement in process A will be
unexecutable, because there is no matching receive operation in process B.

If the channel name is defined with a non-zero buffer capacity, the behavior is
different. If the buffer size is at least 2, the process of type A can complete its
execution, before its peer even starts. If the buffer size is 1, the sequence of
events is as follows. The process of type A can complete its first send action,
but it blocks on the second, because the channel is now filled to capacity. The
process of type B can then retrieve the first message and complete. At this
point A becomes executable again and completes, leaving its last message as a
residual in the channel.

Rendez-vous communication is binary: only two processes, a sender and a
receiver, can be synchronized in a rendezvous handshake. We will see an
example of a way to exploit this to build a semaphore below. But first, let us
introduce a few more control flow structures that may be useful.

Control Flow

Between the lines, we have already introduced three ways of defining control
flow: concatenation of statements within a process, parallel execution of
processes, and atomic sequences. There are three other control flow
constructs in Promela to be discussed. They are case selection, repetition, and
unconditional jumps.

Case Selection

The simplest construct is the selection structure. Using the relative values of
two variables a and b to choose between two options, for instance, we can write:

if

:: (a != b) -> option1

:: (a == b) -> option2

fi

The selection structure contains two execution sequences, each preceded by a
double colon. Only one sequence from the list will be executed. A sequence
can be selected only if its first statement is executable. The first statement is
therefore called a guard.

In the above example the guards are mutually exclusive, but they need not be.
If more than one guard is executable, one of the corresponding sequences is
selected nondeterministically. If all guards are unexecutable the process will
block until at least one of them can be selected. There is no restriction on the

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

11 of 40 2010-04-20 13:29

type of statements that can be used as a guard. The following example, for
instance, uses input statements.

#define a 1

#define b 2

chan ch = [1] of { byte };

proctype A()

{ ch!a

}

proctype B()

{ ch!b

}

proctype C()

{ if

:: ch?a

:: ch?b

fi

}

init

{ atomic { run A(); run B(); run C() }

}

The example defines three processes and one channel. The first option in the
selection structure of the process of type C is executable if the channel
contains a message a, where a is a constant with value 1, defined in a macro
definition at the start of the program. The second option is executable if it
contains a message b, where, similarly, b is a constant. Which message will be
available depends on the unknown relative speeds of the processes.

A process of the following type will either increment or decrement the value of
variable count once.

byte count;

proctype counter()

{

if

:: count = count + 1

:: count = count - 1

fi

}

Repetition

A logical extension of the selection structure is the repetition structure. We
can modify the above program as follows, to obtain a cyclic program that

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

12 of 40 2010-04-20 13:29

randomly changes the value of the variable up or down.

byte count;

proctype counter()

{

do

:: count = count + 1

:: count = count - 1

:: (count == 0) -> break

od

}

Only one option can be selected for execution at a time. After the option
completes, the execution of the structure is repeated. The normal way to
terminate the repetition structure is with a break statement. In the example, the
loop can be broken when the count reaches zero. Note, however, that it need
not terminate since the other two options always remain executable. To force
termination when the counter reaches zero, we could modify the program as
follows.

proctype counter()

{

do

:: (count != 0) ->

if

:: count = count + 1

:: count = count - 1

fi

:: (count == 0) -> break

od

}

Unconditional Jumps

Another way to break the loop is with an unconditional jump: the infamous goto
statement. This is illustrated in the following implementation of Euclid's
algorithm for finding the greatest common divisor of two non-zero, positive
numbers:

proctype Euclid(int x, y)

{

do

:: (x > y) -> x = x - y

:: (x < y) -> y = y - x

:: (x == y) -> goto done

od;

done:

skip

}

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

13 of 40 2010-04-20 13:29

The goto in this example jumps to a label named done. A label can only appear
before a statement. Above we want to jump to the end of the program. In this
case a dummy statement skip is useful: it is a place holder that is always
executable and has no effect. The goto is also always executable.

The following example specifies a filter that receives messages from a channel
in and divides them over two channels large and small depending on the values
attached. The constant N is defined to be 128 and size is defined to be 16 in
the two macro definitions.

#define N 128

#define size 16

chan in = [size] of { short };

chan large = [size] of { short };

chan small = [size] of { short };

proctype split()

{ short cargo;

do

:: in?cargo ->

if

:: (cargo >= N) ->

large!cargo

:: (cargo < N) ->

small!cargo

fi

od

}

init

{ run split()

}

A process type that merges the two streams back into one, most likely in a
different order, and writes it back into the channel in could be specified as
follows.

proctype merge()

{ short cargo;

do

:: if

:: large?cargo

:: small?cargo

fi;

in!cargo

od

}

If we now modify the init process as follows, the split and merge processes

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

14 of 40 2010-04-20 13:29

could busily perform their duties forever on.

init

{ in!345; in!12; in!6777;

in!32; in!0;

run split();

run merge()

}

As a final example, consider the following implementation of a Dijkstra
semaphore, using binary rendezvous communication.

#define p 0

#define v 1

chan sema = [0] of { bit };

proctype dijkstra()

{ byte count = 1;

do

:: (count == 1) ->

sema!p; count = 0

:: (count == 0) ->

sema?v; count = 1

od

}

proctype user()

{ do

:: sema?p;

 /* critical section */

 sema!v;

 /* non-critical section */

od

}

init

{ run dijkstra();

run user();

run user();

run user()

}

The semaphore guarantees that only one of the user processes can enter its
critical section at a time. It does not necessarily prevent the monopolization of
the access to the critical section by one of the processes.

Modeling Procedures and Recursion

Procedures can be modeled as processes, even recursive ones. The return
value can be passed back to the calling process via a global variable, or via a

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

15 of 40 2010-04-20 13:29

message. The following program illustrates this.

proctype fact(int n; chan p)

{ chan child = [1] of { int };

int result;

if

:: (n <= 1) -> p!1

:: (n >= 2) ->

run fact(n-1, child);

child?result;

p!n*result

fi

}

init

{ chan child = [1] of { int };

int result;

run fact(7, child);

child?result;

printf("result: %d\n", result)

}

The process fact(n, p) recursively calculates the factorial of n , communicating
the result via a message to its parent process p.

Timeouts

We have already discussed two types of statement with a predefined meaning
in Promela: skip, and break. Another predefined statement is timeout. The timeout
models a special condition that allows a process to abort the waiting for a
condition that may never become true, e.g. an input from an empty channel.
The timeout keyword is a modeling feature in Promela that provides an escape
from a hang state. The timeout condition becomes true only when no other
statements within the distributed system is executable. Note that we
deliberately abstract from absolute timing considerations, which is crucial in
verification work, and we do not specify how the timeout should be
implemented. A simple example is the following process that will send a reset
message to a channel named guard whenever the system comes to a standstill.

proctype watchdog()

{

do

:: timeout -> guard!reset

od

}

Assertions

Another important language construct in Promela that needs little explanation is

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

16 of 40 2010-04-20 13:29

the assert statement. Statements of the form

assert(any_boolean_condition)

are always executable. If the boolean condition specified holds, the statement
has no effect. If, however, the condition does not necessarily hold, the
statement will produce an error report during verifications with Spin.

Advanced Usage

The modeling language has a few features that specifically address the
verification aspects. It shows up in the way labels are used, in the semantics of
the Promela timeout statement, and in the usage of statements such as assert that
we discuss next.

End-State Labels

When Promela is used as a verification language the user must be able to make
very specific assertions about the behavior that is being modeled. In
particular, if a Promela is checked for the presence of deadlocks, the verifier
must be able to distinguish a normal end state from an abnormal one.

A normal end state could be a state in which every Promela process that was
instantiated has properly reached the end of the defining program body, and
all message channels are empty. But, not all Promela process are, of course,
meant to reach the end of their program body. Some may very well linger in
an IDLE state, or they may sit patiently in a loop ready to spring into action
when new input arrives.

To make it clear to the verifier that these alternate end states are legal, and do
not constitute a deadlock, a Promela model can use end state labels. For
instance, if by adding a label to the process type dijkstra() we discussed earlier:

proctype dijkstra()

{ byte count = 1;

end: do

:: (count == 1) ->

sema!p; count = 0

:: (count == 0) ->

sema?v; count = 1

od

}

we indicate that it is not an error if, at the end of an execution sequence, a
process of type dijkstra() has not reached its closing curly brace, but waits in
the loop. Of course, such a state could still be part of a deadlock state, but if
so, it is not caused by this particular process. (It will still be reported if any

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

17 of 40 2010-04-20 13:29

one of the other processes in not in a valid end-state).

There may be more than one end state label per verification model. If so, all
labels that occur within the same process body must be unique. The rule is
that every label name that starts with the three character sequence "end" is an
endstate label. So it is perfectly valid to use variations such as enddne, end0,
end_appel, etc.

Progress-State Labels

In the same spirit as the end state labels, the user can also define progress

state labels. In this case, a progress state labels will mark a state that must be
executed for the protocol to make progress. Any infinite cycle in the protocol
execution that does not pass through at least one of these progress states, is a
potential starvation loop. In the dijkstra example, for instance, we can label the
successful passing of a semaphore test as ``progress'' and ask a verifier to
make sure that there is no cycle in the protocol execution where at least one
process succeeds in passing the semaphore guard.

proctype dijkstra()

{ byte count = 1;

end: do

:: (count == 1) ->

progress: sema!p; count = 0

:: (count == 0) ->

sema?v; count = 1

od

}

Note that a label cannot be added immediately before or immediately after the
"::" symbol, so you may have to be more creative to find a good place to put it.
If more than one state carries a progress label, variations with a common
prefix are again valid: progress0, progress_foo, etc.

All analyzers generated by Spin with the -a flag have a runtime option (after
compilation) named -l. Invoking the generated analyzer with that flag will
cause a fast search for non-progress loops, instead of the default search for
deadlocks. The search takes about twice as long (and uses twice as much
memory) as the default search for deadlocks. (A considerable improvement
over standard methods that are based on the analysis of strongly connected
components.)

Message Type Definitions

We have seen how variables are declared and how constants can be defined
using C-style macros. Promela also allows for message type definitions that look

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

18 of 40 2010-04-20 13:29

as follows:

mtype = { ack, nak, err, next, accept }

This is a preferred way of specifying the message types since it abstracts from
the specific values to be used, and it makes the names of the constants
available to an implementation, which can improve error reporting.

By using the mtype keyword in channel declarations, the corresponding message
field will always be interpreted symbolically, instead of numerically. For
instance:

chan q = [4] of { mtype, mtype, bit, short };

Pseudo Statements

We have now discussed all the basic types of statements defined in Promela:
assignments, conditions, send and receive, assert, timeout, goto, break and skip. Note
that chan, len and run are not really statements but unary operators that can be
used in conditions and assignments.

The skip statement was mentioned in passing as a statement that can be a
useful filler to satisfy syntax requirements, but that really has no effect. It is
formally not part of the language but a pseudo-statement, merely a synonym
of another statement with the same effect: a simple condition of a constant
value (1). In the same spirit other pseudo-statements could be defined (but are
not), such as block or hang, as equivalents of (0), and halt, as an equivalent of
assert(0).. Another pseudo-statement is else, that can be used as the initial
statement of the last option sequence in a selection or iteration.

if

:: a > b -> ...

:: else -> ...

fi

The else is only executable (true) if all other options in the same selection are
not executable.

Example

Here is a simple example of a (flawed) protocol, modeled in Promela.

mtype = { ack, nak, err, next, accept };

proctype transfer(chan in,out,chin,chout)

{ byte o, i;

in?next(o);

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

19 of 40 2010-04-20 13:29

do

:: chin?nak(i) ->

out!accept(i);

chout!ack(o)

:: chin?ack(i) ->

out!accept(i);

in?next(o);

chout!ack(o)

:: chin?err(i) ->

chout!nak(o)

od

}

init

{ chan AtoB = [1] of { mtype, byte };

chan BtoA = [1] of { mtype, byte };

chan Ain = [2] of { mtype, byte };

chan Bin = [2] of { mtype, byte };

chan Aout = [2] of { mtype, byte };

chan Bout = [2] of { mtype, byte };

atomic {

 run transfer(Ain,Aout, AtoB,BtoA);

 run transfer(Bin,Bout, BtoA,AtoB)

};

AtoB!err(0)

}

The channels Ain and Bin are to be filled with token messages of type next and
arbitrary values (e.g. ASCII character values) by unspecified background
processes: the users of the transfer service. Similarly, these user processes can
read received data from the channels Aout and Bout. The channels and processes
are initialized in a single atomic statement, and started with the dummy err
message.

Spin (see also Spin.html)

Given a model system specified in Promela, Spin can either perform random
simulations of the system's execution or it can generate a C program that
performs a fast exhaustive verification of the system state space. The verifier
can check, for instance, if user specified system invariants may be violated
during a protocol's execution.

If Spin is invoked without any options it performs a random simulation. With
option -n N the seed for the simulation is set explicitly to the integer value N .

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

20 of 40 2010-04-20 13:29

A group of options pglrs can be used to set the desired level of information that
the user wants about the simulation run. Every line of output normally
contains a reference to the source line in the specification that caused it.

-p Shows the state changes of the Promela processes at every time step.

-g Shows the current value of global variables at every time step.

-l Shows the current value of local variables, after the process that owns them
has changed state. It is best used in combination with option -p.

-r Shows all message receive events. It shows the process performing the
receive, its name and number, the source line number, the message parameter
number (there is one line for each parameter), the message type and the
message channel number and name.

-s Shows all message send events.

Spin understands three other options (-a, -m, and -t):

-a Generates a protocol specific analyzer. The output is written into a set of C
files, named pan.[cbhmt], that can be compiled to produce the analyzer (which is
then executed to perform the analysis). To guarantee an exhaustive
exploration of the state space, the program can be compiled simply as

$ gcc -o pan pan.c

For larger systems this may, however, exhaust the available memory on the
machine used. Large to very large systems can still be analyzed by using a
memory efficient bit state space method by

$ gcc -DBITSTATE -o pan pan.c

An indication of the coverage of such a search can be derived from the hash

factor (see below). The generated executable analyzer, named run above, has its
own set of options that can be seen by typing "./pan -?" (see also below in Using

the Analyzer).

-m can be used to change the default semantics of send actions. Normally, a
send operation is only executable if the target channel is non-full. This
imposes an implicit synchronization that can not always be justified. Option -m
causes send actions to be always executable. Messages sent to a channel that
is full are then dropped. If this option is combined with -a the semantics of
send in the analyzers generated is similarly altered, and the verifications will
take the effects of this type of message loss into consideration.

-t is a trail-hunting option. If the analyzer finds a violation of an assertion, a

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

21 of 40 2010-04-20 13:29

deadlock or an unspecified reception, it writes an error trail into a file named
pan.trail. The trail can be inspected in detail by invoking Spin with the -t option.
In combination with the options pglrs different views of the error sequence are
then easily obtained.

For brevity, other options of Spin are not discussed here. For details see [5]. For
a hint of their purpose, see ``Digging Deeper'' at the end of this manual.

The Simulator

Consider the following example protocol, that we will store in a file named
lynch.

 1 #define MIN 9

 2 #define MAX 12

 3 #define FILL 99

 4

 5 mtype = { ack, nak, err }

 6

 7 proctype transfer(chan chin, chout)

 8 { byte o, i, last_i=MIN;

 9

 10 o = MIN+1;

 11 do

 12 :: chin?nak(i) ->

 13 assert(i == last_i+1);

 14 chout!ack(o)

 15 :: chin?ack(i) ->

 16 if

 17 :: (o < MAX) -> o = o+1

 18 :: (o >= MAX) -> o = FILL

 19 fi;

 20 chout!ack(o)

 21 :: chin?err(i) ->

 22 chout!nak(o)

 23 od

 24 }

 25

 26 proctype channel(chan in, out)

 27 { byte md, mt;

 28 do

 29 :: in?mt,md ->

 30 if

 31 :: out!mt,md

 32 :: out!err,0

 33 fi

 34 od

 35 }

 36

 37 init

 38 { chan AtoB = [1] of { mtype, byte };

 39 chan BtoC = [1] of { mtype, byte };

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

22 of 40 2010-04-20 13:29

 40 chan CtoA = [1] of { mtype, byte };

 41 atomic {

 42 run transfer(AtoB, BtoC);

 43 run channel(BtoC, CtoA);

 44 run transfer(CtoA, AtoB)

 45 };

 46 AtoB!err,0; /* start */

 47 0 /* hang */

 48 }

The protocol uses three message types: ack, nak, and a special type err that is
used to model message distortions on the communication channel between the
two transfer processes. The behavior of the channel is modeled explicitly with
a channel process. There is also an assert statement that claims a, faulty,
invariant relation between two local variables in the transfer processes.

Running Spin without options gives us a random simulation that will only
provide output when execution terminates, or if a printf statement is
encountered. In this case:

$ spin lynch # no options, not recommended

spin: "lynch" line 13: assertion violated

#processes: 4

proc 3 (transfer) line 11 (state 15)

proc 2 (channel) line 28 (state 6)

proc 1 (transfer) line 13 (state 3)

proc 0 (:init:) line 48 (state 6)

4 processes created

$

There are no printf's in the specification, but we do get some output because
the execution stops on an assertion violation. Curious to find out more, we can
repeat the run with more verbose output, e.g. printing all receive events. The
result of that run is shown in Figure 1. Most output will be self-explanatory.

The above simulation run ends in the same assertion violation. Since the
simulation resolves nondeterministic choices in a random manner, this need
not always be the case. To force a reproducible run, the option -n N can be
used. For instance:

$ spin -r -n100 lynch

will seed the random number generator with the integer value 100 and is
guaranteed to produce the same output each time it is executed.

The other options can add still more output to the simulation run, but the
amount of text can quickly become overwhelming. An easy solution is to filter
the output through grep. For instance, if we are only interested in the
behavior of the channel process in the above example, we say:

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

23 of 40 2010-04-20 13:29

$ spin -n100 -r lynch | grep "proc 2"

The results are shown in Figure 1.

$ spin -r lynch

proc 1 (transfer) line 21, Recv err,0 <- queue 1 (chin)

proc 2 (channel) line 29, Recv nak,10 <- queue 2 (in)

proc 3 (transfer) line 12, Recv nak,10 <- queue 3 (chin)

proc 1 (transfer) line 15, Recv ack,10 <- queue 1 (chin)

...

proc 1 (transfer) line 15, Recv ack,12 <- queue 1 (chin)

proc 2 (channel) line 29, Recv ack,99 <- queue 2 (in)

proc 3 (transfer) line 15, Recv ack,99 <- queue 3 (chin)

proc 1 (transfer) line 15, Recv ack,99 <- queue 1 (chin)

proc 2 (channel) line 29, Recv ack,99 <- queue 2 (in)

proc 3 (transfer) line 21, Recv err,0 <- queue 3 (chin)

proc 1 (transfer) line 12, Recv nak,99 <- queue 1 (chin)

spin: "lynch" line 13: assertion violated

#processes: 4

proc 3 (transfer) line 11 (state 15)

proc 2 (channel) line 28 (state 6)

proc 1 (transfer) line 13 (state 3)

proc 0 (:init:) line 48 (state 6)

4 processes created

$ spin -n100 -r lynch | grep "proc 2"

proc 2 (channel) line 29, Recv nak,10 <- queue 2 (in)

proc 2 (channel) line 29, Recv ack,11 <- queue 2 (in)

proc 2 (channel) line 29, Recv ack,12 <- queue 2 (in)

proc 2 (channel) line 28 (state 6)

Figure 1. Simulation Run Output

A good way to start simulation runs like this is to use option -c (new in version
3.0), which produces the following output:

$ spin -c lynch

proc 0 = :init:

proc 1 = transfer

proc 2 = channel

proc 3 = transfer

q\p 0 1 2 3

 1 AtoB!err,0

 1 . chin?err,0

 2 . chout!nak,10

 2 . . in?nak,10

 3 . . out!err,0

 3 . . . chin?err,0

 1 . . . chout!nak,10

 1 . chin?nak,10

 2 . chout!ack,10

 2 . . in?ack,10

 3 . . out!ack,10

 3 . . . chin?ack,10

 1 . . . chout!ack,11

 1 . chin?ack,11

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

24 of 40 2010-04-20 13:29

 2 . chout!ack,11

 2 . . in?ack,11

 3 . . out!ack,11

 3 . . . chin?ack,11

 1 . . . chout!ack,12

 1 . chin?ack,12

 2 . chout!ack,12

 2 . . in?ack,12

 3 . . out!ack,12

 3 . . . chin?ack,12

 1 . . . chout!ack,99

 1 . chin?ack,99

 2 . chout!ack,99

 2 . . in?ack,99

 3 . . out!err,0

 3 . . . chin?err,0

 1 . . . chout!nak,99

 1 . chin?nak,99

spin: line 13 "lynch", Error: assertion violated

final state:

#processes: 4

 79: proc 3 (transfer) line 11 "lynch" (state 15)

 79: proc 2 (channel) line 28 "lynch" (state 6)

 79: proc 1 (transfer) line 13 "lynch" (state 3)

 79: proc 0 (:init:) line 47 "lynch" (state 6)

4 processes created

The first column gives the channel id numbers, the first row gives the process
id numbers involved in message transfers plotted in the remained of the table.

The Analyzer (see also Pan.html and Roadmap.html)

The simulation runs can be useful in quick debugging of new designs, but by
simulation alone we can not prove that the system is really error free. A
verification of even very large models can be performed with the -a and -t
options of Spin.

An exhaustive state space searching program for a protocol model is
generated as follows, producing five files, named pan.[bchmt].

$ spin -a lynch

$ wc pan.[bchmt]

 99 285 1893 pan.b

 3158 10208 70337 pan.c

 356 1238 7786 pan.h

 216 903 6045 pan.m

 575 2099 14017 pan.t

 4404 14733 100078 total

The details are none too interesting: pan.c contains most of the C code for the

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

25 of 40 2010-04-20 13:29

analysis of the protocol. File pan.t contains a transition matrix that encodes
the protocol control flow; pan.b and pan.m contain C code for forward and
backward transitions and pan.h is a general header file. The program can be
compiled in several ways, e.g., with a full state space or with a bit state space.

Exhaustive Search

The best method, that works up to system state spaces of roughly 100,000
states, is to use the default compilation of the program:

$ gcc -o pan pan.c

The executable program pan can now be executed to perform the verification.
The verification is truly exhaustive: it tests all possible event sequences in all
possible orders. It should, of course, find the same assertion violation.

$./pan

assertion violated (i == last_i + 1))

pan: aborted

pan: wrote pan.trail

search interrupted

vector 64 byte, depth reached 56

 61 states, stored

 5 states, linked

 1 states, matched

hash conflicts: 0 (resolved)

(size 2^18 states, stack frames: 0/5)

(The output format of the more recent versions of Spin is more elaborate, but it
includes the same information.)

The first line of the output announces the assertion violation and attempts to
give a first indication of the invariant that was violated. The violation was
found after 61 states had been generated. Hash "conflicts" gives the number
of hash collisions that happened during access to the state space. As indicated,
all collissions are resolved in full search mode, since all states are placed in a
linked list. The most relevant piece of output in this case, however, is on the
third line which tells us that a trail file was created that can be used in
combination with the simulator to recreate the error sequence. We can now
say, for instance

$ spin -t -r lynch | grep "proc 2"

to determine the cause of the error. Note carefully that the verifier is
guaranteed to find the assertion violation if it is feasible. If an exhaustive
search does not report such a violation, it is certain that no execution
execution sequence exists that can violate the assertion.

Options

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

26 of 40 2010-04-20 13:29

The executable analyzer that is generated comes with a modest number of
options that can be checked as follows

$./pan --

-cN stop at Nth error (default=1)

-l find non-progress cycles # when compiled with -DNP

-a find acceptance cycles # when not compiled with -DNP

-mN max depth N (default=10k)

-wN hash table of 2^N entries (default=18)

 ...etc.

Using a zero as an argument to the first option forces the state space search to
continue, even if errors are found. An overview of unexecutable (unreachable)
code is given with every complete run: either the default run if it did not find
any errors, or the run with option -c0. In this case the output is:

$./pan -c0

assertion violated (i == (last_i + 1))

vector 64 byte, depth reached 60, errors: 5

 165 states, stored

 5 states, linked

 26 states, matched

hash conflicts: 1 (resolved)

(size 2^18 states, stack frames: 0/6)

unreached code :init: (proc 0):

reached all 9 states

unreached code channel (proc 1):

 line 35 (state 9),

reached: 8 of 9 states

unreached code transfer (proc 2):

 line 24 (state 18),

reached: 17 of 18 states

There were five assertion violations, and some 165 unique system states were
generated. Each state description (the vector size) took up 64 bytes of
memory; the longest non-cyclic execution sequence was 60. There is one
unreachable state both in the channel process and in the transfer process. In
both cases the unreachable state is the control flow point just after the do-loop
in each process. Note that both loops are indeed meant to be non-terminating.

The -l option will cause the analyzer to search for non-progress loops rather
than deadlocks or assertion violations. The option is explained in the section on
``More Advanced Usage.''

The executable analyzer has two other options. By default the search depth is
restricted to a rather arbitrary 10,000 steps. If the depth limit is reached, the
search is truncated, making the verification less than exhaustive. To make
certain that the search is exhaustive, make sure that the "depth reached"

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

27 of 40 2010-04-20 13:29

notice is within the maximum search depth, and if not, repeat the analysis
with an explicit -m argument.

The -m option can of course also be used to truncate the search explicitly, in an
effort to find the shortest possible execution sequence that violates a given
assertion. Such a truncated search, however, is not guaranteed to find every
possible violation, even within the search depth.

The last option -w N can only affect the run time, not the scope, of an analysis
with a full state space. This "hash table width" should normally be set equal to,
or preferably higher than, the logarithm of the expected number of unique
system states generated by the analyzer. (If it is set too low, the number of
hash collisions will increase and slow down the search.) The default N of 18
handles up to 262,144 system states, which should suffice for almost all
applications of a full state space analysis.

Bit State Space Analyses

It can easily be calculated what the memory requirements of an analysis with a
full state space are [4]. If, as in the example we have used, the protocol
requires 64 bytes of memory to encode one system state, and we have a total
of 2MB of memory available for the search, we can store up to 32,768 states.
The analysis fails if there are more reachable states in the system state space.
So far, Spin is the only verification system that can avoid this trap. All other
existing automated verification system (irrespective on which formalism they
are based) simply run out of memory and abort their analysis without
returning a useful answer to the user.

The coverage of a conventional analysis goes down rapidly when the memory
limit is hit, i.e. if there are twice as many states in the full state space than we
can store, the effective coverage of the search is only 50% and so on. Spin does
substantially better in those cases by using the bit state space storage method
[4]. The bit state space can be included by compiling the analyzer as follows:

$ gcc -DBITSTATE -o pan pan.c

The analyzer compiled in this way should of course find the same assertion
violation again:

$./pan

assertion violated (i == ((last_i + 1))

pan: aborted

pan: wrote pan.trail

search interrupted

vector 64 byte, depth reached 56

 61 states, stored

 5 states, linked

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

28 of 40 2010-04-20 13:29

 1 states, matched

hash factor: 67650.064516

(size 2^22 states, stack frames: 0/5)

$

In fact, for small to medium size problems there is very little difference
between the full state space method and the bit state space method (with the
exception that the latter is somewhat faster and uses substantially less
memory). The big difference comes for larger problems. The last two lines in
the output are useful in estimating the coverage of a large run. The maximum
number of states that the bit state space can accommodate is written on the

last line (here 2 22 bytes or about 32 million bits = states). The line above it
gives the hash factor: roughly equal to the maximum number of states divided
by the actual number of states. A large hash factor (larger than 100) means,
with high reliability, a coverage of 99% or 100%. As the hash factor
approaches 1 the coverage approaches 0%.

Note carefully that the analyzer realizes a partial coverage only in cases where
traditional verifiers are either unable to perform a search, or realize a far
smaller coverage. In no case will Spin produce an answer that is less reliable
than that produced by other automated verification systems (quite on the
contrary).

The object of a bit state verification is to achieve a hash factor larger than 100
by allocating the maximum amount of memory for the bit state space. For the
best result obtainable: use the -w N option to size the state space to precisely
the amount of real (not virtual) memory available on your machine. By default,
N is 22, corresponding to a state space of 4MB. For example, if your machine
has 128MB of real memory, you can use -w27 to analyze systems with up to a
billion reachable states.

Summary

In the first part of this manual we have introduced a notation for modeling
concurrent systems, including but not limited to asynchronous data
communication protocols, in a language named Promela. The language has
several unusual features. All communication between processes takes place via
either messages or shared variables. Both synchronous and asynchronous
communication are modeled as two special cases of a general message passing
mechanism. Every statement in Promela can potentially model delay: it is either
executable or not, in most cases depending on the state of the environment of
the running process. Process interaction and process coordination is thus at
the very basis of the language. More about the design of Promela, of the verifier
Spin, and its range of applications, can be found in [5].

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

29 of 40 2010-04-20 13:29

Promela is deliberately a verification modeling language, not a programming
language. There are, for instance, no elaborate abstract data types, or more
than a few basic types of variable. A verification model is an abstraction of a
protocol implementation. The abstraction maintains the essentials of the
process interactions, so that it can be studied in isolation. It suppresses
implementation and programming detail.

The syntax of Promela expressions, declarations, and assignments is loosely
based on the language C[6]. The language was influenced significantly by the
``guarded command languages'' of E.W. Dijkstra [1] and C.A.R. Hoare [3].
There are, however, important differences. Dijkstra's language had no
primitives for process interaction. Hoare's language was based exclusively on
synchronous communication. Also in Hoare's language, the type of statements
that could appear in the guards of an option was restricted. The semantics of
the selection and cycling statements in Promela is also rather different from
other guarded command languages: the statements are not aborted when all
guards are false but they block: thus providing the required synchronization.

With minimal effort Spin allows the user to generate sophisticated analyzers
from Promela verification models. Both the Spin software itself, and the analyzers
it can generate, are written in ANSI C and are portable across Unix systems.
They can be scaled to fully exploit the physical limitations of the host
computer, and deliver within those limits the best possible analyses that can
be realized with the current state of the art in protocol analysis.

Appendix: Building a Verification Suite

See also Exercises.html, and Roadmap.html

The first order of business in using Spin for a verification is the construction of
a faithful model in Promela of the problem at hand. The language is deliberately
kept small. The purpose of the modeling is to extract those aspects of the
system that are relevant to the coordination problem being studied. All other
details are suppressed. Formally: the model is a reduction of the system that
needs to be equivalent to the full system only with respect to the properties
that are being verified. Once a model has been constructed, it becomes the
basis for the construction of a series of, what we may call, ``verification
suites'' that are used to verify its properties. To build a verification suite we
can prime the model with assertions. The assertions can formalize invariant
relations about the values of variables or about allowable sequences of events
in the model.

As a first example we take the following solution to the mutual exclusion
problem, discussed earlier, published in 1966 by H. Hyman in the

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

30 of 40 2010-04-20 13:29

Communications of the ACM. It was listed, in pseudo Algol, as follows.

 1 Boolean array b(0;1) integer k, i,

 2 comment process i, with i either 0 or 1, and k = 1-i;

 3 C0: b(i) := false;

 4 C1: if k != i then begin;

 5 C2: if not b(1-i) then go to C2;

 6 else k := i; go to C1 end;

 7 else critical section;

 8 b(i) := true;

 9 remainder of program;

 10 go to C0;

 11 end

The solution, as Dekker's earlier solution, is for two processes, numbered 0
and 1. Suppose we wanted to prove that Hyman's solution truly guaranteed
mutually exclusive access to the critical section. Our first task is to build a
model of the solution in Promela. While we're at it, we can pick some more useful
names for the variables that are used.

 1 bool want[2]; /* Bool array b */

 2 bool turn; /* integer k */

 3

 4 proctype P(bool i)

 5 {

 6 want[i] = 1;

 7 do

 8 :: (turn != i) ->

 9 (!want[1-i]);

 10 turn = i

 11 :: (turn == i) ->

 12 break

 13 od;

 14 skip; /* critical section */

 15 want[i] = 0

 16 }

 17

 18 init { run P(0); run P(1) }

We can generate, compile, and run a verifier for this model, to see if there are
any major problems, such as a global system deadlock.

$ spin -a hyman0

$ gcc -o pan pan.c

$./pan

full statespace search for:

assertion violations and invalid endstates

vector 20 byte, depth reached 19, errors: 0

 79 states, stored

 0 states, linked

 38 states, matched total: 117

hash conflicts: 4 (resolved)

(size 2^18 states, stack frames: 3/0)

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

31 of 40 2010-04-20 13:29

unreached code _init (proc 0):

reached all 3 states

unreached code P (proc 1):

reached all 12 states

The model passes this first test. What we are really interested in, however, is if
the algorithm guarantees mutual exclusion. There are several ways to proceed.
The simplest is to just add enough information to the model that we can
express the correctness requirement in a Promela assertion.

 1 bool want[2];

 2 bool turn;

 3 byte cnt;

 4

 5 proctype P(bool i)

 6 {

 7 want[i] = 1;

 8 do

 9 :: (turn != i) ->

 10 (!want[1-i]);

 11 turn = i

 12 :: (turn == i) ->

 13 break

 14 od;

 15 skip; /* critical section */

 16 cnt = cnt+1;

 17 assert(cnt == 1);

 18 cnt = cnt-1;

 19 want[i] = 0

 20 }

 21

 22 init { run P(0); run P(1) }

We have added a global variable cnt that is incremented upon each access to
the critical section, and decremented upon each exit from it. The maximum
value that this variable should ever have is 1, and it can only have this value
when a process is inside the critical section.

$ spin -a hyman1

$ gcc -o pan pan.c

$./pan

assertion violated (cnt==1)

pan: aborted (at depth 15)

pan: wrote pan.trail

full statespace search for:

assertion violations and invalid endstates

search was not completed

vector 20 byte, depth reached 25, errors: 1

 123 states, stored

 0 states, linked

 55 states, matched total: 178

hash conflicts: 42 (resolved)

(size 2^18 states, stack frames: 3/0)

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

32 of 40 2010-04-20 13:29

The verifier claims that the assertion can be violated. We can use the error
trail to check it with Spin's -t option:

$ spin -t -p hyman1

proc 0 (_init) line 24 (state 2)

proc 0 (_init) line 24 (state 3)

proc 2 (P) line 8 (state 7)

proc 2 (P) line 9 (state 2)

proc 2 (P) line 10 (state 3)

proc 2 (P) line 11 (state 4)

proc 1 (P) line 8 (state 7)

proc 1 (P) line 12 (state 5)

proc 1 (P) line 15 (state 10)

proc 2 (P) line 8 (state 7)

proc 2 (P) line 12 (state 5)

proc 2 (P) line 15 (state 10)

proc 2 (P) line 16 (state 11)

proc 2 (P) line 17 (state 12)

proc 2 (P) line 18 (state 13)

proc 1 (P) line 16 (state 11)

proc 1 (P) line 17 (state 12)

spin: "hyman1" line 17: assertion violated

step 17, #processes: 3

want[0] = 1

_p[0] = 12

turn[0] = 1

cnt[0] = 2

proc 2 (P) line 18 (state 13)

proc 1 (P) line 17 (state 12)

proc 0 (_init) line 24 (state 3)

3 processes created

Here is another way to catch the error. We again lace the model with the
information that will allow us to count the number of processes in the critical
section.

 1 bool want[2];

 2 bool turn;

 3 byte cnt;

 4

 5 proctype P(bool i)

 6 {

 7 want[i] = 1;

 8 do

 9 :: (turn != i) ->

 10 (!want[1-i]);

 11 turn = i

 12 :: (turn == i) ->

 13 break

 14 od;

 15 cnt = cnt+1;

 16 skip; /* critical section */

 17 cnt = cnt-1;

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

33 of 40 2010-04-20 13:29

 18 want[i] = 0

 19 }

 20

 21 proctype monitor()

 22 {

 23 assert(cnt == 0 || cnt == 1)

 24 }

 25

 26 init {

 27 run P(0); run P(1); run monitor()

 28 }

The invariant condition on the value of counter cnt is now place in a separate
process monitor() (the name is immaterial). The extra process runs along with
the two others. It will always terminate in one step, but it could execute that
step at any time. The systems modeled by Promela and verified by Spin are
completely asynchronous. That means that the verification of Spin take into
account all possible relative timings of the three processes. In a full
verification, the assertion therefore can be evaluated at any time during the
lifetime of the other two processes. If the verifier reports that it is not violated
we can indeed conclude that there is no execution sequence at all (no way to
select relative speeds for the three processes) in which the assertion can be
violated. The setup with the monitor process is therefore an elegant way to
check the validity of a system invariant. The verification produces:

$ spin -a hyman2

$ gcc -o pan pan.c

$./pan

assertion violated ((cnt==0)||(cnt==1))

pan: aborted (at depth 15)

pan: wrote pan.trail

full statespace search for:

assertion violations and invalid endstates

search was not completed

vector 24 byte, depth reached 26, errors: 1

 368 states, stored

 0 states, linked

 379 states, matched total: 747

hash conflicts: 180 (resolved)

(size 2^18 states, stack frames: 4/0)

Because of the extra interleaving of the two processes with a third monitor,
the number of system states that had to be searched has increased, but the
error is again correctly reported.

Another Example

Not always can a correctness requirement be cast in terms of a global system
invariant. Here is an example that illustrates this. It is a simple alternating bit
protocol, modeling the possibility of message loss, and distortion, and

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

34 of 40 2010-04-20 13:29

extended with negative acknowledgements.

 1 #define MAX 5

 2

 3 mtype = { mesg, ack, nak, err };

 4

 5 proctype sender(chan in, out)

 6 { byte o, s, r;

 7

 8 o=MAX-1;

 9 do

 10 :: o = (o+1)%MAX; /* next msg */

 11 again: if

 12 :: out!mesg(o,s) /* send */

 13 :: out!err(0,0) /* distort */

 14 :: skip /* or lose */

 15 fi;

 16 if

 17 :: timeout -> goto again

 18 :: in?err(0,0) -> goto again

 19 :: in?nak(r,0) -> goto again

 20 :: in?ack(r,0) ->

 21 if

 22 :: (r == s) -> goto progress

 23 :: (r != s) -> goto again

 24 fi

 25 fi;

 26 progress: s = 1-s /* toggle seqno */

 27 od

 28 }

 29

 30 proctype receiver(chan in, out)

 31 { byte i; /* actual input */

 32 byte s; /* actual seqno */

 33 byte es; /* expected seqno */

 34 byte ei; /* expected input */

 35

 36 do

 37 :: in?mesg(i, s) ->

 38 if

 39 :: (s == es) ->

 40 assert(i == ei);

 41 progress: es = 1 - es;

 42 ei = (ei + 1)%MAX;

 43 if

 44 /* send, */ :: out!ack(s,0)

 45 /* distort */ :: out!err(0,0)

 46 /* or lose */ :: skip

 47 fi

 48 :: (s != es) ->

 49 if

 50 /* send, */ :: out!nak(s,0)

 51 /* distort */ :: out!err(0,0)

 52 /* or lose */ :: skip

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

35 of 40 2010-04-20 13:29

 53 fi

 54 fi

 55 :: in?err ->

 56 out!nak(s,0)

 57 od

 58 }

 59

 60 init {

 61 chan s_r = [1] of { mtype,byte,byte };

 62 chan r_s = [1] of { mtype,byte,byte };

 63 atomic {

 64 run sender(r_s, s_r);

 65 run receiver(s_r, r_s)

 66 }

 67 }

To test the proposition that this protocol will correctly transfer data, the model
has already been primed for the first verification runs. First, the sender is
setup to transfer an infinite series of integers as messages, where the value of
the integers are incremented modulo MAX. The value of MAX is not really too
interesting, as long as it is larger than the range of the sequence numbers in
the protocol: in this case 2. We want to verify that data that is sent can only be
delivered to the receiver without any deletions or reorderings, despite the
possibility of arbitrary message loss. The assertion on line 40 verifies precisely
that. Note that if it were ever possible for the protocol to fail to meet the above
requirement, the assertion can be violated.

A first verification run reassures us that this is not possible.

$ spin -a ABP0

$ gcc -o pan pan.c

$./pan

full statespace search for:

assertion violations and invalid endstates

vector 40 byte, depth reached 131, errors: 0

 346 states, stored

 1 states, linked

 125 states, matched total: 472

hash conflicts: 17 (resolved)

(size 2^18 states, stack frames: 0/25)

unreached code _init (proc 0):

reached all 4 states

unreached code receiver (proc 1):

line 58 (state 24)

reached: 23 of 24 states

unreached code sender (proc 2):

line 28 (state 27)

reached: 26 of 27 states

But, be careful. The result means that all data that is delivered, is delivered in
the correct order without deletions etc. We did not check that the data will

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

36 of 40 2010-04-20 13:29

necessarily be delivered. It may be possible for sender and receiver to cycle
through a series of states, exchanges erroneous messages, without ever
making effective progress. To check this, the state in the sender and in the
receiver process that unmistakingly signify progress, were labeled as a
``progress states.'' (In fact, either one by itself would suffice.)

We should now be able to demonstrate the absence of infinite execution cycles
that do not pass through any of these progress states. We cannot use the same
executable from the last run, but it's easy to setup the verifier for
non-progress cycle detection:

$ gcc -DNP -o pan pan.c

$./pan -l

pan: non-progress cycle (at depth 6)

pan: wrote pan.trail

full statespace search for:

assertion violations and non-progress loops

search was not completed

vector 44 byte, depth reached 8, loops: 1

 12 states, stored

 1 states, linked

 0 states, matched total: 13

hash conflicts: 0 (resolved)

(size 2^18 states, stack frames: 0/1)

There is at least one non-progress cycle. The first one encountered is dumped
into the error trail by the verifier, and we can inspect it. The results are shown
in the first half of Figure 2. The channel can distort or lose the message
infinitely often; true, but not too exciting as an error scenario. To see how
many non-progress cycles there are, we can use the -c flag. If we set its
numeric argument to zero, only a total count of all errors will be printed.

$ pan -l -c0

full statespace search for:

assertion violations and non-progress loops

vector 44 byte, depth reached 137, loops: 92

 671 states, stored

 2 states, linked

 521 states, matched total: 1194

hash conflicts: 39 (resolved)

(size 2^18 states, stack frames: 0/26)

There are 92 cases to consider, and we could look at each one, using the -c
option (-c1, -c2, -c3, ...etc.) But, we can make the job a little easier by at least
filtering out the errors caused by infinite message loss. We label all loss events
(lines 13, 43, and 48) as progress states, using label names with the common
8-character prefix ``progress,'' and look at the cycles that remain. (Labels go
behind the ``::'' flags.)

$ spin -a ABP1

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

37 of 40 2010-04-20 13:29

$ gcc -DNP -o pan pan.c

$./pan -l

pan: non-progress cycle (at depth 133)

pan: wrote pan.trail

full statespace search for:

assertion violations and non-progress loops

search was not completed

vector 44 byte, depth reached 136, loops: 1

 148 states, stored

 2 states, linked

 2 states, matched total: 152

hash conflicts: 0 (resolved)

(size 2^18 states, stack frames: 0/26)

This time, the trace reveals an honest and a serious bug in the protocol. The
second half of Figure 2 shows the trace-back.

 $ spin -t -r -s ABP0

 <<<<>>>>

 proc 1 (sender) line 13, Send err,0,0 -> queue 2 (out)

 proc 2 (receiver) line 55, Recv err,0,0 <- queue 2 (in)

 proc 2 (receiver) line 56, Send nak,0,0 -> queue 1 (out)

 proc 1 (sender) line 19, Recv nak,0,0 <- queue 1 (in)

 spin: trail ends after 12 steps

 step 12, #processes: 3

_p[0] = 6

 proc 2 (receiver) line 36 (state 21)

 proc 1 (sender) line 11 (state 6)

 proc 0 (_init) line 67 (state 4)

 3 processes created

 $

 $ spin -t -r -s ABP1

 ...

 proc 2 (receiver) line 39, Recv mesg,0,0 <- queue 2 (in)

 proc 2 (receiver) line 47, Send err,0,0 -> queue 1 (out)

 proc 1 (sender) line 20, Recv err,1,0 <- queue 1 (in)

 proc 1 (sender) line 12, Send mesg,0,0 -> queue 2 (out)

 proc 2 (receiver) line 39, Recv mesg,0,0 <- queue 2 (in)

 proc 2 (receiver) line 52, Send nak,0,0 -> queue 1 (out)

 proc 1 (sender) line 21, Recv nak,0,0 <- queue 1 (in)

 proc 1 (sender) line 12, Send mesg,0,0 -> queue 2 (out)

 proc 2 (receiver) line 39, Recv mesg,0,0 <- queue 2 (in)

 proc 2 (receiver) line 52, Send nak,0,0 -> queue 1 (out)

 <<<<>>>>

 proc 1 (sender) line 21, Recv nak,0,0 <- queue 1 (in)

 proc 1 (sender) line 12, Send mesg,0,0 -> queue 2 (out)

 proc 2 (receiver) line 39, Recv mesg,0,0 <- queue 2 (in)

 proc 2 (receiver) line 52, Send nak,0,0 -> queue 1 (out)

 spin: trail ends after 226 steps

 ...

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

38 of 40 2010-04-20 13:29

Figure 2. Error Trails - Extended Alternating Bit Protocol

After a single positive acknowledgement is distorted and transformed into an
err message, sender and receiver get caught in an infinite cycle, where the
sender will stubbornly repeat the last message for which it did not receive an
acknowledgement, and the receiver, just as stubbornly, will reject that
message with a negative acknowledgment.

Digging Deeper

This manual can only give an outline of the main features of Spin, and the more
common ways in which it can be used for verifications. There is a number of
Spin features that have not been discussed here, but that may be useful for
tackling verification problems.

Spin also allows for a straightforward verification of `tasks,' or `requirements,'
modeled as never-claims. That is, if the user formalizes a task that is claimed
to be performed by the system, Spin can quickly either prove or disprove that
claim. A never-claim is equivalent to a Büchi Automaton, and can thus model
any linear time temporal logic formula. In the newer versions of Spin, the user
can use normal LTL syntax to define the requirements, and let Spin perform the
translation chore to the corresponding never-claim.

Spin also allows the user to formalize `reductions' of the system state space,
which can be used to restrict a search it to a user defined subset (again, using
never claims, this time to `prune' the statespace). With this method it becomes
possible to verify quickly whether or not a given error pattern is within the
range of behaviors of a system, even when a complete verification is
considered to be infeasible.

For details about these alternative uses of Promela and the Spin software, refer to
[5]. The extensions to Spin with version 2.0 and 3.0 are outlined in
WhatsNew.html.

References

[1] Dijkstra, E.W., ``Guarded commands, non-determinacy and formal
derivation of programs.'' CACM 18, 8 (1975), 453-457.
[2] Dijkstra, E.W., ``Solution to a problem in concurrent programming
control.'' CACM 8, 9 (1965), 569.
[3] Hoare, C.A.R., ``Communicating Sequential Processes.'' CACM 21, 8
(1978), 666-677.
[4] Holzmann, G.J., ``Algorithms for automated protocol verification.'' AT&T

Technical Journal 69, 1 (Jan/Feb 1990). Special Issue on Protocol Testing,

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

39 of 40 2010-04-20 13:29

Specification, Verification.
[5] Holzmann, G.J., The Spin Model Checker: Primer and Reference Manual

(2003), Addison-Wesley.
[6] Kernighan, B.W. and Ritchie, D.M., The C Programming Language. 2nd ed.
(1988), Prentice Hall.

Spin Online
References
Promela Manual Index
Promela Grammar
Spin HomePage

(Page Updated: 3 June 2007)

Basic Spin Manual http://spinroot.com/spin/Man/Manual.html

40 of 40 2010-04-20 13:29

