
Software 9

Group deis902e17 - P9 Project

Ecdar 2.0
A New Integrated Modelling and Verification

Environment for Compositional Real-Time Systems

Group Members:
Bartholomæussen, Casper Møller
Gundersen, Tobias Rosenkrantz
Lauritsen, Rene Mejer
Ovesen, Christian

Supervisor:
Nyman, Mathias Ulrik

Co-Supervisor:
Raptis, Dimitrios

12th of January 2018

© deis902e17, Aalborg University, fall semester 2017.

Department of Computer Science
Selma Lagerlöfs Vej 300

DK-9220 Aalborg Ø
http://www.cs.aau.dk

Title:
A New Integrated Modelling and Verifi-
cation Environment for Compositional
Real-Time Systems: Ecdar 2.0

Subject:
Semantics and Verification

Project Period:
Fall Semester 2017

Project Group:
deis902e17

Participants:
Bartholomæussen, Casper Møller
Gundersen, Tobias Rosenkrantz
Lauritsen, Rene Mejer
Ovesen, Christian

Supervisor:
Ulrik Mathias Nyman

Co-Supervisor:
Dimitrios Raptis

Pages: 61

Date of Completion:
12th of January 2018

Abstract:
This report concerns the development of
ECDAR 2.0, a model checking environment
for compositional real-time systems based
on the theory of timed input/output au-
tomata. We develop a new integrated mod-
elling and verification environment for EC-
DAR in JavaFX to improve upon issues with
the UI of ECDAR. We base ECDAR 2.0 on the
codebase of the model checker H-UPPAAL.
We propose system views as a way of defin-
ing compositional systems using component
instances and the operators conjunction,
composition, and quotient. System views
are designed to give users an overview of
systems, generate system declarations, and
be used in verification queries.
We develop features to assist in constructing
valid models, let users export images, and
increase productivity through shortcuts and
better overview of models and systems. EC-
DAR 2.0 also features system views, which is
currently useful for visualising systems.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the authors.

http://www.cs.aau.dk

Preface
This report is the product of a third semester project by four Software Engineering Master
students at Aalborg University. The project this semester is a pre-specialisation project,
which means that work on this project will continue on the fourth semester.

We want to give special thanks to our supervisors Ulrik Mathias Nyman and Dimitrios
Raptis for helping us during the project period.

The reader should possess a basic knowledge of computer science and model checking
to benefit the most from reading this report.

Reading Guide

All figures in the report are made by the authors unless stated otherwise in the figure
caption. Lines or parts of source code that are unnecessary, are omitted and replaced
with “...”.

Citation Style

We use Harvard style for citations by listing authors and publication year. The bibliography
can be found on page 50.

Source Code

A guide on how to access the source code can be found in Appendix B.

Page ii

Contents
1 Introduction 1

1.1 H-UPPAAL . 1
1.2 PyEcdar . 2

2 Specification Theory 4
2.1 Timed I/O Automata . 4
2.2 Timed I/O Transition Systems . 5
2.3 Specifications and Input-Enableness . 5
2.4 Implementations . 6
2.5 Features . 6

3 Analysis 11
3.1 Ecdar 0.10 . 11

3.1.1 Usage . 11
3.2 Ecdar Issues . 12
3.3 Interviews . 16

3.3.1 Results . 16
3.3.2 Summary . 19

4 Scope 20
4.1 Integrated Modelling and Verification Environment 20
4.2 System Views . 21

5 Design 23
5.1 Design Principles . 23
5.2 H-UPPAAL . 24
5.3 Architecture . 25

5.3.1 The MVP Pattern and Data Binding . 25
5.3.2 Back End Access Layer . 26

5.4 Integrated Modelling and Verification Environment 26
5.4.1 Initial Locations . 26
5.4.2 Tau Transitions . 27
5.4.3 Edge I/O Statuses . 27
5.4.4 Inconsistent and Universal Locations 27
5.4.5 I/O Signatures . 28

5.5 System Views . 29

6 Implementation 32
6.1 Documentation . 32
6.2 Data Binding . 33

Page iii

Contents

6.3 Various Improvements . 35

7 Performance Optimisation 38
7.1 Testing . 38
7.2 Analysis . 39
7.3 Solution . 40

8 Discussion 41
8.1 Interviews . 41
8.2 Caching . 41
8.3 Testing . 41

9 Conclusion 43
9.1 Integrated Modelling and Verification Environment 43
9.2 System Views . 44
9.3 Performance Optimising . 44

10 Future Work 45
10.1 Multiple Engines . 45
10.2 Simulator . 45
10.3 Version Control Systems . 45
10.4 Mutation Testing . 46
10.5 SMC . 46
10.6 Integrated Modelling and Verification Environment 46
10.7 System Views . 48
10.8 Backlog . 48

Bibliography 50

Appendix A Interview Questions 52

Appendix B Attachments 54

Appendix C Finished Issues 55

Appendix D Test Configurations 58

Appendix E CPU Utilisation Observations 59

Appendix F Backlog Issues 60

Page iv

1 Introduction
The field of model checking has evolved throughout the years, from when Owicki and
Gries (1976) made the (according to Clarke (2008)) best known formal system for
conditional critical regions, at the time where proofs had to be made by hand, till today
where Larsen et al. (2017) use model checking to generate test-cases in the area of Timed
I/O Automata (TIOA). Model checking tools have evolved from when Spin1 first came
out in 1995. The same goes for the UPPAAL2 tool, which had its initial release in 1995,
and its latest update was July 1st, 2014.

Especially UPPAAL has resulted in the expansion of model checking tools, as UPPAAL

has been branched to a wide range of tools namely: UPPAAL CORA, UPPAAL TIGA, ECDAR,
UPPAAL TRON, UPPAAL STRATEGO, UPPAAL PORT, UPPAAL TIMES, and UPPAAL SMC. The
tools in the UPPAAL family all have their different niche domain of application, but are
all using similar Graphical User Interfaces (GUIs) with different underlying functionality.

We have especially found the ECDAR3 tool to be interesting. ECDAR is used to model
TIOA, and supports a wide range of operators such as refinement checking (compares the
behaviour of two automata), conjunction (combines automata), composition (parallels
automata), and quotient (removes behaviour from an automaton) (David et al. 2010).
ECDAR also features compositional verification, which enables a divide-and-conquer
approach to verification of a system. After trying the ECDAR tool, it seemed that TIOA
does not fit in the UPPAAL GUI. The GUI does for instance not afford stepwise design,
a visualisation of compositional verification, and also require the user to change the
system declaration, if they have many different queries in their system. The tool also
lacks features found in more modern Integrated Development Environments (IDEs) such
as JetBrains IDEs4. In this project we develop a new front end for ECDAR in order to
improve its GUI.

The latest version of ECDAR is 0.10. Therefore, we refer to the already existing ECDAR

tool as ECDAR 0.10. With the new front end, we refer to the new application as ECDAR 2.0.

1.1 H-Uppaal

The preconditions for this project, is to build a new version of the ECDAR tool based on
the codebase of H-UPPAAL5. H-UPPAAL is a different take on the UPPAAL GUI. It improves
on some issues related to creating large models in UPPAAL, for example by dividing the
automata model into hierarchical components (Mourtizsen and Jensen 2016; Mourtizsen

1http://spinroot.com/spin/whatispin.html
2http://uppaal.org
3http://ecdar.cs.aau.dk/
4https://www.jetbrains.com/
5We base our project on this node: https://github.com/ulriknyman/H-Uppaal/tr...

Page 1 of 61

http://spinroot.com/spin/whatispin.html
http://uppaal.org
http://ecdar.cs.aau.dk/
https://www.jetbrains.com/
https://github.com/ulriknyman/H-Uppaal/tree/8c32cf1050535ea39b59413f1f97e8dd76b1a166

1 Introduction

Figure 1.1: Screenshot of a hierarchical component in H-Uppaal (Mourtizsen and Jensen
2016).

and Jensen 2017). Our work is inspired by H-UPPAAL, and how they created an IDE for
model checking.

The UPPAAL issues listed in Mourtizsen and Jensen (2016) are mostly related to the
complexity and readability of large models. The following are examples: properties (e.g.
invariants and clock resets) can be graphically placed away from their location or edge,
locations do not have to be named (they are anonymous), and information can be hidden
by overlapping objects. To combat these issues, they created H-UPPAAL, an IDE with
continuous syntax checking, static code analysis, and background queries.

The representation of hierarchical timed automata in H-UPPAAL is presented in Fig-
ures 1.1 and 1.2. Figure 1.1 shows a hierarchical component, which contains sub-
components for Customer, Waitress, and Kitchen. Figure 1.2 shows the Customer
component.

H-UPPAAL fixes many issues related to the GUI of UPPAAL, which also makes it an
appropriate codebase to build ECDAR 2.0 upon, as ECDAR 0.10 also uses the GUI of
UPPAAL.

1.2 PyEcdar

In this section we present a related tool, PYECDAR6. It is a Command-Line Interface (CLI)
for analysis of TIOA. Contrary to ECDAR 0.10, it features robustness analysis and explicit

6https://project.inria.fr/pyecdar/

Page 2 of 61

https://project.inria.fr/pyecdar/

1.2 PyEcdar

Figure 1.2: Screenshot of a component in H-Uppaal (Mourtizsen and Jensen 2016).

computation of conjunction, composition, and quotient. We present definitions for the
applied specification theory in Chapter 2.

PYECDAR has no GUI or graphical simulator, and users cannot manually create or edit
components. Instead, users must load the models from XML files (Legay et al. 2013),
which for instance can be made in ECDAR 0.10.

Robustness describes to what degree an implementation can tolerate error in time. An
implementation is robust with respect to a specification up to some bound δ, if it keeps
refining the specification when its upper-bounded time constraints x ≤ a are replaced by
x ≤ a+δ and lower-bounded time constraints x ≥ b by x ≥ b−δ. PYECDAR can check
for robustness for a specific δ and synthesise the maximum δ (Legay and Traonouez
2013).

PYECDAR can explicitly compute conjunction, composition, and quotient and save
these as ECDAR 0.10 XML files. Thus, users can see a graphical representation of the
higher-order components by using ECDAR 0.10 in order to get a better understanding of
them.

Page 3 of 61

2 Specification Theory
ECDAR 2.0 is based on ECDAR 0.10 which uses the specification theory presented by
David et al. (2010). In this section we present the formal definitions for the specification
theory. We present the definitions of TIOA, Timed I/O Transition Systems (TIOTSs),
specifications, implementations, refinement, logical conjunction, structural composition,
and quotient.

David et al. (2010) use a syntactical and a semantic representation of timed systems.
They refer to the semantic representation as TIOTS. TIOTSs are infinite, and they use
a syntactical and finite representation, to symbolically represent TIOTSs. They refer to
this finite syntactical representation as TIOA. Throughout the section we will utilise the
university example, which has been acquired from the ECDAR 0.10 university demo, to
explain the concepts defined by David et al. (2010).

2.1 Timed I/O Automata

TIOA are defined by David et al. (2010) as the following:
A TIOA is a tuple A= (Loc, q0, Clk, E, Act, Inv) where

• Loc is a finite set of locations.
• q0 ∈ Loc is the initial location.
• Clk is a finite set of clocks.
• E ⊆ Loc × Act ×B(Clk)×P(Clk)× Loc is a set of edges.
• Act = Act i⊕Acto is a finite set of actions partitioned into inputs (Act i) and outputs

(Acto).
• Inv : Loc 7→ B(C) is a set of location invariants.

A TIOA has a set of clocks Clk which are used to represent time. Figure 2.1 shows an
example of a TIOA, representing a university. E describes a set of edges. An edge has a
start location, an action, a constraint B(Clk), a power set P(Clk), and an end location.
B(Clk) from the definition represents a constraint over clocks. For edges, this constraint
must be satisfied when executing the edge. Such constraints are called guards. On
Figure 2.1 the edge from Start to Grant has the guard u <= 2.
P(Clk) is the power set of Clk and the set of clocks to reset. The previously mentioned

edge on Figure 2.1 has the update u = 0 that resets the clock u.
The previously mentioned edge is an input edge (solid arrow) over the grant channel.

The edge from Grant to Start is an output edge (dashed arrow) over the patent channel.
Invariants define a constraint over clocks, B(C), on locations. Unlike guards, these

constraints are on a location instead of an edge and must be satisfied when entering and
while in the location. The location Grant of Figure 2.1 has the invariant u <= 20.

Page 4 of 61

2.2 Timed I/O Transition Systems

grant?
grant?

grant?

patent!
patent!

grant?

Start
u<=20

GrantEnd

patent!

u=0

u=0

u>2

u<=2

Figure 2.1: Spec component of the university example (David et al. 2017) presented
throughout the report.

2.2 Timed I/O Transition Systems

TIOTSs are the semantic representations induced by TIOA. TIOTSs are defined by David
et al. (2010) as:

A TIOTS is a tuple S = (StS , s0,ΣS ,→S) where

• StS is an infinite set of states.
• s0 ∈ StS is the initial state.
• ΣS = ΣS

i ⊕Σ
S
o is a finite set of actions partitioned into inputs (ΣS

i) and outputs
(ΣS

o).
• →S: StS × (ΣS ∪R≥0)× StS is a transition relation.

We write s
a
−→S s′ instead of (s, a, s′) ∈→S and use i?, o!, and d to range over inputs,

outputs, and delays (R≥0), respectively. Any TIOTS satisfies the following:

• Time determinism:

Whenever s
d
−→S s′ and s

d
−→S s′′ then s′ = s′′.

• Time reflexitivity:

s
0
−→S s for all s ∈ StS .

• Time additivity:

For all s, s′′ ∈ StS and all d1, d2 ∈ R≥0 we have s
d1+d2−−−→S s′′ iff s

d1−→S s′ and
s′

d2−→S s′′ for an s′ ∈ StS .

Time determinism means that you can transition to exactly one state through a given
delay. Time reflexitivity means that you are always able to delay 0 time units, and you
will end up in the same state. Time additivity means that if and only if you perform
a delay d1 and then perform another delay d2, you end up in the same state as if you
performed a delay d1 + d2.

2.3 Specifications and Input-Enableness

A TIOTS S is input-enabled, iff ∀s ∈ StS.∀i? ∈ ΣS
i .s

i?
−→S. That is, it can always accept

any of its defined inputs. A TIOTS is a specification if it is input-enabled. A specification

Page 5 of 61

2 Specification Theory

o!
i?

L2L1
i?

L0

x>=3

(a) A non-input-enabled TIOA.

i?

i?

i?

o!

L2L1

i?x<3

x>=3

L0

(b) An angelic completion of (a).

Figure 2.2: A non-input-enabled TIOA and its angelic completion.

automaton is a TIOA which induces a specification. An example of a specification
automaton can be seen in Figure 2.1. This specification is always able to take the input
grant?, its only input, and is therefore input-enabled.

You can transform an automaton to an input-enabled one, with angelic completion.
It creates self-loops for undefined inputs in each location. It essential corresponds to
ignoring those inputs. Figure 2.2 illustrates an example of angelic completion.

2.4 Implementations

A subset of TIOTSs are implementations. An implementation must satisfy output urgency
and independent progress as defined below.

An implementation P = (StP , p0,ΣP ,→P) is a specification such that for each state
p ∈ StP :

• output urgency:

∀p′, p′′ ∈ StP if p
o!
−→P p′ and p

d
−→P p′′ then d = 0

• independent progress:

either (∀d ≥ 0.p
d
−→P)

or ∃d ∈ R≥0.∃o! ∈ ΣP
o p

d
−→ p′ and p′

o!
−→P for a p′ ∈ StP .

Output urgency means that if a TIOTS is able to do an output, it must do so before time
is allowed to pass. The independent progress rules state, that a TIOTS must always be
able to delay continuously or delay until it can output. This ensures a transition system
can never block the progress of time.

2.5 Features

In this section we define the features refinement (compares the behaviour of two au-
tomata), conjunction (combines automata), composition (parallels automata), and quo-
tient (removes behaviour from an automata).

Page 6 of 61

2.5 Features

pub?

coin!patent!

grant?

grant?

grant?

z=0

z=0

z<=2

z<=2

pub?

pub?

pub?

grant?

z=0

Figure 2.3: The University specification from the university example (David et al. 2017).

Refinement and Consistency: Refinement, as defined by David et al. (2010), allows
comparison between two specifications, by showing which specification allows more or
same behaviour.

A specification S = (StS , s0,Σ,→S) refines another specification T = (StT , t0,Σ,→T),
written S ≤ T , iff there exists a binary relation R ⊆ StS × StT containing (s0, t0) such
that for each pair of states (s, t) ∈ R we have:

• whenever t
i?
−→T t ′ for some t ′ ∈ StT then s

i?
−→S s′ and (s′, t ′) ∈ R for some s′ ∈ StS .

• whenever s
o!
−→S s′ for some s′ ∈ StS then t

o!
−→T t ′ and (s′, t ′) ∈ R for some t ′ ∈ StT .

• whenever s
d
−→S s′ for some d ∈ R≥0 then t

d
−→T t ′ and (s′, t ′) ∈ R for some t ′ ∈ StT .

S ≤ T means that S has less behaviour than or equal behaviour to T . A specification
automaton A1 refines another specification automaton A2, written A1 ≤ A2, iff [[A1]]sem ≤
[[A2]]sem. That is, there is a corresponding refinement between their transition systems.

By the definition of David et al. (2010) a specification is consistent, if an implementation
refines it. A consistent specification can have states that if entered would disallow progress
of time and output transitions. These states are referred to as inconsistent states. An
implementation cannot have inconsistent states.

As opposed to inconsistent states, a specification can also include a universal state. In
a universal state every possible behaviour defined by the transition system is enabled.
That is, it can continuously both delay indefinitely and perform every action ΣS in its
transition system S.

Logical Conjunction: Conjunction between a specification S and specification T is
written S ∧ T . The definition of conjunction uses S∆ to symbolise the transformation,
where S is pruned of all inconsistent states.

Page 7 of 61

2 Specification Theory

pub? patent!

patent!

coin! grant?

A

B

pub?
grant?

x<=2

x=0

(a) HalfUni1 Specification.

grant? coin!

coin!

patent! pub?

C

D

pub?
grant?

y<=2

y=0

(b) HalfUni2 Specification.

Figure 2.4: Shows two di�erent specifications that are modified versions taken from the
university example (David et al. 2017). If they are conjoined together they should refine
the University component shown in Figure 2.3

.

Conjunction is defined by David et al. (2010) as S ∧ T = (S × T)∆ for specifications S
and T over the same actions Act where S × T is consistent.

We use Figures 2.3 and 2.4 to give an example of conjunction. We attempt to di-
vide the University component into two components HalfUni1 and HalfUni2 (see
Figure 2.4). We then check if the conjunction of the two is a specification with the query
specification: HalfUni1 && HalfUni2.

We define components not made by conjunction, composition, or quotient as first-order
components, and high-order for the components that are a result of those operations.

Structural Composition: Composition between two specifications makes them run
in parallel. According to David et al. (2010), composition can only be used on two
compatible specifications. Compatible specifications are specifications where if they are
composed, it is possible to avoid inconsistent states. We write the composition between
specifications S and T as S|T .

As an example we use the university example. We have introduced the University
component in Figure 2.3 and the Spec component for the whole university in Figure 2.1.
University does not refine Spec as it needs the behaviour of the Researcher and Ma-
chine component. The Machine and Researcher components can be seen in Figures 2.5
and 2.6, respectively. Now that we have defined all components needed to refine the
specification Spec, we can compose these and then do a refinement check. refinement:
(Machine || University || Researcher) <= Spec. This query is satisfied. We can also
try and substitute the University component with the conjunction of HalfUni1 and
HalfUni2 mentioned earlier. refinement: (Machine || (HalfUni1 && HalfUni2) ||

Page 8 of 61

2.5 Features

coin?

tea!

tea!
y=0

cof!

coin?

Idle

y<=6

Serving

y=0

y=0

y>=2

y>=4
y=0

Figure 2.5: Shows the Machine specification

Researcher) <= Spec. This query is also satisfied.

Quotient: David et al. (2010) defines the quotient operator. It has two operands, a
large specification T and a small specification S. Where T includes the behaviour of
S. It determines what behaviour the smaller specification needs, in order to refine the
larger specification. Quotienting is denoted as T\\S. The resulting specification is the
specification x with most behaviour that satisfies the following query: S||x ≤ T .

The quotient operator can be used in cases where you have a specification that partially
refines another specification but it is missing some behaviour. If you need this missing
behaviour for other queries, it can then be obtained with the quotient operator. For
example, we have the University component from earlier and need it to refine the Spec
component. The quotient Spec\\Universi t y is the specification with most behaviour
which composed with University refines Spec. The Machine and Researcher compo-
nents refine Spec if composed together with University. This can be checked with the
following query in ECDAR 0.10 using the quotient operator (the operator in ECDAR 0.10
is a single \): refinement: (Machine || Researcher) <= (Spec\University). This
query holds.

Page 9 of 61

2 Specification Theory

tea?

tea?

pub!

pub!

cof?

pub!

x=0
pub!tea?cof?

Coffee

Idle

x<=8

Inconsistent

Tea

Stuck

x=0
x<=15

x>=4

x=0

x=0

x<=4

x>=2

x>15

Figure 2.6: Shows the Researcher Specification from the university example (David et al.
2017).

Page 10 of 61

3 Analysis
To get a more in-depth picture of what ECDAR 2.0 originate from, we will first present
ECDAR 0.10 and how it can be used as a tool, for then to discuss the issues that we have
found. To have a better understanding of the usage of ECDAR 0.10, we have conducted
an interview. We present it and discuss the results of it.

3.1 Ecdar 0.10

ECDAR 0.10 uses the specification theory for compositional verification of real-time
systems using TIOA, presented in Chapter 2. The tool provides an environment, where
the user can design real-time systems using TIOA and verify properties of the system
using the constructs of the theory: refinement, consistency, conjunction, composition,
and quotient. ECDAR 0.10 uses the timed game engine of UPPAAL TIGA (Behrmann et al.
2007) to solve the various games involved in checking for refinement and computing
composition. The automata presented in Chapter 2 are constructed in ECDAR 0.10.

3.1.1 Usage

As previously mentioned, ECDAR 0.10 uses the UPPAAL TIGA engine. In fact, ECDAR 0.10 is
included in the current version (0.17) of UPPAAL TIGA. The standalone version (currently
0.10) of ECDAR is also available for download.

In this section, we give a general description of ECDAR 0.10 and how it can be used in
designing compositional systems and verifying properties for them.

Figure 3.1 shows the editor of ECDAR 0.10. The editor is used for defining templates,
both visually as a TIOA, but also textually for the accompanying declarations, like clocks.
Apart from the TIOA and their local declarations, it is also possible to define global and
system declarations. In the global declarations, users can define the communication
channels. Only broadcast channels are valid. The system declarations declare which
templates to instantiate and which inputs and outputs each of them use.

The verifier tab (seen in Figure 3.2) is essential to ECDAR 0.10. Here, a user can query
the system declared in the system declarations. A query can, for instance, check for
consistency, whether a component is a specification, or if a component refines another.

A simple example can also be seen in Figure 3.2: specification: (University ||
Machine || Researcher). The query asks whether a composition of the University,
Machine, and Researcher components is a specification.

The last main tab of ECDAR 0.10 is the simulator tab (seen in Figure 3.3). The simulator
provides a view of the system components interacting with each other. A user can choose
which transitions to take, or just let ECDAR 0.10 make random choices. It can also be used
to visualise the strategy that was found for some query in the verifier. The visualisation
could be helpful, when a property does not hold, as the user can see the strategy.

Page 11 of 61

3 Analysis

Figure 3.1: The editor of Ecdar 0.10.

3.2 Ecdar Issues

As mentioned in Section 3.1, ECDAR 0.10 is a part of UPPAAL TIGA, which itself reuses
most of the UPPAAL user interface. For UPPAAL TIGA it might be fitting to inherit the User
Interface (UI) of UPPAAL. However, we will find that this process can lead to invalid and
redundant design when done with ECDAR 0.10. As described in Section 1.1, Mourtizsen
and Jensen (2016) account for some of the issues that they have located in UPPAAL,
most of which are related to the complexity and readability of large models. They have
designed H-UPPAAL to counter some of these issues. By reusing and modifying their
codebase to fit the ECDAR domain, we can benefit from their solutions.

On the download page of the ECDAR 0.10 webpage1, there are a number of known
issues. Some of these issues we have encountered ourselves and are further described
in this section. An example of these known issues is concerned with input-enabledness:
users must explicitly make every location input-enabled to perform a refinement check.

This section only outlines some of the issues we have encountered in ECDAR 0.10.

1http://people.cs.aau.dk/~adavid/ecdar/download.html

Page 12 of 61

http://people.cs.aau.dk/~adavid/ecdar/download.html

3.2 Ecdar Issues

Figure 3.2: The verifier of Ecdar 0.10.

System Declarations In the system declarations file, the user instantiates the compo-
nents to be composed into a system and declares which inputs and outputs the components
use. Figure 3.4 shows an excerpt of the system declarations file in the Milner-8Nodes
example project that is bundled with ECDAR 0.10.

Each component instance and their possible inputs and outputs must be declared in the
system declarations. This can result in a significant amount of boilerplate code. Writing
such code is repetitive, redundant and error-prone. The inputs and outputs that a user
must declare in this file, could as well have been automatically detected in the models.

In a stepwise design, a user might want to use different systems (or variants of
systems) in different queries. However, in ECDAR 0.10 each project has exactly one
system declarations files that can only declare one system. We see two workarounds:

• A user can use a larger system containing all component instances used in all
queries. This way the engine would only explore the instances needed for a specific
query. Thus, the state space in unaffected. However, the engine keeps all declared
instances in memory, increasing memory usage.

• A user can declare multiple systems in the system declarations, but comment
out the declarations of the system not used by a specific query. This way, the

Page 13 of 61

3 Analysis

Figure 3.3: The simulator of Ecdar 0.10.

engine only allocates memory for the necessary instances. However, the user has
to comment/uncomment system declarations depending on which queries they
want to run.

Universal and Inconsistent Locations To use the quotient operator in queries the user
must add the Universal and Inconsistent locations to each of the components used
in the queried system. The former must accept all inputs and generate all outputs of that
process. The latter is an urgent location without any transitions. An example of these
locations can be seen in Figure 3.5. This is a repetitive task, where users must construct
almost identical locations multiple times. Users must also maintain the universal location
whenever new inputs or outputs are added to the component.

Invalid TIOA Models The editor in ECDAR 0.10 does not warn or hinder the user in
creating invalid TIOA models. There are multiple ways of creating an invalid model:

• In ECDAR 0.10 it is possible to construct committed locations. However, the theory
of David et al. (2010) does not define the behaviour for this concept. In ECDAR 0.10
a committed location can block the progress of the whole system. Such behaviour

Page 14 of 61

3.2 Ecdar Issues

Figure 3.4: Extract of a system declarations file in Ecdar 0.10.

should not be possible when using TIOA, as each component should be able to
progress independent of the other components.

• Users denote whether an edge is an input or output edge (we define this as the
I/O status of the edge) with a checkbox. They denote whether an edge should
synchronise with inputs or outputs with the ? (for inputs) or ! (for outputs) suffixes
as in UPPAAL. Users can, through combinations of these, create inputs on output
edges and vice versa.

• Global variables can be declared and written to by a component.

• Tau transitions are invalid, but can be added to a component.

• Non-broadcast channels can be declared and used in components.

While the editor and syntax checker does not catch these issues, the verifier gives a
warning when one of the issues is detected.

Page 15 of 61

3 Analysis

pub?

patent!

Universal

grant?

coin!

(a) Universal location.

Inconsistent

(b) Inconsistent location.

Figure 3.5: Universal and inconsistent locations in Ecdar 0.10.

3.3 Interviews

In order to gain more insight into the users of ECDAR 0.10, we decided to interview some
users. The purpose is to get new ideas for features we could make in ECDAR 2.0 based
on user needs and how they are working in ECDAR 0.10.

We identified a group of ECDAR 0.10 users, who are mostly based in our department
at Aalborg University. Of the users, present at Aalborg University, were a postdoc, and
our supervisor. The interviewees are closely related to each other and the development
of ECDAR 0.10, meaning that they might be biased. Our supervisor might especially
be biased, as he is one of the creators of the theory behind ECDAR (David et al. 2010).
However, since the number of users of ECDAR 0.10 is very limited, we still want to hear
their inputs and how they are working with ECDAR 0.10, keeping the bias in mind.

The interviewees are both familiar with UPPAAL. Our supervisor is one of the creators
of the theory behind ECDAR and therefore has in-depth knowledge of the ECDAR 0.10
tool. The postdoc has used ECDAR 0.10 for about four months for one project.

The interviews were conducted in a semi-structured (Benyon 2013) manner. This
made the interview into more of a dialogue, where we could ask follow-up questions
when needed. The planned questions can be seen in Appendix A. Two group members
conducted the interviews, one to ask questions and the other to take notes. To support
the documentation, the interview was also audio recorded. Appendix B describes how to
access the audio files of the interviews.

In case that one of the interviewees wanted to show us something in ECDAR 0.10, we
had a computer with an example project, which they could use to point at and explain.
During the interviews, we recorded the screen of the computer, however, the interviewees
did barely use it.

3.3.1 Results

To outline the results of the interviews, we have structured this section in the same
manner as the main topics of the interview found in Appendix A. Furthermore, we
have added paragraphs for system declarations and collaboration, as the interviews
also covered these. We have also added a paragraph about wishes and suggestions, to
describe the interviewees’ ideas.

Page 16 of 61

3.3 Interviews

Design Process: When the interviewees start a new ECDAR 0.10 project, they do so in
different ways: our supervisor starts out by making a model using pen and paper, and
hereafter uses ECDAR 0.10 to make an overall specification, which he then refines. The
postdoc starts right away in ECDAR 0.10 by making the intended models and the system
declarations.

They both agree, if the number of locations in a component exceeds 15, the model
should be refactored into multiple components. An ECDAR 0.10 project normally con-
sists of one to five components, but in an example shown by the postdoc, he had 20
components.

Besides that, their design processes also include refactoring the models so they can be
used in scientific papers.

System Declarations: The postdoc only needed to declare one system in the system
declarations of his project. For one of the examples found in ECDAR 0.10, which our
supervisor helped model, the system declarations is so complex that our he decided
to make a small Bash script that wrote it for him, as writing it by hand would be too
error-prone and would take a long time.

Verifier: According to the interviewees, refinement checking is the most important
query used in the verifier, hereafter comes consistency checking and composition. When
our supervisor is making models, he makes intermediate queries i.e. queries not included
in the final model, but the postdoc did not used intermediate queries. Both of the
interviewees agree that it is ideal to use intermediate queries, since they can be used to
discover problems during the modelling process.

Simulator: Both interviewees agree that the simulator of ECDAR 0.10 contains signifi-
cant flaws. One of the flaws is the lack of overview, e.g. where the transition chooser is
trying to guide the simulation.

Debugging a model is tedious in ECDAR 0.10 according to our supervisor. He states: "...
to understand what is wrong in your model, (you) have to sit and think about it for five
minutes, then go and fix it, as it (ed. the simulator) does not bring you intuitively fast to
where you really want." For instance, you have to transition to the end of a strategy in
order to see why a refinement does not hold.

The postdoc uses the simulator to trigger the syntax checker, which makes the simulator
important for his workflow. It also shows that the intended way to trigger the syntax
checker is not good enough for him.

Collaboration: The interviewees both collaborate with others using the following
process: (1) They attend a meeting where they propose and accept ideas for models. (2)
One of the attendees constructs the models. (3) They hold another meeting, where they
raise and approve suggestions for changes to the models. (4) They continue with 1 and
2 until they agree on the models.

Page 17 of 61

3 Analysis

Figure 3.6: Error message in Ecdar 0.10.

Pros and Cons: Both interviewees believe compositional verification and refinement
checking are strengths of the theory of TIOA and work well together.

The main drawbacks of ECDAR 0.10 are the problems related to system declarations and
the simulator; the simulator has quite some flaws, which make it unfit for use, especially
for larger models. Other drawbacks include that you manually have to make components
input-enabled, and poor error messages. One error message that was brought up doing
the interview, is shown in Figure 3.6. In this example, ECDAR 0.10 runs a refinement
check. The error message does not make sense, as there are not any controller or
environment for this check. Another issue with it is that the game for refinement check
is different from the UPPAAL TIGA games, but the simulator still shows the game as a
UPPAAL TIGA game.

Wishes and Suggestions: In this paragraph we outline ideas that the interviewees
suggested during the interviews.

• To assist researchers with collaboration on models, our supervisor suggested that
the tool could integrate support for Version Control Systems (VCSs) and feature a
special diff tool for models. For instance, ECDAR 2.0 could query older versions of
a model and compare the results with current version.

• Both interviewees suggested a new way to animate a transition in the simulator,
in order to make it aligned with modern UI design. When ECDAR 0.10 displays
a transition, it highlights the chosen edge by making it red. Instead, ECDAR 2.0
could displays an animation that shows the transition.

• For now, it is strenuous when you need to comment and out-comment the systems
in the system declarations, according to which query you want to run in the verifier.
That is why our supervisor suggested making it possible to make systems in a GUI.
This could be a big improvement to user experience, as it can remove complexity
and make it possible for users to maintain an overview.

• As the area of mutation-based testing is promising, it could be interesting to make
a mutation tool for ECDAR 2.0. The postdoc suggested the mutation tool, as he
had used ECDAR 0.10 for that purpose. Such a mutation tool could also include a
test-case generator, as described by Larsen et al. (2017).

Page 18 of 61

3.3 Interviews

3.3.2 Summary

By interviewing users of ECDAR 0.10 we have now gained knowledge about how they are
working with the tool, and their suggestions for improvements. Especially the suggestion
about systems in a GUI had caught our attention. In Section 8.1 we discuss source of
error by only having the interviewees that we have.

Page 19 of 61

4 Scope
The inputs and outputs of TIOA introduce another way to conceptualise systems compared
to regular timed automata. Yet, ECDAR 0.10 uses a GUI designed for UPPAAL, which
causes usability problems in ECDAR 0.10 as mentioned in Sections 3.2 and 3.3.

We intend to improve the GUI for ECDAR in order to improve productivity and usability
of compositional analysis and design of real-time systems. To do this, we propose a new
tool, ECDAR 2.0, that uses the ECDAR engine. The new tool should use concepts from
modern IDEs. We also propose system views to help give an overview of systems and
ease the declaration and use of systems in queries.

4.1 Integrated Modelling and Verification Environment

ECDAR 0.10 users have to do some things manually according to Section 3.2. IDEs provide
facilities to assist users in developing software. To use the same concepts in modelling
and verification, we introduce the term Integrated Modelling and Verification Environment
(IMVE). It is a model checking tool with facilities to assist in modelling and verification.
To improve productivity, we intend to develop ECDAR 2.0 as an IMVE. We will do this
with respect to the following areas.

Project Management: Users of an IMVE should be able to manage projects by creating
a new empty project, opening a project, saving an existing project, and saving an existing
project as a new one (this feature is often called save as). ECDAR 0.10 features these.
However, H-UPPAAL does not feature options to create a new project and to save a project
as a new one.

Export Models: To present systems and components in, for instance, documents, an
IMVE could feature the possibility to export the parts as an image. This feature is a part
of ECDAR 0.10, but is not found in H-UPPAAL.

Enforcement of Good Practices: A IMVE should enforce good practices. For instance,
every component must have an initial location in order to be valid. The UI of ECDAR 0.10
does not enforce this; its users can delete the initial location in a component, and newly
created components do not have any locations. ECDAR 2.0 should, however, enforce this.

Tau transitions: are prohibited in a TIOA, but can be added to components in EC-
DAR 0.10 (see Section 3.2). ECDAR 2.0 should prevent this from happening.

ECDAR 0.10 users can construct invalid models by defining inputs on output edges or
vice versa according to Section 3.2. ECDAR 2.0 should prevent this from happening.

Page 20 of 61

4.2 System Views

Inconsistent and Universal Locations: According to Section 3.2, certain queries re-
quire an Inconsistent and a Universal location to be present in ECDAR 0.10. This
requirement leads to the repetitive action of adding these locations to certain components.
This is even the case, when the locations have no incoming edges from other locations.
In ECDAR 2.0 we want to handle this problem by adding these locations automatically,
when translating models to the ECDAR XML for the back end. Furthermore, ECDAR 2.0
should feature a quicker way to add these locations to components visually.

Interaction Between Components: From our experience with H-UPPAAL, we some-
times struggle with getting an overview of components, and understanding which com-
ponents might interact. Thus, ECDAR 2.0 should give information about interaction of
components.

Note that this feature shares some similarities with the Component Communication
suggestion described in the Future Work of Mourtizsen and Jensen (2017). Their sugges-
tion is to show information on the sides of a component, as a way of describing how the
component might interact with other components.

Keyboard Shortcuts: Shortcuts can reduce the time to execute commands. Further-
more, when designing shortcuts with conventions in mind, they can reduce the time used
looking for a specific command. An example of this is the possibility to open a project
with Ctrl + O on Windows and Linux and Cmd + O on macOS. To improve productivity
ECDAR 2.0 should have keyboard shortcuts.

4.2 System Views

Systems can consist of components related with conjunctions, compositions, and quo-
tients. With stepwise design, users work with several variations of a system. Multiple
variations can use some of the same components.

To graphically represent systems and to give users an overview of them, we introduce
the concept of system views. A system view could include instances of first-order compo-
nents, their relations, and a unique system name. It could also include other systems to
enable construction of systems in a hierarchical manner.

When querying systems with several first-order components, the ECDAR 0.10 queries
become longer, as they each need to include names of all the components. To create
an overview of the queries, improve productivity, and provide information hiding when
writing queries, users can use system names. In this way, a system name work as an alias
for the components of the system and relations of the components.

In the system declarations of ECDAR 0.10, users must, according to Section 3.2, instan-
tiate components and declare which inputs and outputs they use. Furthermore, users
must comment and uncomment system declarations whenever they want to query other
systems. With system views, ECDAR 2.0 could generate system declarations for each query
in the following way. Based on the component instances in the system queried, ECDAR 2.0
could instantiate components. By statically analysing the first-order components in the

Page 21 of 61

4 Scope

query, ECDAR 2.0 could find which inputs and outputs they use. ECDAR 2.0 could then
declare that in the system declarations.

Page 22 of 61

5 Design
In this chapter we discuss design choices of ECDAR 2.0. First, we discuss design principles
that we follow throughout the development of ECDAR 2.0. Then we discuss changes to
H-UPPAAL required for the application to conform to ECDAR 2.0. We then discuss the
architecture of ECDAR 2.0. Lastly, we discuss features concerning IMVE and system views.

5.1 Design Principles

To guide our choices of the design of ECDAR 2.0, we present five design principles in this
section. Some of them are inspired by the heuristics evaluation for user interface design
proposed by Nielsen (1993). The principles should not dictate the design, as there may be
cases where it is hard to satisfy the principles completely, e.g. with conflicting principles.
However, we strive to follow the principles throughout the design of ECDAR 2.0. The
areas mentioned in Section 4.1 are closely related to these principles.

Principle 1 Feedback - ECDAR 2.0 should be responsive in the sense that when a user
performs an action, this action has an immediate effect in the UI.

The user should know the current status of the system. Thus, the UI should update
whenever an action causes a change in the system. The principle is related to the heuristic
of Feedback, which says that the user should be informed about the system status within
a reasonable time (Nielsen 1993).

To support this principle, we make use of the Model-View-Presenter (MVP) pattern
and bindings between the model and view, which among other things helps in updating
the UI when the model changes. Read more about the pattern in Section 5.3.1.

Principle 2 Error Prevention - ECDAR 2.0 should prevent the user from making invalid
models.

Like the heuristic of Prevent errors, it is often better to prevent a problem from occurring,
than just showing a good error message (Nielsen 1993). This principle coincides with
the enforcement of good practices described in Section 4.1.

Principle3 Consistency - New additions to ECDAR 2.0 should be consistent and conform
to the design of the H-UPPAAL codebase.

The H-UPPAAL codebase already contains some useful features like keyboard shortcuts.
ECDAR 2.0 should also feature shortcuts for new additions to ECDAR 2.0, since users
would expect the features to be systemwide. Also the general design of the system
views (mentioned in Section 4.2) should look and feel similar to how the modelling of
components works.

Page 23 of 61

5 Design

This principle is related to the Consistency heuristic (Nielsen 1993). The heuristic also
recommends following platform conventions. That will make it easier for users learn
how to use the application. Since ECDAR 2.0 runs on multiple Operating Systems (OSs),
it could benefit from adhering to platform standards. The H-UPPAAL codebase already
adheres to some conventions. For instance, the keyboard shortcut for saving projects on
Windows and Linux is Ctrl + S, and the shortcut on macOS is Cmd + S.

Principle 4 Errors and Invalid Actions - ECDAR 2.0 should provide feedback to the
user when errors occur and when user try to perform a prohibited action.

As mentioned in Principle 2 about Error Prevention, we want to restrict users from
making invalid models. To help them understand the restrictions, we need to provide
feedback about why they cannot perform certain actions. The feedback can for example
be presented as an understandable error message. The heuristic Good Error Messages
(Nielsen 1993), describes how a system should provide indicators for errors, so that users
are able to recover from them.

Principle 5 Productivity - ECDAR 2.0 should provide features so that the user can
quickly understand and construct models in ECDAR 2.0.

As mentioned in Section 4.1, ECDAR 2.0 should provide facilities like those of modern
IDEs. This may involve keyboard shortcuts, to quickly perform an action, or reduce the
steps involved in common actions like refactoring and syntax checking. This is related to
the Shortcuts heuristic (Nielsen 1993), which mentions that shortcuts are often used by
expert users.

Another aspect of this principle is to help users understand models. This may be useful
when receiving a model from another user, but also help locate errors. The concept of
system views is an example of how users can get an overview of the components involved
in a system.

5.2 H-Uppaal

As mentioned in Section 1.1 we build ECDAR 2.0 upon the codebase of H-UPPAAL. In this
section we discuss the design changes required in order for the application to conform
to ECDAR. Some of these changes are made as a result of the principle about error
prevention (Principle 2), as we want the user to only create valid ECDAR models, and not
all H-UPPAAL concepts fit in this domain.

H-UPPAAL utilises hierarchies to divide large models into small components. However,
hierarchies are not a part of the TIOA modelling language, which ECDAR is based upon.
Furthermore, we do not know of any theory that applies hierarchies to the TIOA modelling
language. Thus, we choose to remove this feature from ECDAR 2.0.

H-UPPAAL uses the concept of a main component and subcomponents. They are central
parts of H-UPPAAL and are tightly coupled with hierarchies. Since we do not continue
to work with hierarchies, ECDAR 2.0 does not retain the concept of main component or
subcomponents.

Page 24 of 61

5.3 Architecture

Figure 5.1: A UML 2.5 (Object Management Group 2015) component diagram of the archi-
tecture of Ecdar 2.0.

H-UPPAAL also has final locations, which are locations used to transition out of a
subcomponent. It is mainly used in hierarchies, to allow the model to exit specific
components. As ECDAR neither has final locations in the semantics nor hierarchies, this
feature is not needed and is therefore removed.

H-UPPAAL lets users add committed locations. These are locations where, when entered,
time is paused and the next transition must include a committed location. Committed
locations are not part of the TIOA semantics and therefore needs to be removed.

5.3 Architecture

As we are using H-UPPAAL as our codebase, we inherit the architecture of H-UPPAAL,
meaning that ECDAR 2.0 follows the same architecture. The architecture of ECDAR 2.0 is
given in Figure 5.1.

The architecture is based on the MVP pattern. The Presenter communicates with the
UPPAALDriver, which handles the communication with the back end and other ECDAR

libraries. The Ecdar Libraries include uppaal.jar, model.jar, and the OS specific
server file.

5.3.1 The MVP Pattern and Data Binding

The model-view-presenter pattern was first described by Potel (1996) and has throughout
the years been used in many different ways (Fowler 2006). The MVP pattern in ECDAR 2.0

Page 25 of 61

5 Design

is inherited from the H-UPPAAL project. By using MVP, we keep a clear separation of the
views and the models, ensuring that any change to the models, triggered by the views,
e.g. adding a location to a component, have to be made through the presenters. In this
way, the data bindings are initialised in the respective presenters. In this way we also
comply with the Principle 1 about feedback as the change on the view happens instantly.

We give an an example of use of data binding and MVP in Section 6.2

5.3.2 Back End Access Layer

The Back End Access Layer handles generation of ECDAR back end XML, as well as
the communication with the back end. It is inherited from the H-UPPAAL project. The
layer consists of two components, UPPAALDriver and EcdarDocument. UPPAALDriver
selects what ECDAR 0.10 back end to use based on the OS of the device, and handles
communication with that back end. The UPPAALDriver also generate back end XML by
using the EcdarDocument component. The back end is used to run queries.

By separating the functionality and communication from the presenters, we decouple
the ECDAR 0.10 libraries and the back end from the front end of ECDAR 2.0. This makes
it easier to, for instance, introduce new back ends.

The ECDAR 0.10 libraries and back end are not a part of the front end of ECDAR 2.0.

5.4 Integrated Modelling and Verification Environment

In this section we discuss the design of ECDAR 2.0 related to IMVEs. This involves the
handling of the initial location, tau transitions, edge I/O statuses, and the Inconsistent
and Universal locations.

5.4.1 Initial Locations

ECDAR 2.0 should enforce every component to have an initial location according to
Section 4.1. In order to make it impossible to construct components without an initial
location, ECDAR 2.0 enforces the use of initial locations in the following way:

• When creating a component, ECDAR 2.0 creates an initial location for that compo-
nent.

• If users try to delete an initial location, that location shakes, and ECDAR 2.0 displays
an error message, telling the users that an initial location is required (Principle 4).

By enforcing an initial location, we may limit user control. However, in this case we
believe it is more important to avoid invalid models (Principle 2), as we do not expect it
to annoy users.

Page 26 of 61

5.4 Integrated Modelling and Verification Environment

Figure 5.2: Component with an input and an output edge.

5.4.2 Tau Transitions

ECDAR 2.0 should make it impossible to construct tau transitions according to Section 4.1.
To do this ECDAR 2.0 enforces the use of synchronisation on all edges.

In H-UPPAAL, an edge has nails that are intermediary points on the path from the
source of the edge to the target of the edge. While ECDAR 0.10 places synchronisation
on the edge itself, H-UPPAAL places it on a nail of the edge. ECDAR 2.0 enforces the use
of synchronisation using such synchronisation nails:

• When creating an edge without nails, ECDAR 2.0 creates a synchronisation nail on
it. To preserve the shape of the edge, ECDAR 2.0 positions the nail between the
source and target locations of the edge.

• In order to make modelling more efficient, we want experienced users to be able
to place synchronisation nails at custom positions while constructing edges. Thus,
if a user creates the first nail of an edge while constructing an edge, ECDAR 2.0
makes that nail a synchronisation nail.

• If users try to delete a synchronisation nail, that nail shakes, and ECDAR 2.0 displays
an error message (Principle 4).

As with initial locations (see Section 5.4.1), the choice of forcing synchronisation nails
prevents errors (Principle 2). It might also improve productivity (Principle 5), as users
do not have to add synchronisation nails themselves.

5.4.3 Edge I/O Statuses

ECDAR 2.0 should not allow defining inputs on output edges or vice versa (Principle 2)
according to Section 4.1. Instead of letting users add a ? or ! as suffix to the synchroni-
sation name (a textfield), ECDAR 2.0 displays ? or ! on the nail to denote the I/O status.
Furthermore, it uses solid (for input) and dashed (for output) lines for the edge like in
ECDAR 0.10. Figure 5.2 illustrates an example with an input and an output edge.

When translating models to XML for the ECDAR back end, we add the appropriate
suffix based on the I/O status of the edge.

5.4.4 Inconsistent and Universal Locations

ECDAR 2.0 should feature a way to add inconsistent and universal locations to components
visually according to Section 4.1. Therefore, we add two menu elements to the context
menu of a component: Add Inconsistent Location, which adds an inconsistent location,

Page 27 of 61

5 Design

Figure 5.3: Inconsistent and universal locations.

and Add Universal Location, which adds a universal location. This improves productivity
(Principle 5) as it automatically adds the locations and makes them easily available in a
context menu.

If we implement these locations as is, users may accidentally edit the Inconsistent or
Universal location such that it no longer holds the properties of such locations. To avoid
users changing the Inconsistent and Universal locations, ECDAR 2.0 locks the locations
such that they cannot be edited, except for letting custom edges end in them, as this
does not change the behaviour of the locations. However no custom edges can start from
a locked location. Furthermore, users can add nicknames to locked locations, as this
does not change the semantics. The locations should be consistent (Principle 3) with the
design of other locations, but as mentioned we make some limitations to prevent users
from creating invalid models (Principle 2).

ECDAR 2.0 users may want to make their models presentable (i.e. in papers). Thus,
we want the Inconsistent and Universal locations to be movable.

Multiple inconsistent (respectively universal) locations in the same component have the
same semantics, so more than one of each type of location does not enhance modelling.
However having many custom edges end in the same inconsistent or universal location
may clutter a model with crisscrossing lines and thus lessen the readability of a model.
Therefore, ECDAR 2.0 allows users to define multiple Inconsistent or Universal locations
in the same component. When translating models to XML, for each component we merge
all Inconsistent and Universal locations such that there is only one Inconsistent
and one Universal location in the XML. When merging the inconsistent and universal
locations, all edges that these locations, now end in the same respective location.

The UI of the Inconsistent and Universal locations can be seen in Figure 5.3. An
inconsistent location is just an urgent location without outgoing edges. Universal loca-
tions have, by definition, a self looping edge for every input and output actions in the
component. To avoid clutter, we instead use the * symbol to represent all input or output
actions. Lastly, the inconsistent and universal locations uses different identifiers from
custom locations. For example I0, I1, I2 for inconsistent locations, and U0, U1, U2 for
universal locations.

5.4.5 I/O Signatures

ECDAR 2.0 should give information about interaction of components according to Sec-
tion 4.1. Interaction is based on the inputs and outputs. Thus, we propose an I/O
signature of a component. It contains the input and output channels to use by the com-
ponent. ECDAR 2.0 visualises this signature as shown in Figure 5.4. Solid arrows going

Page 28 of 61

5.5 System Views

Figure 5.4: Component with visualised I/O signature. The mouse cursor (not visible) is
hovering the coin input of the signature.

into the component from the left represents input channels. Dashed arrows going out of
the component from the right side represents output channels.

To further expand on the overview benefit, moving the mouse cursor to one of the
inputs or outputs of the signature, makes ECDAR 2.0 highlight all the edges that use
the corresponding channel. In Figure 5.4 the mouse cursor is hovering the coin input,
and all edges interacting on this channel are highlighted. Note that a channel is only
represented as an arrow once, even if there are multiple uses of it. Both the overview
and highlighting feature help in understanding models and locating errors (Principle 5).

The visualisation of the signature is responsive (Principle 1), so that users see an
immediate change in the signature, when typing the name of a channel. As an example
a user creates a new output edge, with a channel named cof , as soon as the user enters
"c", a new arrow on the right side of the component appears with the label c. As the user
completes the name, the label is updated to show co followed by cof . The responsiveness
combined with only representing a channel once, has the side benefit of being able to
quickly catch typos. In the very simple example of cof , if the user were to create a new
output edge on the same channel, but instead typed cod, a completely new arrow would
appear. By moving the mouse cursor to a wrongly typed channel, the user is also able to
quickly locate the edge containing the error.

5.5 System Views

In Section 4.2, we introduce the concept of system views. In this section we design the
GUI of system views for ECDAR 2.0. We start by defining the overall structure of a system
view. Then we design how to present operators and component instances.

Structure: A system in ECDAR consists of instances of first-order components combined
with operators. Operators act on other operators (i.e. higher-order components) or on
first-order components. Thus, we can represent systems in a tree-like structure with
operators as branches and first-order components as leafs. This can be seen in Figure 5.5.

To represent system views, we could allow operators to reference the same component

Page 29 of 61

5 Design

Figure 5.5: A realistic system view. It uses composition (||). Coin, co�ee and work repre-
sent the I/O signatures.

instances. However we would have to construct semantics for this behaviour and fur-
thermore, ensure that the semantics do not deviate from the TIOA modelling language.
A tree structure would not allow this behaviour, and is therefore a better fit than any
representation that would allow this behaviour.

As a tree structure fits well with the semantics of systems and does not require us to
create new semantics, which is why we choose to represent system views graphically as
tree structures.

Since system views are represented as tree structures, they need a root as a starting
point. We could either let the user choose a component as a root component, or have
the root as the topmost component in the system view. To understand a system view the
user must first locate the root, this requires the root to be easily distinguishable from
other components. If a component could be set as the root then it might be hard to
distinguishing a component that is also a root component from other components of
the same type. We therefore choose to have the root as its own UI element. As tree
structures are typically represented with the root as the topmost object, we choose to
place and locked vertically to the toolbar of the system view. This allows users to drag it
horizontally. This can be seen in Figure 5.5.

Operators: In ECDAR you can combine components with the three operators: conjunc-
tion, composition, and quotient. These are described more in Section 2.5. Conjunction
and composition are both allowed to have two or more operands, which is why we allow
these operators to have an arbitrary number of edges going to child nodes. An example
of these two operators can be seen in Figure 5.5 and Figure 5.6. The quotient operator
has two operands and is non-commutative. It is restricted to only have two operands in
system views. An example of the quotient operator can be seen in Figure 5.7.

Page 30 of 61

5.5 System Views

Figure 5.6: A system view that uses conjunction (&&).

Figure 5.7: A system view using the quotient operator (A\\B).

Component Instances: Component instances in system views are instances of specific
first-order components developed in ECDAR 2.0. These instances have the same shape
as components, furthermore, they use the same colour scheme as the corresponding
component. As it is possible to create multiple instances of the same component, we
allow for specifying an instance identifier on instances to differentiate between them.
This is seen in Figure 5.5.

Component instances need to be compatible with each other in order to perform the
conjunction and quotient operator upon these. Compatibility between components differs
from the operator that is being used and is determined through their I/O signatures.
As we want users to quickly determine whether some components are compatible for
certain operators, we show I/O signatures on all component instances (Principle 5). This
can be seen in Figure 5.5 for an input coin and two outputs co�ee and report.

Page 31 of 61

6 Implementation
In this chapter, we discuss some of the implementation of ECDAR 2.0. A guide on how to
access our source code and how to run ECDAR 2.0 is given in Appendix B.

We have developed ECDAR 2.0 through an agile approach and licensed it under MIT1.
To aid our development, we have enforced the use of code reviews and pull requests
through GitHub, and we run Continuous Integration (CI) trough Travis CI2. In order to
build ECDAR 2.0, we need to use ECDAR 0.10 libraries, which are licensed under other
licenses. Thus, our codebase with CI is private.

To make the source code of ECDAR 2.0 public, we have a public GitHub repository3 that
is cloned from our private codebase and then stripped of the aforementioned libraries.

We start this chapter by discussing code documentation. We then discuss the use of
bindings and the MVP pattern. Lastly, we outline various improvements of ECDAR done
through the project.

6.1 Documentation

Documentation of code is an exercise in software engineering, which we have put
emphasis on. The reasons why is that ECDAR 2.0 is an open-source project and also a
project which we are going work on in the 10th semester. That is why we have enforced
that new and changed code should be documented, especially: classes, interfaces, non-
getter and non-setter methods, in addition to constructs that the developers see the need
for doing so.

An example of this is the push() method (see Listing 6.1) in the UndoRedoStack class.
Here the name of the method indicates that it only pushes to the stack, however, the
method also executes the perform parameter. To avoid confusion, we rename the method
to pushAndPerform() and add the documentation as given in Listing 6.2.

In total, the front end of ECDAR 2.0 has a coverage of Javadoc documentation of
14.96 %4. In comparion, the front end of H-UPPAAL does not use Javadoc. A detailed
report of the documentation coverage for both ECDAR 2.0 and H-UPPAAL can be found in
Appendix B.

1https://opensource.org/licenses/MIT
2https://travis-ci.com
3https://github.com/tgunde13/SW9ecdarRelease
4This includes: parameters, methods, classes, interfaces, enums, fields, and constructors

1 public static Command push(final Runnable perform, final Runnable undo,
2 final String description, final String icon) {

Listing 6.1: Excerpt of the push()method in the H-Uppaal UndoRedoStack class.

Page 32 of 61

https://opensource.org/licenses/MIT
https://travis-ci.com
https://github.com/tgunde13/SW9ecdarRelease

6.2 Data Binding

1 /**
2 * Pushes to the stack and performs the redo action once.
3 * @param perform the redo action
4 * @param undo the undo action
5 * @param description a description of the actions
6 * @param icon icon of the redo-undo command
7 * @return the command created
8 */
9 public static Command pushAndPerform(final Runnable perform, final Runnable undo,

10 final String description, final String icon) {

Listing 6.2: Excerpt of the pushAndPerform()method in the Ecdar 2.0 UndoRedoStack
class.

1 public void initializeDropDownMenu() {
2 ...
3 dropDownMenu.addClickableAndDisableableListElement(
4 "Draw Edge",
5 getLocation().getIsLocked(),
6 (event) -> {
7 final Edge newEdge = new Edge(getLocation(),
8 EcdarController.getGlobalEdgeStatus());
9 ...

10 getComponent().addEdge(newEdge);
11 dropDownMenu.hide();
12 }
13);
14 ...
15 }

Listing 6.3: Excerpt of the initializeDropDownMenu()method from the LocationCon-
troller class.

6.2 Data Binding

In this section we present example of code in ECDAR 2.0, that benefit from the use of
data binding (through the MVP pattern) between models and views. Both bindings and
MVP are presented in Section 5.3.

We explain how a model is updated when a user adds a new edge to a component,
and how the corresponding view is updated (the I/O signature on components) to reflect
the change.

When modelling a component in ECDAR 2.0, one way for a user to create a new edge, is
to right click on a location and select ”Draw Edge” from the context menu. The right click
triggers a DropDownMenu object (a context menu) from the corresponding LocationCon-
troller object. Clicking on the ”Draw Edge” option runs the lambda expression at Line 6
in Listing 6.3. This creates a new Edge and adds it to the associated component (Line 10).
The associated component is a model of type Component. This ”Draw Edge” action follows
the MVP pattern, by having the user make a change in the view (LocationController)

Page 33 of 61

6 Implementation

1 private void initializeIOListeners() {
2 final ChangeListener<Object> listener =
3 (observable, oldValue, newValue) -> updateIOList();
4
5 edges.addListener((ListChangeListener<Edge>) c -> {
6 updateIOList();
7
8 while (c.next()) {
9 for (final Edge e : c.getAddedSubList()) {

10 addSyncListener(listener, e);
11 }
12
13 for (final Edge e : c.getRemoved()) {
14 e.syncProperty().removeListener(listener);
15 e.ioStatus.removeListener(listener);
16 }
17 }
18 });
19 edges.forEach(edge -> addSyncListener(listener, edge));
20 }

Listing 6.4: The initializeIOListeners()method from the Component class.

that updates the model (Component).
In addition to edges, a Component object also contains collections for which input

(inputStrings) and output (outputStrings) channels are it the I/O signature. These
collections are updated when a change occurs in the edge collection. Listing 6.4 shows
the code that initialises the listeners for these changes.

The while loop (Line 8) iterates through changes, and adds listeners to new edges
or removes the listeners for the edges that have been removed. This means that both
inputStrings and outputStrings are updated when any synchronisation property of
any edge in the component changes. The changes can be as small as the user changing
the name of a property or as large as opening an existing ECDAR 2.0 project.

The changes to the I/O signature (inputStrings and outputStrings) need to be
reflected in the view. The ComponentController and ComponentInstanceController
classes both use the I/O signature and need to listen for changes. The design for each
usage can respectively be found in Section 5.4.5 and Section 5.5. Listing 6.5 shows
the method that adds listeners to inputStrings (not shown in the listing) and output-
Strings for the ComponentController class. The listener added at Line 2 updates the
view by removing existing output signature arrows followed by adding arrows for all
channels returned from c.getAddedSubList to the view (Line 6). The returned channels
represent the newest changes.

Using these listeners, ECDAR 2.0 updates the I/O signature arrows as the user types a
synchronisation property. As mentioned in Section 5.4.5 the quick updates of the view
makes the UI responsive (Principle 1).

In a similar manner, the ComponentInstanceController class also benefits from
bindings to inputStrings and outputStrings.

Page 34 of 61

6.3 Various Improvements

1 private void initializeSignatureListeners(final Component newComponent) {
2 newComponent.getOutputStrings().addListener((ListChangeListener<String>) c -> {
3 outputSignatureContainer.getChildren().clear();
4 while (c.next()){
5 c.getAddedSubList().forEach((channel) ->
6 insertSignatureArrow(channel, EdgeStatus.OUTPUT));
7 }
8 });
9 ...

10 }

Listing 6.5: Excerpt of the initializeSignatureListeners()method of the Compo-
nentController class.

6.3 Various Improvements

We have made improvements to the H-UPPAAL codebase used in ECDAR 2.0, as we
experienced both user- and developer-oriented problems. In this section, we outline
some of the areas that we have improved upon.

Appendix C contains a complete list of development issues and bug fixes resolved
during this project.

Refactoring: We experienced that it was difficult to read and understand code with
large methods (e.g. more than 100 lines) with several levels of nesting (lambdas and
control structures). To improve the internal structure of the code, we refactored it. The
UPPAALDriver class is an example of a class, where we believe the readability has been
improved by refactoring, such that some control structures span fewer lines and has
fewer levels of nesting (issue #99).

In addition to readability issues, we experienced near duplicate code. For instance,
most of the presentation classes load their corresponding FXML file, which is the same
process for each of them (issue #218). Listing 6.6 presents an example of such loading.
We created the EcdarFXMLLoader class in order to refactor. The boilerplate code in each
presentation classes, can be replaced by a call of the loadAndGetController() method
in the EcdarFXMLLoader class. An example is presented in Listing 6.7.

Bugs: We also spent time on fixing bugs in the codebase. Most were minor bugs
encountered while using the early version of ECDAR 2.0. One of the bugs is concerned
with loading a project. A ECDAR 2.0 or H-UPPAAL project is stored as JSON files in a
specific directory. If a file with different filename extension is stored in the directory,
the corresponding program would crash (issue #63). We fixed the bug since it is very
likely, that a user has another file type in these directories (e.g. text files for describing a
project or screenshots of the models). The solution was to ignore non-JSON files.

Page 35 of 61

6 Implementation

1 public NailPresentation(final Nail nail, final Edge edge, final Component component,
2 final EdgeController edgeController) {
3 final URL url = this.getClass().getResource("NailPresentation.fxml");
4
5 final FXMLLoader fxmlLoader = new FXMLLoader();
6 fxmlLoader.setLocation(url);
7 fxmlLoader.setBuilderFactory(new JavaFXBuilderFactory());
8
9 try {

10 fxmlLoader.setRoot(this);
11 fxmlLoader.load(url.openStream());
12
13 controller = fxmlLoader.getController();
14 ...
15
16 } catch (final IOException ioe) {
17 throw new IllegalStateException(ioe);
18 }
19 }

Listing 6.6: Constructor for NailPresentation class before refactoring.

1 public NailPresentation(final Nail nail, final Edge edge, final Component component,
2 final EdgeController edgeController) {
3 controller = new EcdarFXMLLoader().loadAndGetController("NailPresentation.fxml",
4 this);
5 ...
6 }

Listing 6.7: Constructor for NailPresentation class a�er refactoring.

Platform Standards: As mentioned in Section 5.1, we want to adhere to platform stan-
dards (Principle 3). We experienced that the menu bar did not follow the macOS standard.
Here, applications should share a systemwide menu bar; it changes menu elements when
user changes applications. However, the menu bar was inside the application.

To follow the standard, we made ECDAR 2.0 use the macOS menu bar when on that
OS. Figure 6.1a shows how the menu bar looked on macOS, and how it still looks on
Windows and Linux. Figure 6.1b shows how the menu bar in ECDAR 2.0 currently looks
on macOS.

(a) Ecdar 2.0 menu bar on Windows and
Linux.

(b) Ecdar 2.0 menu bar onmacOS.

Figure 6.1: Two types of menu bars that follow their respective platform standards.

Page 36 of 61

6.3 Various Improvements

Figure 6.2: Context menu in system view.

Context Menu: The context menu in ECDAR 2.0 gives access to quick actions in several
places. The menu is presented when the user right clicks a UI element or presses certain
buttons. It is very crucial to the system, since many actions are available and discoverable
from it, e.g. "Add Component Instance" (seen in Figure 6.2) and "Delete". The context
menu inherited from the codebase had several issues accompanying it: the menu was
placed behind other UI elements (issue #28), submenus could cover each other, buttons
stayed marked after the menu has been closed (issue #156), and other minor issues.

We fixed some issues by updating the library used for the Material Design, JFoenix5, to
the latest version (issue #204), but it also introduced some other minor problems, that
we did not deem necessary to fix.

5JFoenix GitHub repository: https://github.com/jfoenixadmin/JFoenix

Page 37 of 61

https://github.com/jfoenixadmin/JFoenix

7 Performance Optimisation
Throughout the development of ECDAR 2.0, we experienced lag when using the tool on
some devices. In this chapter, we present tests of this performance issue, discuss where
in the code the issue lies and present an approach to optimise the performance. Lastly,
we test the approach and compare it with the non-optimised version.

Using system monitors, we found that the bottleneck is the Central Processing Unit
(CPU) utilisation rather than the memory usage or the disk utilisation. The CPU utilisation
is high, even when ECDAR 2.0 is idle and only displaying an empty component. One
device has about 100 % utilisation on one of its logical cores (see Figure 7.1) while
running ECDAR 2.0.

7.1 Testing

This lead to testing the CPU utilisation of ECDAR 2.0. We tested on three Windows,
one macOS, and one Linux configurations. Their hardware specification is listed in
Appendix D.

ECDAR 2.0 starts with a window size of 80 % of the screen width and 80 % of the
screen height, which is not changed doing testing. In the tests presented in this chapter,
we start ECDAR 2.0 and wait for the CPU to become stable before we start measuring.
The measurement is done using system monitors native to the corresponding OS (the
Windows Resource Monitor, the Linux System Monitor, and the macOS Activity Monitor).

Note that the different configurations used in tests use different variations of ECDAR 2.0
and have different programs running in background. Thus, we do not compare the

Figure 7.1:Overall CPU utilisation over 60 seconds while running Ecdar 2.0 without op-
timisation. The figure shows the utilisation of the eight logical cores of Configuration
1. Each block ranges from 0% (bottom) to 100% (top) and from 0 seconds (le�) to 60
seconds (right). The utilisation is captured with the Windows Task Manager.

Page 38 of 61

7.2 Analysis

Configuration Non-optimised Caching Comparison
1 13.17 % 5.75 % - 56.34 %
2 24.67 % 7.29 % - 70.45 %
3 12.53 % 1.63 % - 86.99 %
4 19.5 % 25.75 % + 32.05 %
5 53.9 % 21.05 % - 60.95 %

Table 7.1: CPU utilisation of Ecdar 2.0 without optimisation and with caching. The last
column is the reduction (-) or increase (+) of utilisation with caching enabled compared
with no optimisation.

configurations with each other.
The utilisation on Windows is measured as the average percentage of CPU consumption

by the ECDAR 2.0 process over 60 seconds. The utilisation on the other OSs is measured
by observing the lowest and highest utilisation by the ECDAR 2.0 process two times, each
over 15 seconds, and then averaging the observations. Note that we this way assume the
utilisation to be evenly distributed between lowest and highest. Appendix E presents the
observations for the Linux and macOS configurations. The utilisation for the different
configurations are presented in Table 7.1.

7.2 Analysis

In this section we search for a cause for this amount of CPU utilisation and try to reduce
it.

By recursively removing parts of the code and observe the difference in utilisation we
narrowed it down to the CanvasPresentation, ComponentPresentation, and Ecdarp-
resentation views. Our observation shows that the background queries did not seem
to have a significant impact, as one might think.

We tried different approaches to reduce CPU utilisation, for instance caching views
as a bitmap. Caching speeds up subsequent renderings in many cases, but also increase
memory usage according to Oracle (2015). Caching of JavaFX views is disabled by
default (Oracle 2015).

Enabling caching for EcdarPresentation seemed to reduce CPU utilisation a signifi-
cant amount on some devices. Changing the settings for the caching and what to cache
did not seem to improve it any further. To decide whether to use cache, we measure
the CPU utilisation with caching enabled on EcdarPresentation. We uses the same test
setup as with the previous tests.

Figure 7.2 shows the overall CPU utilisation. This shows that the utilisation no longer
reaches 100 % utilisation on any of the logical cores.

The utilisation for the ECDAR 2.0 process is given in Table 7.1. The table also illustrates
the reduction or increase in utilisation when caching compared to no optimisation. Most
of the configurations experience a significant reduction (56 % to 87 %) in CPU utilisation.

Page 39 of 61

7 Performance Optimisation

Figure 7.2: Overall CPU utilisation over 60 seconds while running Ecdar 2.0 with caching
enabled. The same programs are running in backgrounds as with Figure 7.1. We also
use the same systemmonitor.

Only one configuration (the one running Linux) experienced an increase in utilisation.

7.3 Solution

Since caching in general reduces CPU utilisation, ECDAR 2.0 now enables it as default.
However, there are still reasons for a user to disable caching, for instance, as we saw
with Configuration 4, on some configurations caching increases CPU utilisation. For this
reason, ECDAR 2.0 users can now toggle caching on and off through the top menu.

Page 40 of 61

8 Discussion
In this chapter we discuss the conducted interviews, caching of views, and how we could
test ECDAR 2.0.

8.1 Interviews

The interviews we conducted (described in Section 3.3), only questioned a very small
and likely biased user group. We need to be critical in the evaluation of the results from
the interviews, as they are not sufficient to represent all future users of ECDAR. Despite
this concern, we can still use the results as inspirations and to discuss internally in the
project group. The idea of system views was suggested during an interview, and was
discussed internally before we decided to design and implement it.

It is challenging to perform a proper evaluation using the small user base of ECDAR 0.10.
If we were to proceed with an evaluation, we could send out a survey to people who
have used tools based on UPPAAL (like ECDAR 0.10 is). This survey should be about how
they use UPPAAL, and cannot be too specific about the TIOA theory or queries related to
ECDAR.

Another suggestion would be to make a usability evaluation of ECDAR 2.0. This
suggestion is further described in Section 8.3.

8.2 Caching

ECDAR 2.0 caches EcdarPresentation (our root view) as default in order to reduce CPU
utilisation according to Chapter 7. However, such caching might not be optimal for all
views in all situations. Rather, we could configure caching of individual views.

If a view will be animated or scaled over time, the cache might not be usable at the
time of the next frame. To optimise, we could set a CacheHint1 on such views. These
could be set either at compile-time or run-time. We might also want to disable caching
on some views completely.

8.3 Testing

For now we have only conducted a performance of ECDAR 2.0 but other types of test
could also be conducted. In this section we discuss the potential tests that could be
conducted on ECDAR 2.0.

We could use unit testing to conduct a functional test of the front end of ECDAR 2.0 .
We could also use it to conduct an integration test of the verification engine.

1https://docs.oracle.com/javase/8/javafx/api/javafx/scene/CacheHint.html

Page 41 of 61

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/CacheHint.html

8 Discussion

As ECDAR 2.0 load projects from a directory structure of JSON files, a user might
accidentally try and load a wrong folder. Furthermore users can edit project files, before
loading them with ECDAR 2.0. E.g a user might want to duplicate a part of a component,
and does so by duplicating the text in the JSON file. If done incorrectly, the project files
might become invalid. We could test how robust ECDAR 2.0 is at handling such corrupt
files.

We should conduct UI tests. For such tests we could use the test framework TestFX2,
which work by clicking on UI elements and measure the state of views. In this way, we
test the flow of the UI and whether the UI elements are working as intended. Such tests
could be included in our CI environment

We designed ECDAR 2.0 according to the principles in Section 5.1. We could perform a
usability evaluation to assess how well we followed these principles. Furthermore, we
could gain knowledge about users’ expectations from the tool and how they approach a
modelling task. As there are few people using ECDAR 0.10, we could perform the test on
users of UPPAAL.

2https://github.com/TestFX/TestFX

Page 42 of 61

https://github.com/TestFX/TestFX

9 Conclusion
We have developed a front end as an Integrated Modelling and Verification Environment
(IMVE) for compositional real-time systems based on the theory of timed input/output
automata called ECDAR 2.0. We have built it to improve the UI of ECDAR 0.10. Together
with the back end of ECDAR 0.10, it can be built as a Java 8 program.

ECDAR 2.0 is a modelling and verification tool inspired by features of modern IDEs,
or as we call them, IMVE features. ECDAR 2.0 is built upon the codebase of H-UPPAAL,
which has already fixed some UI issues with UPPAAL (see Section 1.1). With some
basic functionality in place, we choose to limit our scope (in Chapter 4) to two areas of
development: IMVE features and system views. We also establish five design principles
(see Section 5.1) to guide the design of ECDAR 2.0. The development issues we have
finished during this project are listed in Appendix C.

9.1 Integrated Modelling and Verification Environment

ECDAR 2.0 is built around the MVP architectural pattern and data binding in order to
provide quick feedback (Principle 1). For instance, the I/O signature on a component is
immediately updated as a user changes the synchronisation property of an edge.

To assist users in constructing valid models, we enforce good practices (Principle 2).
For instance, we enforce the presence of the initial location, and remove the possibility
to construct tau transitions.

The design of ECDAR 2.0 should be consistent (Principle 3). ECDAR 2.0 should consis-
tently use features like keyboard shortcuts and context menus. Component and system
views should be consistent with each other, meaning that the same shortcuts and actions
should be available from both views, whenever it makes sense. As we did not finish all
features for system views, it is also missing some of the features that makes it consistent
with component views (e.g. nails). We have also implemented features to adhere to
platform standards, like the menu bar on macOS.

ECDAR 2.0 has also been designed to notify the user of errors and invalid actions
(Principle 4). As an example, users are notified of the invalid action, if they try to delete
the synchronisation nail on an edge or the initial location. In system views users are also
notified, if an edge between two elements is invalid. An example of an invalid edge is
between two component instances.

A good IDE (and IMVE) should have facilities to increase developers’ (respectively
modellers’) productivity (Principle 5). ECDAR 2.0 includes project management features,
such as, creating a new project and saving a project as a new one. These features are
not present in H-UPPAAL. Models made in ECDAR 2.0 may be used in documents and
academic papers, so we have developed features to export models as images. ECDAR 0.10
requires users to manually construct Inconsistent and Universal locations for specific

Page 43 of 61

9 Conclusion

queries, and it can especially be a hassle for users to maintain Universal locations. To
make it less of a hassle for users, ECDAR 2.0 automatically generates such locations,
including the edges needed for Universal locations.

9.2 System Views

We have also introduced system views to ECDAR 2.0. A system view represents a system
of component instances combined with the operators conjunction, composition, and
quotient. In ECDAR 0.10 users run queries on a declared system, which the user has
to define in a system declarations file. System views are in the same way designed to
represent a system declarations file. As with components, a system can also be exported
as an image.

We have mainly implemented the graphical part of system views in the current version
of ECDAR 2.0. The complete benefit from using system views requires implementation of
features such as aliasing and generation of system declarations.

9.3 Performance Optimising

We have tested the performance of ECDAR 2.0, as it has been a noticeable issue. We
tested the performance when ECDAR 2.0 was idle and found that the CPU utilisation of
the process was unnecessary high. To combat this, we added the option to cache the root
view of ECDAR 2.0. This gives us a reduced utilisation of 56 % to 87 % on four out of our
five test configurations.

Page 44 of 61

10 Future Work
In this chapter we consider the future development of features and improvements for
ECDAR 2.0. It is important to consider as we will be continuing the work on ECDAR 2.0 in
the next semester. Furthermore, we expect others will continue working on ECDAR 2.0.

10.1 Multiple Engines

The front end of ECDAR 2.0 uses the back end of ECDAR 0.10 to perform verification.
Contrary to ECDAR 0.10, PYECDAR features robustness analysis and explicit computation
of conjunction, composition, and quotient. We could add PYECDAR as an additional
choice of engine for ECDAR 2.0. For instance, when writing a query, users could choose
what engine to use for that query. Furthermore, if other compatible engines exist, we
could add those too.

10.2 Simulator

The simulator in ECDAR 0.10 can be a useful tool for debugging and understanding
models. During the interview (see Section 3.3.1), we questioned the interviewees about
their use of the simulator in ECDAR 0.10. They confirmed the usefulness of a simulator,
but also brought attention to flaws in the ECDAR 0.10 simulator.

Mourtizsen and Jensen (2017) also considered to add a simulator to H-UPPAAL, and
they state the challenges like this: "The challenge with this (ed. the simulator) is not
retrieving the trace and states from the verification engine, which is already possible
through its interface. Instead the challenge is presenting these states and traces to the
user." — (Mourtizsen and Jensen 2017). We face the same challenges as Mourtizsen and
Jensen (2017), with the main challenge being to design a simulator, and how transitions
and interaction between components should be displayed. A simulator extension for
ECDAR 2.0 needs to adhere to the design principles in Section 5.1. An example feature,
suggested in the interviews, that follows the feedback principle (Principle 1) is to animate
a transition in the simulator.

10.3 Version Control Systems

Another extension suggested by the interviewees is to include support for VCSs such as
Git and SVN. An extension like this could change the way that they are collaborating
on modelling projects today. The process of working with models, described by the
interviewees, reminded us a bit about a plan-driven process. Furthermore, it seems to us
that the process to get a model accepted is tedious and lengthy. As TIOA already affords

Page 45 of 61

10 Future Work

stepwise design e.g. through refinement, a VCS extension could move the process of
making these models towards a more agile modelling process.

The interviewees also proposed a diff tool for ECDAR 2.0. The diff tool could be able
to display changes from one commit to another, and also run the same queries on the
different versions of the same model.

10.4 Mutation Testing

The interviewees also suggested to make a mutation tool for ECDAR 2.0. Larsen et al.
(2017) presents an approach to conducting model-based mutation testing. They construct
a TIOA in ECDAR and uses it as a test model. They then use a mutation tool to generate
mutations of the test model. Then they use the refinement operator of ECDAR to check
which mutants conform to the test model.

The engine of ECDAR provides a strategy for a non-refinement. These are either winning
or cooperative strategies that show how the corresponding mutant does not conform to
the test model. Thus, if a system under test contains the same fault as a non-conforming
mutant, the corresponding strategy will also show how the system does not conform to
the test model.

Because of this fact, running (in parallel) the test model, a mutant, and the system
under test, we can test the system for the faults represented by the non-conforming
mutants.

Instead of using an external mutation tool to mutate ECDAR back end XML, we could
integrate mutation in ECDAR 2.0. ECDAR 2.0 could for instance use a system view as the
test model. We could also automate the process of conformance checking all generated
mutants and the process of generating the test-cases. Likewise, ECDAR 2.0 could include
a feature to conduct the mutation testing on some types of systems under test.

10.5 SMC

UPPAAL SMC1 is an extension of UPPAAL that provides Statistical Model Checking (SMC),
which ”refers to a series of techniques that monitor several runs of the system with respect
to some property, and then use results from the statistics to get an overall estimate of
the correctness of the design” (David et al. 2011). We could look into the possibility of
applying SMC in ECDAR 2.0.

10.6 Integrated Modelling and Verification Environment

We introduced the term IMVE in section Section 4.1. In this section we present features
to further assist in modelling and verification.

1http://people.cs.aau.dk/~adavid/smc

Page 46 of 61

http://people.cs.aau.dk/~adavid/smc

10.6 Integrated Modelling and Verification Environment

Continuous Syntax Checking: ECDAR 0.10 only performs syntax checking when build-
ing or when users manually issue checks. To help users find faults earlier in the process,
we could continuously perform syntax checks. H-UPPAAL already supports this for UPPAAL

model checking.

Model Refactoring: Refactoring is changing internal structures while preserving the
external behaviour (Fowler and Beck 1999). You can refactor manually, however, this
becomes more time consuming and complex for larger systems, possibly leading to
more faults. IDEs have features to assist code refactoring, such as changing names and
structures, and to extract logic. We want similar features for models in ECDAR 2.0.

Background Analysis: IDEs use static code analysis to detect common mistakes and
bad practices. We could do static analysis of TIOA, which could include checking for
unused clocks, variables, and functions.

Component Labels: If a component contains a fault, it might not have the expected be-
haviour. To help the user notice some faults immediately, we could introduce component
labels. One way to do so would be to label inconsistent components and implementations.
An example is that a user intends to construct an consistent component, but the compo-
nent contains a fault making it inconsistent. With labels, the user could immediately see
that it does not have the intended behaviour.

I/O Signature Features: The I/O signature mentioned in Section 5.4.5 could be im-
proved upon. It could let users rename a signature such that all edges using this signature
gets renamed as well. Furthermore, it could indicate whether a channel is used in other
components, and show the related components. This would further improve productivity
(Principle 5).

SystemDeclarations: In ECDAR 2.0 the system declarations must manually be defined.
The System declaration are also query dependent. Thus, ECDAR 2.0 users must change
the declarations when they run different queries. To combat this, we could work on
generating system declarations instead.

Cloning: ECDAR 2.0 users cannot clone components or systems. Cloning can be a
productive assistance, if users want multiple similar components or systems. Also, in
stepwise design, we expect users to make new iterations of components and systems.
We believe it would be beneficial to be able to do this while preserving old versions of
components and systems in stepwise design. Thus, ECDAR 2.0 users should be able to
clone components.

Page 47 of 61

10 Future Work

10.7 System Views

We discusses, in Section 5.5, the design of the UI of system views. However multiple
features were not implemented. In this section we will discuss the missing features of
system views as potential future work.

UI Boundaries: We represent system views as tree structures. In a tree structure repre-
sentation, the parents are typically above their children. In the current implementation
of system views, there is nothing that prevents users from placing child nodes above
their parents. We would like to set boundaries on dragging of nodes such that children
are always below their parents. This would preserve the tree structure visually. For the
quotient operator, we could use dragging boundaries to restrict the operands in such a
way, that the left operand (in the TIOA theory) is always to the left of the operator and
the right operand (in the TIOA theory) is on the right side. The boundaries limit the
user’s freedom of control, but has the benefit of preserving the tree structure.

Aliases and Generation of System Declarations: According to Section 4.2 we want
users to be able to use system views in queries. This requires us to be able to generate
system declarations from system views. Furthermore we need to implement aliases of
system views, so that they can be used in queries.

10.8 Backlog

While working on ECDAR 2.0 we accumulated a number of issues in our backlog. These
issues deal with fixing bugs, and adding missing features. The backlog issues are not
necessarily inside the scope of this project, but suggestions for future work on ECDAR 2.0.
In this section, we will go through some issues from the backlog. An overview of all
backlog issues can be found in Appendix F.

Background Queries: This concerns issue #105. As we have inherited functionality
for background queries from the H-UPPAAL codebase. It can easily be extended to queries
needed for ECDAR. An example of background queries for ECDAR could be: check for
output urgency, independent progress, and consistency. Output urgency and independent
progress are interesting as they are required for a specification to be an implementation,
and consistency check since it is needed for refinement checking. By using background
queries, ECDAR 2.0 can also label specifications accordingly (as suggested in Section 10.6).

Error Handling when Opening Files This concerns issue #58. During development
we have followed the principle Principle 2. However, in ECDAR 2.0 it is possible to open
invalid files. This is not properly handled and can lead to crashes and errors. If a user
opens an invalid file or a file that has been edited by the user in such a way that it breaks
certain rules, ECDAR 2.0 should provide proper errors to prevent crashes.

Page 48 of 61

10.8 Backlog

Verification Options: This concerns issue #132. This issues deals with implementing
the different verification options from ECDAR 0.10 into ECDAR 2.0. ECDAR 0.10 has
different options for verification, e.g forward search order. These allow users to customise
the verification process, sometimes leading to a shorter verification time. ECDAR 2.0 does
currently not support these options.

Page 49 of 61

Bibliography
Behrmann, Gerd, Cougnard, Agnes, David, Alexandre, Fleury, Emmanuel, Larsen, Kim

Guldstrand, and Lime, Didier (2007). “Uppaal-tiga: Time for playing games!” In: CAV.
Vol. 4590. Springer, pp. 121–125.

Benyon, David (2013). Designing interactive systems: a comprehensive guide to HCI, UX
and interaction design. 3rd ed. Pearson Education Limited. ISBN: 9781292013848.

Clarke, Edmund M. (2008). “The Birth of Model Checking”. In: 25 Years of Model Checking:
History, Achievements, Perspectives. Ed. by Grumberg, Orna and Veith, Helmut. Springer
Berlin Heidelberg, pp. 1–26. ISBN: 978-3-540-69850-0. DOI: 10.1007/978-3-540-
69850-0_1.

David, Alexandre, Larsen, Kim G., Mikucionis, Marius, Bulychev, Peter, Zheng, Wang, and
Legay, Axel (2011). Statistical Model-Checker. http://people.cs.aau.dk/~adavid/smc.
Accessed 8th of January 2018.

David, Alexandre, Larsen, Kim G., Nyman, Ulrik, Legay, Alex, and Wąsowski, Andrzej
(2017). University Example. http://people.cs.aau.dk/~adavid/ecdar/examples.html.

David, Alexandre, Larsen, Kim Guldstrand, Legay, Axel, Nyman, Ulrik, and Wasowski,
Andrzej (2010). “Timed I/O Automata: A Complete Specification Theory for Real-time
Systems”. In: Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control. HSCC ’10. Stockholm, Sweden: ACM, pp. 91–100. ISBN:
978-1-60558-955-8. DOI: 10.1145/1755952.1755967.

Fowler, Martin (2006). GUI Architectures. Model-View-Presenter (MVP). Accessed 6th of
January 2018. URL: https://martinfowler.com/eaaDev/uiArchs.html#Model-view-
presentermvp.

Fowler, Martin and Beck, Kent (1999). Refactoring: improving the design of existing code.
Addison-Wesley Professional.

Larsen, Kim Guldstrand, Lorber, Florian, Nielsen, Brian, and Nyman, Ulrik Mathias
(2017). “Mutation-Based Test-Case Generation with Ecdar”. In: Proceedings - 10th IEEE
International Conference on Software Testing, Verification and Validation Workshops,
ICSTW 2017. IEEE, pp. 319–328. DOI: 10.1109/ICSTW.2017.60.

Legay, Axel and Traonouez, Louis-Marie (2013). “PyEcdar: Towards Open Source Imple-
mentation for Timed Systems”. In: Automated Technology for Verification and Analysis:
11th International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Pro-
ceedings. Ed. by Van Hung, Dang and Ogawa, Mizuhito. Springer International Publish-
ing, pp. 460–463. ISBN: 978-3-319-02444-8. DOI: 10.1007/978-3-319-02444-8_35.

Legay, Axel, Traonouez, Louis-Marie, and Fahrenberg, Uli (2013). Differences with ECDAR.
https://project.inria.fr/pyecdar/differences-with-ecdar/. Accessed 8th of November
2017.

Mourtizsen, Niklas Kirk and Jensen, Rasmus Holm (2016). Introducing Hierarchies to
Networks of Timed Automata - HUPPAAL - a New Integrated Development Environment
for Model Checking. Aalborg University.

Page 50 of 61

https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-69850-0_1
http://people.cs.aau.dk/~adavid/smc
http://people.cs.aau.dk/~adavid/ecdar/examples.html
https://doi.org/10.1145/1755952.1755967
https://martinfowler.com/eaaDev/uiArchs.html#Model-view-presentermvp
https://martinfowler.com/eaaDev/uiArchs.html#Model-view-presentermvp
https://doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1007/978-3-319-02444-8_35
https://project.inria.fr/pyecdar/differences-with-ecdar/

Bibliography

– (2017). “Improving the Model Checking Activity Using H-UPPAAL a New Integrated
Development Environment for Model Checking”. Master’s thesis. Aalborg University.

Nielsen, Jakob (1993). Usability Engineering. 1st ed. Academic Press. ISBN: 0125184069.
Object Management Group (2015). OMG Unified Modeling Language. http://www.omg.

org/spec/UML/2.5/PDF.
Oracle (2015). Node - Cache. https://docs.oracle.com/javase/8/javafx/api/javafx/

scene/Node.html#cacheProperty. Accessed 6th of January 2018.
Owicki, Susan and Gries, David (1976). “Verifying Properties of Parallel Programs: An

Axiomatic Approach”. In: Commun. ACM 19.5, pp. 279–285. ISSN: 0001-0782. DOI:
10.1145/360051.360224.

Potel, Mike (1996). “MVP: Model-View-Presenter the Taligent programming model for
C++ and Java”. In: Taligent Inc, p. 20.

Page 51 of 61

http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#cacheProperty
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#cacheProperty
https://doi.org/10.1145/360051.360224

A Interview Questions

General
What is your experience with
ecdar or UPPAAL, in years or months?
How would you typically approach an ECDAR project?

• What is the first thing you do when creating a new project?

Tell me three things you like about the ECDAR tool?
Tell me three things you do not like about the ECDAR tool?
Do you work on models by yourself or do you collaborate with other people?
Design Process
Tell me about the process of designing templates
Incremental process or are the templates sufficient after the initial creation?
Organisation and layout of models

• What is the typical size of your ECDAR model?
• How many templates are typical and how many locations do they contain?

How would you know if your code behind your model is correct?
Verification
What are some things you usually want to verify in a compositional system?
Which types of queries are frequently used?

• Are these queries used in most of your ECDAR models?

Are there any queries that you use while designing a model, and not necessarily
needed for the final verification? - and which? (e.g. check for consistency of
components)
Do you declare multiple systems (in system declarations) and change them on-the-
go?
How often do you perform these queries? Do you switch between the model editor
and query tab often?

Table A.1: The question used for the user interview.

Page 52 of 61

A INTERVIEW QUESTIONS

Simulator
How do you use the simulator?
How often do you use the simulator? And in which way?
What do you use the simulator for?
Is the simulator important to your workflow? - why?
Last remarks
Is there something you would like to add?
Do you have other comments about ECDAR?
Did we forget to ask you about something?
Ask for a single wish in a new version of ECDAR.

Table A.2: The question used for the user interview, cont.

Page 53 of 61

B Attachments
There is a deis902e17.zip file attached to the submitted project. The file can also be
downloaded from http://projekter.aau.dk/. The file contains the following:

• A README.md file that describes how to access the rest of content of the zip file and
how to build and run ECDAR 2.0 with it.

• Audio files of the conducted interviews. Please note that the interview with our
supervisor were conducted in Danish.

• Source code of the front end of ECDAR 2.0 as a Java 8 project.

• Three ECDAR 2.0 sample projects.

• Detailed Javadoc coverage reports of the front ends of ECDAR 2.0 and H-UPPAAL.

Page 54 of 61

http://projekter.aau.dk/

C Finished Issues
This appendix presents all development and bug issues that were finished during this
project.

Number Name Type
#1 Copy code for H-UPPAAL development
#12 Save model / template as image development
#14 Removed committed locations bug

#15
Stop the warning box from popping up when adding a
new location

development

#16 Keyboard shortcuts for creating a new component development

#17
Make the bottom bar remember its height when it has
been changed

bug

#20 Move top menu to correct positions for MacOS development
#21 Make In- and Output edges development
#23 Rename file panel to project panel development
#28 Context menus should be fully visible bug
#33 Help menu in Ecdar is wrong about final location bug
#34 Create build server for the project development

#36
Pressing an item in the help menu adds something to the
UndoRedoStack

bug

#38 Add Input / Output field to the json objects development
#41 Translate I/O edges development
#52 Option to remove grid development

#54
Fix the bottom item in the component and query lists is
cut-off

bug

#57 Add a save as in the file menu development

#63
Application crashes if any files other than .json files are
located in the project folder

bug

#64 Auto crop exported png development
#77 renamed push to pushAndPerform bug

Table C.1: First part of the list of issues that we have finished in this project.

Page 55 of 61

C FINISHED ISSUES

Number Name Type
#78 Create New Project button development
#79 UndoRedoStack not cleaned after open/create project bug
#82 Rename Huppaal components to Ecdar bug
#84 Remove Main Component development

#90
Cannot export PNG when the ECDAR project has not
been saved

bug

#91 Refactor (de)serialize of project into Project class bug
#96 Simplify gradle bug
#97 Remove subcomponent from project development
#99 Refactoring Uppaal driver bug
#100 Fix exception handling in various of files development
#107 Fix the nasty memory usage development
#113 New / open project does not clear declarations bug
#117 Removed main component check from query development
#135 The channel name should not contain "!" or "?" development
#140 Add Universal/Inconsistent locations development
#141 Add I/O Signatures development
#151 A new location is added twice to the undo-redo stack bug
#152 Refactor, e.g. unused imports/classes development
#156 Dropdown items stay marked bug
#162 Force sync on edge by automatically adding it development
#163 Refactor context menu development
#174 Add listener on synchronisations development
#175 Scaled export, removed add synchronization menu item development
#179 System views - Implementation af Designet / UI
#182 System view - UI for operations + programming
#190 Export without border, toggle dcl button when export development
#204 Update jfoenix to latest version development
#208 Implement a better solution to id’s than atomic integer development

#210
Highlight edges when mouseover on an arrow in
signature

development

#217 System view snap to grid + Refactor development
#218 FXML loader refactor development
#220 Added AGExample to ecdar examples development

Table C.2: Second part of the list of issues that we have finished in this project.

Page 56 of 61

C FINISHED ISSUES

Number Name Type
#222 Change the I/O button development
#223 Component instance frame and background development
#225 Component instance shape, name, toolbar, draggable development

#226
New icons for system and components and added button
for add system and add component in project pane

development

#227 Component instance selectable development

#229
System Views - Add signature to components and
systems

development

#240 Add system root development
#243 FJXToggleButton for edge status development
#244 System views operators development
#254 Shift click to create edges in system development

#257
System view - Save Component, operators and edges as
JSON

development

#258 Export a system as png (with / without border)
#261 Snap to grid and delete development
#263 Drag bounds and system edge selectable development

#265
Made it possible to connect edges to operators, minimal
restrictions

development

#271
Adds an initial version of the university example to
Ecdar samples

bug

#281 System views - UI for components + programming development
#290 jar build update and license added bug

Table C.3: Third part of the list of issues that we have finished in this project.

Page 57 of 61

D Test Configurations

Configuration CPU Screen Resolution OS

1
Intel Core
i7-7700HQ @
2.80GHz

1920 x 1080 Windows 10, v. 1079

2
Intel Core
i5-6200U @
2.30GHz

1366 x 768 Windows 10, v. 1079

3
Intel Core
i7-3537U @
2.00GHz

1366 x 768 Windows 10, v. 1079

4
Intel Core
i7-3537U @
2.00GHz

1366 x 768
Arch Linux Gnome v. 3.26.2,
Linux kernel 4.14.11-1

5
Intel Core
i7-3615QM @
2.30GHz

2880 x 1800 macOS v. 10.13.1

Table D.1: The device configurations used in the tests presented in Chapter 7. Configura-
tion 3 and 4 uses the same device. All devices used are laptops running on AC power
rather than on battery.

Page 58 of 61

E CPU Utilisation Observations
In this chapter we present the observations for configurations 4 and 5. The observations
without optimisation is given in Table E.1. Those with caching is given in Table E.2.

Configuration Low High Average
4 19 % 20 % 19.5 %
4 19 % 20 % 19.5 %
5 49.7 % 54.2 % 51.95 %
5 51.7 % 60.0 % 55.85 %

Table E.1: CPU utilisation of Ecdar 2.0 over 15 seconds on Configuration 4 and 5 without
optimisation.

Configuration Low High Average
4 24 % 26 % 25 %
4 25 % 28 % 26.5 %
5 14.4 % 26.6 % 20.5 %
5 17.6 % 25.6 % 21.6 %

Table E.2: CPU utilisation of Ecdar 2.0 over 15 seconds on Configuration 4 and 5 with
caching enabled on EcdarPresentation.

Page 59 of 61

F Backlog Issues
This appendix contains all issues that we were unable to finish in this project.

Number Name Type
#11 Add zoom to the tool Development
#13 Save model / template as pdf Development
#40 Let users open Ecdar from a project folder Development
#43 Make a menu for keybindings Development
#47 Add label for urgent keybinding development

#49
Naming a component "queries" will make the component
be read as the query json file when loading

Bug

#55 Add a parser for queries Development

#58
Better error handling, when trying to open a wrong
folder

Development

#60 Add button for showing the QueryPane Development

#81
Make image export to make it possible to export
multiple components

Development

#83 Shows number of warnings when there are none Bug
#85 Wrong syntax highlighting, does not use spaces Bug
#86 Functionality to duplicate a component Development
#103 Open from Ecdar 0.10 XML file Development

#105
Background queries for consistency, output urgency, and
independent progress

Development

#106 Consider redesign/update of Query panel Development
#111 Easy way to change source/target location of an edge Development
#115 Deadlock check might not be correct Bug
#127 Dismiss the error tabpane using the ESC key Development
#132 Verification Options Development
#142 Change Colour Theme of Ecdar Development
#146 Copy/pasting a group of locations/edges Development

Table F.1: First part of the list of issues in our backlog a�er finishing this project.

Page 60 of 61

F BACKLOG ISSUES

Number Name Type

#147
Version control support. Integration with git, version
and branches

Development

#160
Find components which can synchronise with a
synchronisation

Development

#161
Automatically add channel when used in a
synchronisation to Global declarations

Development

#168 Implement parameters for templates Development

#180
System views - Generate system declarations from
system views or from queries

Development

#183 System views - Generate queries Development
#184 System views - Alias Development

#186
Better positioning of Inconsistent and Universal state in
xml document

Development

#203
Nickname textfield is in focus after edge/location
deletion

Bug

#221 Allow adding extra sync arrows to I/O signatures Development

#224
Deleting the last component should change the canvas to
the Declarations file

Bug

#231 I/O signature does not show æøå or ÆØÅ Bug
#232 Query takes focus when changing input and output Bug
#233 Old icons in status/error tabPaneContainer Bug

#238
System view - Collapse component and systems so they
are small

Development

#239 "New Project" shows a native JFX dialog Bug

#241
Color selector in Ecdar Presentation is enabled when
selecting a component instance

Bug

#242
Delete button in Ecdar Presentation does not work on
component instances

Bug

#245
We should only make Inc and Uni if user uses it or uses
quotient

Development

#252 System View - Add nails to edges Development
#267 System Views - Bounds for edges on operators Development
#270 Two submenues can be open at the same time Bug
#295 Automatically do angelic completion Development
#296 Update the help menu Development
#298 Declaration not selected on FilePane Bug

Table F.2: Second part of the list of issues in our backlog a�er finishing this project.

Page 61 of 61

	Cover
	Title Page
	Preface
	Reading Guide
	Contents
	1 Introduction
	1.1 H-Uppaal
	1.2 PyEcdar

	2 Specification Theory
	2.1 Timed I/O Automata
	2.2 Timed I/O Transition Systems
	2.3 Specifications and Input-Enableness
	2.4 Implementations
	2.5 Features

	3 Analysis
	3.1 Ecdar 0.10
	3.2 Ecdar Issues
	3.3 Interviews

	4 Scope
	4.1 Integrated Modelling and Verification Environment
	4.2 System Views

	5 Design
	5.1 Design Principles
	5.2 H-Uppaal
	5.3 Architecture
	5.4 Integrated Modelling and Verification Environment
	5.5 System Views

	6 Implementation
	6.1 Documentation
	6.2 Data Binding
	6.3 Various Improvements

	7 Performance Optimisation
	7.1 Testing
	7.2 Analysis
	7.3 Solution

	8 Discussion
	8.1 Interviews
	8.2 Caching
	8.3 Testing

	9 Conclusion
	9.1 Integrated Modelling and Verification Environment
	9.2 System Views
	9.3 Performance Optimising

	10 Future Work
	10.1 Multiple Engines
	10.2 Simulator
	10.3 Version Control Systems
	10.4 Mutation Testing
	10.5 SMC
	10.6 Integrated Modelling and Verification Environment
	10.7 System Views
	10.8 Backlog

	Bibliography
	Appendix A Interview Questions
	Appendix B Attachments
	Appendix C Finished Issues
	Appendix D Test Configurations
	Appendix E CPU Utilisation Observations
	Appendix F Backlog Issues

