
Introduction to the Unix Shell

Ulrik Nyman

October 10th 2008

Last updated: October 9, 2008

1

Todays Agenda

• What is the shell?

• What is it good for?

• How does it work?

• Installing PuTTY and Xming

• Basic commands

• Exercises

2

What is the shell

• The shell was the first interactive way to use a
computer
• A huge step up from the batch systems
• You might mistake the shell for a dinosaur, but. . .

• Is extremely flexible and easy to expand
• Also a very effective and fast way to use a computer
• Easier on the wrists than using a mouse

3

What is the shell

• The shell is kinda like a big Swiss Army knife
• Only with extra springs, and small bombs in it

• But it only does what you ask it to

• It can do pretty much anything
• No bells and whistles

• Note: Many shells exists, today we assume bash

• The terms “console” and “terminal” are also used
instead of shell

4

Commands and Arguments

• Usually, a shell look like this:

• But may look slightly different

5

Commands and Arguments

• The shell does nothing by itself (including helping
you)

• You must type in commands, like this

user@host:˜> command argument1 argument2

• The command decides what to do with arguments

• A command is usually a program (but not always)
• There are many commands

• One does not need to know them all
• Of 2617 I probably know 100

6

A few shortcuts

• You can use ↑ and ↓ to scroll through history

• Shortcuts:

Ctrl+C Abort the current command

Ctrl+R Search through command history

Ctrl+D Exit shell (if enabled)

Ctrl+Z Stopping current command

bg Starting command in background again

7

Wildcards

• Wildcards are special characters used to match files

• Example: ls *.pdf will show all files ending with
.pdf

• * means any character, any number of times
• Example: c* all files that start with c

• There is full support for regular expressions

• But * will be enough for most operations

• Note: The expansion is done by the shell, NOT the
program

8

Man pages

• Most commands have manuals

• These can be accessed through the man program

• Usage:

man ls

• Will show the manual for ls

• Also man pages for APIs, configuration files, etc.

• Do not be afraid of man pages

9

Combining Programs

• Unix contains many many commands
• Each of them does very little
• But can be combined in a very flexible way

• Unix philosophy:
• Combining lots of small programs into one big
• As opposed to just having one big program
• This scheme has advantages and disadvantages

• Flexibility [Ease of use

10

Combining Programs

• Pipes can combine programs by makings one the
output of one program, the input to another program.

• Like this: command1 | command2
• This is very powerful
• Its only text

11

Combining Programs

• Example:
• There is no program to report the number of files in

a directory
• ls lists the files in a directory
• wc counts the number of lines (among other things)
• ls|wc -l shows the number of files in a directory

• Another example: ls | grep pdf

• Saving output to a file: command > file

• Input from a file: command < file

12

Listing files

• The ls command is the most used shell command
• It lists files

• Directories are also files
• Without any arguments, ls will show the content of

your working directory
• ls directory will show the content of a directory

• Flags:
-l Lists details about the files

-a Lists “hidden” files (files starting with .)

• ls -la will show all files and detail about them

13

Moving Around

• The cd command changes your current working
directory

• Entering a directory: cd directory

• Entering the above directory: cd ..

• cd without any arguments will take you to your home
directory

• The command pwd prints your current working
directory

14

Creating Files and Directories

• To create a directory: mkdir directory
• Thats pretty much it. . .

• Usually files are created by higher level applications
• To simply create a file, use: touch file
• touch will also update the file modification time

• To see the content of a file: cat file
• For larger files, use less: less file
• or more file or head file
• or tail file

15

Deleting Files

• The delete command is called rm (remove)

• Deleting a file: rm file
• Historically, rm could only delete files

• To delete a directory, rmdir should be used
• rmdir can only delete empty directories though
• This became rather annoying, so rm was expanded

• To recursively delete, use rm -r directory

• Careful now, there is no undo in Unix

16

Copying & Moving

• The cp file1 file2 copies file1 to file2
• Will overwrite file2 if it exists!
• To copy directories, the flag -r must be added

• Moving is the same: mv file1 file2
• Again, this will overwrite file2 if it exists
• Question: The difference between a rename and a

move is?
• Both cp and mv work with wildcards

• But only when it makes sense
• Example: mv *.pdf docs/
• Not supported: mv *.ps *.pdf
• Question: Why doesn’t this work?

17

Identity

• The existential command: whoami
• Which groups am I in: groups
• Which groups are my neighbour in: groups user

• Who is logged in to the machine: who

18

Unix Permissions
• Unix permissions confuses most newcomers
• The permissions of a file looks like this:

drwxrws--- 16 ulrik tav 4096 Sep 23 2004 visualState

-rw-rw-r-- 1 ulrik ulrik 50492881 Sep 25 12:47 thesis.tgz

• 9 permission flags:
• read, write, execute × user, group, other

• Set read, write and execute for user: chmod u+rwx

• Changing group: chgrp group file
• You can only change to a group which you are a

member of

• Setting sticky bit chmod g+s

19

Unix Permissions
• Unix permissions confuses most newcomers
• The permissions of a file looks like this:

drwxrws--- 16 ulrik tav 4096 Sep 23 2004 visualState

-rw-rw-r-- 1 ulrik ulrik 50492881 Sep 25 12:47 thesis.tgz

• 9 permission flags:
• read, write, execute × user, group, other

• Set read, write and execute for user: chmod u+rwx

• Directory permissions

read list
write create / delete

execute enter

20

Editors

• Emacs is not really considered a Unix tool
• ed is probably the “original” Unix editor

• ed is really really strange and old
• vi later replaced ed

• vi is very different from other editors

• There is no easy-to-learn editor with wide availability
• However nano is usually available.

• If nano is not available, try pico (similar)

• In the bottom of nano/pico there is a small help
screen

• Note: ˆX means Ctrl+X

21

Process Management

• List your current running processes: ps
• List all processes: ps -e

• Dynamic listing: top
• Can view per user, sort by CPU time, memory, etc.

• Kill a process (gracefully): kill PID
• Kill a process (brutally): kill -9 PID
• Killall: killall processname

• Starting a process with low priority: nice -n 19
command

• Use this for long running tasks / experiments

22

Screen

• How to avoid killing a program when logging out?
• Use screen: screen

• Gives you a new shell to start your program

• Detach screen: Ctrl+A, Ctrl+D
• Reattach screen: screen -r
• Again, use this for long running tasks / experiments

23

SSH and SCP

• The only way to access the network besides VPN
• Logging on to a remote machine: ssh
homer.cs.aau.dk

• With X forwarding: ssh -Y machinename
• Using SCP for file copying:

• scp homer.cs.aau.dk:/file localfile
• scp localfile homer.cs.aau.dk:/file
• Also works with directories (add -r) and wildcards

24

Summary

• The shell can do everything
• But it is very different from graphical interfaces

• The shell does not present options as the graphical
interfaces

• You can start with a few commands and learn as you
go

• The shell is a programming environment
• It takes time to become good with the shell

• But one can become very effective with it

25

Exercises 1: Basic File Management

• List the files in you home directory

• List the hidden files, and with size and owner

• Create a file - and delete it

• Create a directory - and delete it

• Output the content of a file to the shell

• Remove a directory + contents (one command)

• Copy a file

• Rename a file

• If your file structure is messy, rearrange it

26

Exercises 2: Identity

• Execute the command that writes your username

• Who is logged into the machine

• Which groups are you member of

• What about the person next to you

27

Exercises 3: Permissions

• Create a directory and change the permissions so
only you can access it

• Create a directory and change the permissions so
your group can write in that directory.

• Set the sticky bit for the group and get one of your
group members to create a sub directory.

• Many new students change the permission of the
home directory, so only they can access it.
• Why is this a bad idea?

28

Exercises 4: Process Management

• List your processes running in the shell

• List all the processes on the machine
• View the processes of yourself (press “u” in top)

• And another user
• Create a sleeping process in one terminal and kill it

in another
• Create a sleeping process with: sleep 10m

• Create a sleeping process with low priority

• Create a sleeping process in a screen, log out, log
in, and re-attach the screen

29

Exercises 5: SSH and SCP

• Use ssh to log on to another application server
• Copy a file from one application server to another

• Use a filename that is not in use!

30

Exercises 6: grep

• Use grep to search all users home directories for
.tex files containing the word new

• Count the number of lines on which new occurs

31

