
Modal Transition Systems as the Basis for
Interface Theories and Product Lines

Ulrik Nyman

Aalborg University
Department of Computer Science

Modal Transition Systems as the Basis for
Interface Theories and Product Lines

Modal Transition Systems as the Basis for
Interface Theories and Product Lines

Ulrik Nyman

PhD Dissertation

October 3, 2008

Aalborg University
Department of Computer Science

Til Tina

Abstract

This thesis presents research taking its outset in component-based software de-
velopment, interface theory and software product lines, as well as modeling for-
malisms for describing component based software systems and their interfaces.

The main part of the thesis consists of five papers. The first paper describes
a framework for software product lines which can be instantiated for different
design languages. Introducing the concept of color-blindness to describe the in-
ability of an environment to distinguish the difference between several outputs,
members of the software product line are automatically generated from a general
model and the environment specifications. The next two papers each present
an extension of Interface Automata. The first of these papers define Interface
I/O Automata an interface theory for the I/O Automata community. The main
novelty compared to previous work is an explicit separation of assumptions from
guarantees and the presentation of a formally derived composition operator. The
second of these papers present an interface theory combining Interface Automata
and Modal Transition Systems into Modal I/O Automata. A formal correspon-
dence between Interface Automata and a subset of modal transition systems is
proved. The developed interface theory, which can describe liveness properties, is
also applied as a behavioral variability theory for product line development. The
two last papers of the thesis concern themselves with modal and mixed transition
systems. The first of these present and discuss four different forms of consistency.
Algorithms for synthesizing implementations from a given consistency relation is
described for all four consistencies. The final paper proves PSPACE-hardness for
common implementation and thorough refinement for mixed and modal transition
systems. It also proves PSPACE-hardness for consistency of mixed specifications
and establishes a number of reductions between the different decision problems.
Keywords: Modeling, Software Product Lines, Embedded Software, Modal Re-
finement, Labeled Transition Systems, Modal Transition Systems, Mixed Tran-
sition Systems, Modal Specifications, Mixed Specifications, Interfaces, Interface
Theory, Interface Automata, I/O automata, Modal I/O Automata, Behavioral
Inequalities, Consistency, Common Implementation, Thorough Refinement, Op-
erational Characterization, Synthesizing Implementations, Relativized Simula-
tion

ISSN nr: 1601-0590, Publication No. 45

vii

Dansk sammenfatning

Denne afhandling præsenterer forskning der tager udgangspunkt i komponent-
baseret software udvikling, grænseflade teori og software produkt familier, så vel
som modellerings formalismer beregnet til at beskrive komponentbaserede soft-
ware systemer og deres grænseflader.

Hoveddelen af denne afhandling består af fem artikler. Den første artikel
beskriver en struktur for software produkt familier der kan instantieres for forskel-
lige design sprog. Artiklen introducere konceptet farve blindhed (color-blindness)
for at kunne beskrive en omgivelses manglende evne til at kunne skelne imellem
forskellige output. Medlemmer af software produkt familien bliver automatisk
genereret ud fra en general model og omgivelses beskrivelser. De næste to artik-
ler præsenterer hver en udvidelse af Interface Automata (grænseflade automater).
Den første af disse to artikler definerer Interface I/O Automata (grænseflade I/O
automater) en grænseflade teori for I/O Automater. Den væsentligste nyskabelse
i forhold til tidligere teorier er en eksplicit adskillelse af antagelser fra garantier og
at den præsenterer en formelt udledt kompositions operator. Den anden af disse
artikler præsenterer en grænseflade teori der kombinerer Interface Automata med
Modale Transitions Systemer til Modal I/O Automata (modale I/O automater).
Den indeholder også et bevis for en formal overensstemmelse mellem Interface
Automata og en delmængde af modale transitions systemer. Denne grænseflade
teori, der kan beskrive aktivitets (liveness) egeneskaber bliver også andvendt som
en adfærdsmæssig variabilitets teori til software produkt familie udvikling. De
sidste to artikler omhandler modale og blandede transitions systemer. Den første
artikel præsenterer og diskuterer fire forskellige former for konsistens. Algoritmer
der kan syntetisere implementationer ud fra en given konsistens relation bliver
beskrevet for alle fire konsistenser. Den sidste artikel beviser PSPACE-hårdhed
for fælles implementation (common implementation) og grundig raffinering (thor-
ough refinement) for blandede og modale transitions systemer. Den viser også
PSPACE-hårdhed for konsistens (consistency) for blandede specifikationer og
fastslår en række reduktioner imellem de forskellige beslutnings problemer.
Nøgleord: Modellering, software produkt familier, indlejret software, modal
raffinering, mærkede transitions systemer, modale transition systemer, bland-
ede transition systemer, modale specifikationer, blandede specifikationer, grænse-
flader, grænseflade teori, grænseflade automater, I/O automater, modale I/O au-

ix

tomater, opførselsmæssige uligheder, konsistens, fælles implementation, grundig
raffinering, operationel karakteristik, syntesering af implementationer, relativis-
eret simulation

Acknowledgements

This thesis is a collection of five research papers that would not have been possible
to write without the guidance and support from my supervisor Kim G. Larsen.
Thank you for treating me like a colleague.

An equally big thank you to Andrzej Wąsowski, who in practice has functioned
as a co-supervisor for me, for teaching me a lot through our close collaboration
on all the papers in this thesis. And a thank you for keeping me motivated on
reaching my deadline for handing in this thesis.

Also a thank you to Michael Huth and Adam Antonik for our new and fruitful
collaboration, which I look forward to continuing.

Finally a very big thank you to Tina, my loving wife, for supporting me and
truly believing in me. Thank you for bringing joy into my daily life. And a thank
you to my son Mads for helping me take my mind off this thesis.

xi

Contents

Introduction 1
1 Motivation . 1
2 Modal and Mixed Transition Systems 4
3 Interface Theories . 15
4 Software Product Lines . 26
5 Thesis Summary . 31

Paper A: Modeling Software Product Lines Using Color-blind... 37
1 Introduction . 38
2 State/Event Systems . 41
3 I/O Alternating Transition Systems 42
4 Color-blind I/O-alternating Transition Systems 48
5 Composition of Behavioral Properties 54
6 Toward Realistic Design Languages 58
7 Environment Driven Specialization 63
8 Model Transformations . 66
9 Related Work . 68
10 Conclusion & Future Work . 69

Paper B: Interface Input/Output Automata 71
1 Introduction . 72
2 I/O Automata and Their Interfaces 76
3 Refinement of Interfaces . 77
4 Interface Compositions . 78
5 Solving Behavioral Inequalities . 81
6 Interface Automata . 85
7 Other Related Work . 87
8 Conclusion . 88

Paper C: Modal I/O Automata for Interface and Product Line... 89
1 Introduction . 90
2 Interface Automata vs Modal Automata: An Example 92
3 Alternating Simulation vs Modal Refinement 97

xiii

xiv Contents

4 Modal I/O Automata . 99
5 A Modal Interface Theory . 100
6 A Product Line Theory . 102
7 Conclusion & Future Work . 105
8 Proofs . 106

Paper D: On Modal Refinement and Consistency 119
1 Background and Overview . 120
2 Modal Transition Systems . 121
3 Non-thoroughness of Modal Refinement 122
4 Syntactic Consistency and Syntactic Refinement 125
5 Strong Modal Refinement and Strong Consistency 127
6 Weak Refinement and Weak Consistency 129
7 May-weak Modal Refinement and Its Consistency 131
8 Conclusion and Open Problems 133
9 Appendix . 134

Paper E: Complexity of Decision Problems for Mixed and Modal...143
1 Introduction . 144
2 Related Work . 145
3 Background . 145
4 Common Implementation . 147
5 Consistency . 150
6 Thorough Refinement . 151
7 Discussion . 155
8 Conclusion . 157
9 Appendix . 158

Bibliography 165

Introduction

1 Motivation

Software systems contain errors. Even though complex software systems have
been developed for more that 30 years it is evident that systems being developed
today still contain errors. For general purpose desktop software errors can cost
money and time in the form of lost production time and man hours spent on
software upgrades and failure recovery.

Why is it the case that software systems still contain errors despite the de-
velopments in software engineering practices that have taken place over the past
30 years? I will claim that a lot of the errors that exist in modern software
systems are there for a very obvious reason: As a software system grows in size
and complexity it becomes increasingly harder to avoid errors in the system. The
software systems that are being constructed today are in general significantly
more complex than those constructed 30 years ago.

One might argue that we simply have to learn to live with errors in software.
One suggestion might be to work around the errors by providing a quick restart
of the given system from a known correct initial state. For some types of systems
this kind of approach is out of the question. This includes real-time systems
that need to be continuously available and distributed networked applications
where errors in the communication pattern could require a concurrent restart of
software at many remote locations.

More and more software is being used in contexts where failure will have very
serious consequences. The most serious consequence being the loss of human
lives, be it from failing medical equipment or errors in air-traffic control systems.

What solutions could there be to avoid or reduce the number of errors in a
given software system? I will in the following present two avenues which I think in
combination can be a help in reducing the number of errors in large and complex
software systems.

The first is formal methods: In order for methods to have a really profound
impact on software production, and the number of errors in software systems, a
given method has to lend itself to automation. Of course there are errors that
exists due to misunderstandings during the specification stage. But even for such
types of errors formal methods might have something to contribute as the use

1

2 Introduction

of formal models during specification stage often will reveal inconsistencies and
incompleteness of requirements.

The second part of the solution is to develop component based software sys-
tems: The idea is that, by dividing software systems into components each com-
ponent will be smaller and less complex than the complete system. The challenge
then lies in ensuring that the software components cooperate correctly. In order
to truly reduce the complexity of the complete system, by splitting it into separate
components, the interfaces between the components have to be clearly specified.
If the interfaces are clearly and formally specified the correct operation of the
complete systems can be achieved in two separate steps. Firstly it can be verified
for each component that it behaves according to its interface specification. This
can be done both at the design stages, through model checking, and later in the
development process through testing. Model checking a detailed model of the
component against its interface specification would ensure that the component
satisfies the guarantees that the interface gives under the the requirements that
the interface puts on its surroundings. Secondly one needs to establish, again
through model checking, that the requirements and guarantees of the individual
components together fulfill the requirements for the complete system.

Developing software systems based on components also opens the possibility
of changing only some of the components in order to produce variants of the
software systems. Such a collection of related products made from a common set
of components is know as a Software Product Line. The combination of software
product lines and formal methods is an emerging field of research. Given that
software product lines are defined from a set of variant components the develop-
ment method lends itself to formal methods. The different component variants
can be combined in a myriad of ways and thus countless different configurations
have to be tested if classic test based verification is used alone.

Formal methods have the possibility to allow for easier combination of already
existing, and individually tested, software components by ensuring the compati-
bility of a given combination of components.

The research contained in this thesis is presented in the form of a collection
of five articles. The articles are included in the chronological order in which they
were written. The research grew out of work in software product lines. In this
context we proposed the formalism of Color-blind transition systems, which can
be used to express the dynamic inability of a given environment to distinguish
between certain output. Descriptions of the environments as Color-blind tran-
sition systems could then be used to specialize and minimize a given software
system to a specific context. From here the research progressed towards devel-
oping an interface theory based on I/O Automata. In the formal derivation of
the composition operator for the interface theory, we used Modal Transition Sys-
tems. After this we extended Interface Automata with modalities into Modal I/O
Automata. We also sketch a Software Product Line theory based on Modal I/O
Automata. It later became clear that several interesting and quite fundamental

Motivation 3

questions about Modal and Mixed Transition Systems remained open. The final
two papers centers directly on questions regarding Mixed and Modal Transition
Systems.

As written in the outline below the three fields of related work: Modal and
Mixed Transition Systems, Interface Theories and Software Product Lines are
presented in the reverse order in which I encountered them. It is presented in
this way because it is beneficial to cover the most foundational work first and
then build on top of this.

Outline

The rest of this introduction is organized in the following way.
The thesis first continues with a description of related work within three fields,

namely: Modal and Mixed Transition Systems, Interface Theories and Software
Product Lines. After this follows a summary of each of the five papers that make
up the main part of the thesis. These summaries consists of a short abstract of
the paper, its publication history and the contribution that it makes.

4 Introduction

2 Modal and Mixed Transition Systems

This section contains an overview of related work within the field of Modal Tran-
sition Systems (MTS) and Mixed Transition Systems (MxTS). First we introduce
the beginning of the field of research followed by sections on different topics.

Modal Transition Systems (MTSs) are extensions of Labelled Transition Sys-
tems (LTSs) with modalities on the transitions. MTSs have two transition rela-
tions describing respectively required and allowed behavior. We will later in this
section define both Modal and Mixed transition systems. A formal definition of
MTS and MxTS can also be found in Section 2 (p. 121) of Paper D as well as
Section 3 (p. 145) of Paper E.

2.1 The Beginning

The field was started in 1988 with the paper A Modal Process Logic [LT88], which
introduces Modal Transition Systems (MTS) as a way of specifying sets of im-
plementations. The main argument used for introducing MTS is that Process
Algebras will only allow for a certain degree of looseness when used as a specifi-
cation language. This degree of looseness exactly corresponds to the observable
behavior, such that all the different implementations are observationally equiva-
lent. MTSs are introduced as a specification language which allows for looseness
in the specifications. Figure 1 shows a simple example of a Modal Transition
System.

Modal Transition System: For an action alphabet Σ, a modal transition
system M is a triple (S,R2, R⋄), where S is a set of states and R2, R⋄ ⊆ S×Σ×
S are must- and may- transition relations respectively. The transition relations
of a modal transition system must satisfy the following condition R2 ⊆ R⋄,
meaning that all its must-transitions are also may-transitions. A pointed modal
transition system (M, s0) is a modal transition system M with a designated
initial state s0 ∈ S.

In the original definition of modal transition systems from [LT88] the two
transition relations were written as −−→2 and −−→⋄. In the definition above
and in Paper E we follow the original idea of using 2 to represent necessary
behavior and ⋄ to represent allowed behavior. In Paper D we have also adopted
the convention of writing the may transitions using dashed lines (99K) and the
must transitions using solid lines (−→). This convention is also used in the figures
of Papers D and E. Using this notation instead of putting a symbol next to each
transition allows for more compact and easily understandable figures.

The other central concept of the first paper [LT88] on MTSs is modal Re-
finement. Modal refinement captures what it means for one process to be more
precise than another. One should note that modal refinement in most papers,
including the original paper, is referred to simply as refinement.

Modal and Mixed Transition Systems 5

sb1

sb2

coincoffee tea

Figure 1: A simple Modal Transition System (MTS) with two states. The system
describes a simple specification for a tea and coffee machine. In the initial state
sb1 there is one outgoing may transition to state sb2. This indicates that a given
implementation can choose to implement this transition. From state sb2 there is
an outgoing may transition labelled tea indicating that an implementation can
choose to implement this transition. From sb2 there are also a may and must pair
of transitions labelled coffee. This specifies that any implementation that first
accepts a coin must be able to provide coffee.

The intuition behind modal refinement of MTSs is that one can refine one
MTS M by changing some of the may transitions into must transitions and
simply remove other may transitions and thus end up with a new system N
which refines M .

Modal Refinement: A modal specification (N, t0) = ((SN , R
2

N , R
⋄
N), t0) re-

fines another modal specification (M, s0) = ((SM , R
2

M , R
⋄
M), s0) over the same

alphabet, written (M, s0)≺(N, t0), iff there is a relation Q ⊆ SM ×SN contain-
ing (s0, t0) and whenever (s, t) ∈ Q then

1◦ for all (s, a, s′) ∈ R2

M there exists some (t, a, t′) ∈ R2

N with (s′, t′) ∈ Q.

2◦ for all (t, a, t′) ∈ R⋄
N there exists some (s, a, s′) ∈ R⋄

M with (s′, t′) ∈ Q.

Figure 2 shows a set of MTSs and how they refine each other. A modal refine-
ment relationQ witnessing thatN refinesM describes a form of recursive two way
simulation where N must continually match the required behavior of M and M
must continually match the allowed behavior of N . A modal refinement relation
Q1 witnessing that sa1≺sb1 in Figure 2 would be Q1 = {(sa1, sb1), (sa2, sb2)}.

All systems obtained by the previous intuition, removing may transitions or
changing them into must transitions, are legal by the formal definition. But the
definition also allows for additional refinements, in that must transitions that
have become unreachable due to the dropping of may transitions also can be

6 Introduction

sa1

sa2

coincoffee tea

≻sb1

sb2

coincoffee tea

≺ sc1

sc2

coincoffee tea

≻
sd1

≺
≻se1

se2

coincoffee tea

≺ sf1

sf2

coin

Figure 2: This figure explains modal refinement by example. The top most figure
with the two states sa1 and sa2 is a very general specification of a coffee and tea
machine. All the other MTSs are refinements of this specification. The refinement
relations between the MTSs is given by the relations between the figures. The
state se1 is thus a refinement of both sb1 and sc1. Notice that the single initial
state sd1 refines sb1 even though the state sb2 has outgoing must transitions.

dropped. The relation between modal refinement and what it means for a single
mixed transition system to be syntactically consistent is covered in Section 4 of
Paper D.

Stepwise Refinement

Modal transition systems were originally conceived as being used in a stepwise
refinement development process [Lar89], where systems are developed in a top
down fashion. Starting with a specification that the systems should fulfill and
slowly progressing to more and more detailed descriptions of the systems behav-
ior, proving modal refinement for each step. Figure 2 illustrates how the top most
general specification can be refined in different ways leading to more and more
concrete specifications.

Modal and Mixed Transition Systems 7

sd1 se1

se2

coincoffee

se1

se2

coincoffee tea

Figure 3: Three implementations, depicted as LTS, that each refine the MTS
shown in Figure 1.

Implementations

When continuing to refine the specification a final implementation will eventually
be reached. An implementation is characterized by having only one transition
relation or equivalently two identical transition relations. Implementations are
also known as processes. Implementations (processes) can thus be viewed as a
special case of MTSs where the required and allowed behavior is identical, in
effect making them identical to Labelled Transition Systems (LTSs). A process
P is said to be an implementation of a specification S if it refines it. Figure 3
shows three simple, yet quite different, LTSs that refine the MTS in Figure 1.

2.2 Early Related Work

The 1989 paper Modal Specifications [Lar89] repeats the definitions of the origi-
nal paper, presents a logical characterization of Modal Specifications and defines
how to derive logical formulas characterizing a given Modal Specification. The
paper also suggest ways of extending the expressive power of Modal Specifica-
tions with regards to liveness properties by making logical combinations of Modal
Specifications.

In the 1990 and 1992 papers Graphical versus Logical Specifications Boudol
and Larsen thoroughly treats the relationship between characteristic formulas in
Hennessy-Milner Logic (HML) and Modal Transition Systems [BL92, BL90]. It
is established that every MTSs can be characterized by a HML formula but only
HML formulas that are consistent and prime, meaning that every disjunction
implies one of the disjuncts, are graphically representable.

The 1989 paper The Use of Static Constructs in a Modal Process Logic [HL89]
introduces the use of constructs from CCS [Mil89] such as parallel composition
of components into Modal Process Logic (MPL). The paper also introduces un-
observable transitions and an observational refinement relation. It investigates

8 Introduction

s1 s2 s3 s4a b c

Figure 4: A simple Mixed Transition System (MxTS) where the state s3 is in-
consistent because it requires a c transition that is not allowed

under which constructs of MPL this observational refinement relations behaves
as a congruence. The paper shows that MPL is, theoretically less expressive than
Henessy-Milner Logic (HML) with recursion. But at the same time the paper
demonstrates that, from a practical point of view MPL with static constructs
suffices for modelling realistic systems. This is demonstrated through the mod-
elling of a data-link protocol, a restartable system, and a simple scheduler. In all
of these examples the looseness of the specifications, that MPL allows for, plays
an important role. The paper also introduces, through the use of parallel compo-
sition, the possibility of unobservable τ actions and an observational refinement
ordering as an extension of modal refinement.

2.3 Mixed Transition Systems

The original paper [LT88] only specifies modal transition systems which fulfill
the stringent consistency condition that all must transitions should be matched
directly by a may transition (R2 ⊆ R⋄). Systems fulfilling the condition will
always have at least one implementation, having transition relations identical to
the specifications must transition relation. Already in [Lar89] it was suggested
to lift this consistency requirement in order to be able to model inconsistent
systems. In [Lar89] and also in Paper D these systems are still referred to as
modal transition systems. Such systems have later come to be known under the
term Mixed Transition Systems (MxTS), as introduced by Dams [Dam96], and
are also referred to as mixed specifications in Paper E. Mixed transition systems
are more complex but are also much more interesting as a modelling formalism
in that they allow for parallel composition of specifications that are mutually
inconsistent. Figure 4 shows a simple Mixed Transition System in which the
state s3 is inconsistent. A MxTS in which the initial state is inconsistent will
have no implementations, not even an empty system with only an initial state
and no transitions.

Mixed Transition System: For an action alphabet Σ, a mixed transition
system M is a triple (S,R2, R⋄), where S is a set of states and R2, R⋄ ⊆
S×Σ×S are must- and may- transition relations respectively. A pointed mixed
transition system (M, s0) is a mixed transition system M with a designated
initial state s0 ∈ S.

Modal and Mixed Transition Systems 9

N s a b M t a b
b

a

Figure 5: All implementations of N are also implementations of M but it is not
the case that N is a modal refinement of M

2.4 Thorough Refinement

Thorough Refinement is a refinement relation based on inclusion of sets of im-
plementations, such that one system refines another if all implementations of
one also are implementations of the other. By refining a system, it is only pos-
sible to remove implementations and given two specifications N and M where
the implementations of N are a subset of the implementations of M , it is the
case that N thoroughly refines M . As shown in Paper E thorough refinement is
PSPACE-hard to check, both for modal and mixed transition systems.

Modal refinement is sound but incomplete with regards to thorough refine-
ment. Because it is sound we know that when a specification N refines a speci-
fication M then all implementations of N are implementations of M . By incom-
pleteness we mean that there exists specifications N and M such that N does
not refine M but it is still that case that all implementations of N are indeed
implementations of M . The reason one might still want to use modal refine-
ment instead of thorough refinement is that modal refinement is polynomial time
decidable.

The fact that modal refinement is incomplete was first stated in the first piece
of related work for the original paper, namely a master thesis Operational and De-
notational Properties of Modal Process Logic [Hüt88]. An example demonstrating
this, taken from [Hüt88], is given in Figure 5.

In the 2005 paper [Hut05b] it was stated, as the title says that Refinement
is complete for implementations. This is unfortunately not the case as modal
refinement is non-thorough. This was, as just stated, first reported in [Hüt88] and
again in [Xin92], but was not reported in any conference or journal publication
until [LNW07c] (Paper D) and is also to appear in the journal paper [SF07].

2.5 Modal Refinement Symbol

Several different symbols have been used for the concept of modal refinement. In
order to avoid possible confusion we will in the following describe the different
symbols and their opposing intuitions.

In the original paper [LT88] (and others) a ⊳ is used to indicate that N is a
refinement of M by writing N ⊳M . The intuition here is that N is more specific

10 Introduction

s1

s2

s3

a

b

a

b

Figure 6: A simple Disjunctive Modal Transition System (DMTS) which requires
that any given implementation will implement at least one of a and b. Both a
and b are at the same time allowed.

than M , having less implementations and therefore the narrow end point towards
N .

With the same intuition N ≤m M is used in [LNW07a] (Paper C) and other
papers to indicate that N has fewer implementations than M . This symbol also
indicates that the two specifications might actually have exactly the same set of
implementations.

In [AHL+08] (Paper E) the symbol ≺ is used with the opposite meaning that
the narrow end points towards the side with more implementations. The intu-
ition behind this is that the operator indicates which specification contains more
information. The one that contains more information will be more restrictive
towards allowing implementations and will possibly have fewer implementations.

Thus all the following statements have the same meaning:

Less implementations More implementations
N ⊳ M

N ≤m M

N ≻ M

The ≤m symbol is also used with different subscript than m for related forms
of refinement. The ≺ operator also exists in a subscripted version ≺th signifying
that the refinement is thorough.

2.6 Disjunctive Modal Transition Systems

In 1990 the concept of Disjunctive Modal Transition Systems (DMTS) was in-
troduced in the paper Equation Solving Using Modal Transition Systems [LX90].
Disjunctive modal transition systems extend MTS by allowing a disjunction of

Modal and Mixed Transition Systems 11

s1

s2

a

s1

s3

b

s1

s2

s3

a

b

Figure 7: Implementations of the DMTS shown in Figure 6 depicted as LTSs. If
the transition system in Figure 6 is interpreted as a 1MTS only the two left most
transition systems are legal implementations.

target states and actions for each must transition. These transitions are also
known as hypertransitions interpreted with an OR semantics. This signifies that
a given implementation has the choice of implementing at least one of these
branches. The modal refinement relation is extended accordingly.

Figure 6 shows a simple disjunctive modal transitions system. Three legal
implementations of the DMTS in Figure 6 are show in Figure 7.

In [LX90] Larsen and Xinxin establish a method for solving process algebra
equations involving contexts. A set of equations involving bisimulation equiva-
lence ∼ [Par81, Mil83] and an unknown process X embedded in different contexts
C1 to Cn can be solved and the unknown process X can be expressed in the form
of a DMTS.

This equation solving method is also the inspiration for the method for solv-
ing behavioral inequalities described in Section 5 of Paper B. DMTSs are also
extensively covered in the PhD Thesis [Xin92].

In the 1991 paper On the Complexity of Equation Solving in Process Algebra
[JL91] Jonsson and Larsen show PSPACE-hardness of solving process algebra
equations involving contexts. The problems consists of deciding whether some
process exists that, embedded in the given context, satisfies the given inequality
or equality. The equations involve bisimulation, weak bisimulation and modal
refinement. They also establish that given the context is deterministic, in the
sense that one action from the same state cannot lead to different states, then
some equations can be solved in polynomial time.

One Selecting Disjunctive Modal Transition Systems

One selecting Modal Transition Systems (1MTS) is a special version of DMTSs
proposed by Schmidt and Fecher [Sch06b, SF07, Sch06a]. One selecting Modal
Transition Systems interpret hypertransitions according to an XOR semantics
such that precisely one of the target states can be implemented. In [SF07]
Schmidt and Fecher show that DMTSs and 1MTSs can express the same sets

12 Introduction

of implementations, but at the same time demonstrating that 1MTSs have a
strictly more expressive refinement preorder compared to DMTSs. In the 2007
extended abstract A behavioural model for product families [FG07] Fantechi and
Gnesi proposes a similar model which they call Extended Modal Labelled Tran-
sition Systems. The DMTS presented in Figure 6 can also be interpreted as a
1MTS, if this is the case only the two left most transition systems in Figure 7 are
legal implementations.

2.7 Kripke Modal Transition Systems

In [HJS01] the extended modelling formalism Kripke Modal Transition Systems
(KMTSs) is introduced. The paper first defines doubly labelled transition sys-
tems, which extend labelled transition systems and Kripke Structures by having
labels on both transitions and states. KMTSs are then defined as an extension of
both doubly labelled transition systems and MTS. In [Hut02] KMTSs are defined
slightly different, as a composition of two doubly labelled transition systems, and
termed as Modal Kripke Transition Systems. Here the two doubly labelled transi-
tion systems each represent both must labels and must transitions or may labels
and may transitions respectively.

KMTSs generalises both Modal Transition Systems and Kripke structures. It
has may and must transition relations as Modal Transition Systems and at the
same time it has may and must labels on states. Huth et al. [HJS01] also extend
the notion of refinement accordingly, putting requirements on the set of must and
may labels of states that are related by refinement. In [HJS01] KMTSs are used
as the basis for three valued program analysis and model checking of partial state
spaces. The three values here being True (T), False (F) and Unknown (⊥).

In [Hut02] Huth proves that model checking of modal mu-calculus properties
for KMTSs can be reduced to model checking of modal mu-calculus properties
on regular Kripke Transition Systems. These results specialize to both CTL and
CTL* model checking.

2.8 Timed Modal Specifications

In the 1993 paper Timed Modal Specification - Theory and Tools [ČGL93] the ex-
tended formalism of Timed Modal Specifications (TMSs) is presented along with
the tool Epsilon for analyzing TMSs. TMSs is a generalization of real-time
process calculi, over a dense time domain, with the aspect of allowing for loose
specifications that Modal Transition Systems provide. The paper also defines
timed refinement and several abstracting refinements. The abstracting refine-
ments abstract away respectively internal computation, timing aspects and both
in combination. These abstracting refinements are introduced to allow for more
refinements by abstracting away concrete implementation details.

Modal and Mixed Transition Systems 13

2.9 Applications

In the following we will present a number of areas and methods in which Modal
and Mixed Transitions Systems have been used.

Automatic Abstraction and Model Checking

In the paper A Constraint Oriented Proof Methodology Based on Modal Tran-
sition Systems [LSW95] Larsen et al. introduce a framework for dividing the
proof obligation for verifying a system through the use of abstraction, skolemiza-
tion, separation of proof obligation and projective views. The method drastically
reduces the complexity of relevant subproblems. In the 2001 paper Abstraction-
Based Model Checking Using Modal Transition Systems [GHJ01] it is shown that
one can check arbitrary formulas (existential as well as universal) using MTSs
as abstractions at the same cost as checking universal properties using tradi-
tional conservative abstractions. The 2002 paper Automatic Abstraction Using
Generalized Model Checking [GJ02] elaborates on how to utilize MTS for auto-
matic abstraction in the framework of generalized model checking [BG00]. In the
2003 paper On the Expressiveness of 3-Valued Models [GJ03] it is shown that the
complexity of generalized model checking does not change from one three valued
formalisms to another.

Model Merging

The 2004 paper Merging partial behavioural models [UC04] and the 2006 pa-
per Properties of Behavioural Model Merging [BCU06] proposes a framework for
merging of behavioral models based on MTS. Model merging is based on ob-
servational refinement and merging two consistent models should result in their
minimal common refinement. Model merging is intended for use in software en-
gineering processes where scenario-based descriptions are elaborated iteratively.
The utility of the method is demonstrated through a case study in [BCU06]. In
[UBC07] MTSs are generated from a combination of Message Sequence Charts
and safety properties expressed in Fluent Linear Temporal Logic (FLTL).

Product Lines

In the 2006 paper [FUB06] MTS are used as the foundation of a framework
for Software Product Lines. This paper also presents a alternative branching
semantics for Modal Transition Systems.

In [FG07] Fantechi and Gnesi propose a new extension of MTSs known as Ex-
tended Modal Labelled Transition Systems (EMLTS). This formalism is intended
for definitions of Product Lines.

14 Introduction

Industrial Application

In the 1997 paper An industrial application of modal process logic [Bru97] Bruns
documents how Modal Process Logic was used in the development of a failure
recovery protocol of an actual Air-traffic control system for use at Heathrow
Airport. He also documents that CCS would have been inadequate for this ap-
plication.

Trace Sets Semantics

In the 2001 paper From Trace Sets to Modal-Transition Systems by Stepwise Ab-
stract Interpretation David Schmidt elaborates on how to transform execution
trace sets, describing a systems semantics, into Modal and Mixed Transition Sys-
tems through stepwise abstract refinement. Universal and existential quantifiers
can be added to CTL giving the logic mu-CTL* allowing for both trace and state
checking of MxTS. He also proposes mu-XCTL* a variant of mu-CTL* specifically
for expressing properties of Modal Transition Systems.

2.10 Tools

The 1992 and 1995 papers Generality in design and compositional verification
using TAV [BLS93, BLS95] present the features of the Tav system. The Tav

systems support for efficient decidability, stepwise refinement, and composition-
ality of MTSs is demonstrated through the analysis of a simple transmission
protocol. Tav was later extended into the tool Epsilon for analyzing Timed
Modal Specifications [ČGL93].

A plug-in for the Eclipse platform giving support for the construction, analysis
and elaboration of MTS is presented in the 2007 paper [DFFU07].

Interface Theories 15

3 Interface Theories

This section describes relevant related work within the field of interface theories.
The field of interface theories is rather new. It was started by the 2001 paper

Interface Automata [AH01] by Alfaro and Henzinger and presented in an extended
version in [AH04].

An interface theory is a behavioral type system for software components. In-
stead of only considering the static types of the components, an interface theory is
concerned with the temporal aspects of the components, their behavior over time.
In the original theory of Interface Automata the behavior of the individual com-
ponents are described using an automata-based language. Using one automata
per component the input assumptions and output guarantees of each component
is described. The input assumptions describe the possible legal orders in which
outside components can call methods on the component. The output guarantees
describe the order in which the component may call other components. Since
the two are described together in one automata, the output that a components
produces is dependent on the input it has received. Similarly the input which it
will allow is dependent on the output that it has itself produced.

They mention earlier work that considers automata based specifications of
components [AG94, Lev95]. Their contribution is a both lightweight and formal
approach to describing the behavioral interface of software components.

The main purpose of an interface theory is to check the compatibility of
interfaces. In this way it is possible to infer whether the types of to components
are compatible as is done with a traditional type system.

A novel aspect of Alfaro and Henzinger’s composition operator is that it takes
an optimistic approach. Instead of computing whether two given components
will be compatible under any give circumstance, which would be the pessimistic
approach, they compute under which circumstances the two components will be
compatible. This means that two components are compatible if there exists some
way to make them interact without violating each others assumptions. The result
of computing a composition of two components will be a description of exactly
how the two components can be used together.

They state that their formulation of component compatibility is related to
[YS97] which considers synthesis of adaptors to bridge between incompatible in-
terfaces. In this spirit they not only answer the question of whether there is some
way of making the components interact but synthesize an interface representing
all legal ways of using the new combined system.

Compatibility and Parallel Composition

An essential part of an interface theory is to be able to determine if components
are compatible. As in many other theories Alfaro and Henzinger choose to de-
fine compatibility as a symmetric binary relation between two interfaces. Two

16 Introduction

Interface B1

Implementation

Interface A2

Interface A1

Implementation

Compatibility

Composition

Comformance
Refinement relation

Figure 8: This figure gives an overview of the concepts: Compatibility, com-
position, refinement and conformance. Compatibility can be checked between
interfaces, in this case Interface A1 and Interface B1. If the two interface are com-
patible their common interface can be computed, here represented by the dashed
rectangle surrounding Interface A1 and Interface B1. Once compatibility has been
established the Independent Implementability property ensures that Interface A1
can be refined into Interface A2 without considering Interface B1 at all. Each of
the components can again be refined into implementations, conforming to the
refinement relation.

interfaces are compatible if there is some way of using them together such that
they do not violate each others assumptions. This can be said to be an opti-
mistic approach or an existential view of compatibility in that the two interfaces
need not be compatible in every setting, there just needs to be some setting in
which they are compatible. Compatibility is the prerequisite for calculating the
parallel composition of two interfaces. Compatibility is described using a binary
symmetric relation between two interfaces, such that we write F ∼ H if F and
H are compatible.

Once it has been established that two interfaces are compatible the paral-
lel composition of the two can be calculated. The parallel composition, written
F ‖ H is essentially computed by constructing the product and pruning error
states and internally controllable transitions that can reach error states. In this
way the parallel composition describes the interface by which one can use the
combined components and be sure that they cannot reach an error state. Fig-
ure 11 illustrates both compatibility and parallel composition.

Interface Theories 17

Incremental Design and Independent Implementability

Henzinger and Alfaro state two requirements [AH04] for an interface theory,
namely Incremental Design and Independent Implementability. Incremental De-
sign is related to the concept Stepwise Refinement as presented in Section 2.
The general idea is that the design process can start with a general description of
each component and slowly refine the individual descriptions allowing for fewer
possible implementations. During the incremental design of a system some com-
ponents can be left out entirely. The other components will be seen as compatible
if there just exists some component that can fill the empty place.

Incremental Design can be stated formally as a property. This property de-
scribes that if a closed system consisting of four components that are compatible
in one setup, then the system should be composable in any order and the com-
ponents should still be compatible.

If two components are compatible then the parallel composition F ||G of F
and G is defined and represents the new common interface of the two compo-
nents. Given this Incremental Design can be defined as follows:

Incremental Design [AH04]:
For all Interfaces F , G, H and I if

F ∼ G and H ∼ I and F ‖ G ∼ H ‖ I
then

F ∼ H and G ∼ I and F ‖ H ∼ G ‖ I

The other requirement for an interface theory is that of Independent Imple-
mentability which first appeared in the literature in [SDH00] where it appears in
the context of formal models of Bus protocols specified as monitors. In [SDH00]
independent implementability is only defined by a textual description and an ex-
ample of what it is not. The idea is that requirements which should be checked on
the components cannot have statements like a = b where a and b are outputs of
two components. If such a requirement is not fulfilled then one cannot blame one
of the components, plus it is impossible for one component to be implemented
without having complete information about the specific implementation of the
other component. Thus such a requirement clearly violates independent imple-
mentability. As in the previous section on Modal Transition Systems, we define
a binary refinement relation �, in this case to describe that one interface refines
another. This relation is defined as a contravariant simulation, know as alternat-
ing simulation [AH01], such that if we have F � F ′ (F is refined by F ′) then F ′

is able to provide more services than F but it must be consistent with F on the
shared services. This can also be expressed slightly simplified, ignoring hidden
transitions, as: An interface automaton F ′ refines an interface automaton F if
each input transition of F can be simulated by F ′, and each output transition of
F ′ can be simulated by F [AH04].

18 Introduction

0 1
send !

ok?

Client

send ok fail

Figure 9: A simple Client component specified as an Interface Automata. This
example is taken from [AH04]. Transitions labelled with ! represents output and
transitions labelled with ? represent input. The transitions connected to the box
around the component represent the static signature of the component. The fact
that the component does not have any input transitions labelled by fail means
that even thought fail is part of the static signature of the component it is never
able to receive a fail message.

0 1
send !

ok?

Client

send ok fail

0 1
fail !

send?

FailingLink

send ok fail

Figure 10: The two components in this figure, Client on the left and FailingLink

on the right are incompatible, meaning that there is no way in which they can
cooperate. They are not compatible because FailingLink sends a fail message in
its initial state which Client is unable to receive.

Using these definitions Independent Implementability can be defined as fol-
lows.

Independent Implementability [AH04]:
For all interfaces F , F ′, G and G′ if

F ∼ G and F � F ′ and G � G′

then
F ′ ∼ G′ and F ‖ G � F ′ ‖ G′

Note that in contrast to the refinement relations presented in the previous
section, the refined interface is allowed to add new services, but at the same time
the set of possible implementations is decreased because now the specification of
the newly added services have been fixed. This is in contrast to modal refinement
where something would have to explicitly be modelled as allowed in the more
general specification before the refined specification can specify how these services
should be implemented.

Figure 9 presents a very simple Client component taken from [AH04]. If
two components are compatible then it is possible to compute their composition,

Interface Theories 19

which Alfaro and Henzinger write F ‖ G. Compatibility is determined by com-
puting the product automaton F ⊗ G and checking if it contains error states
that are reachable by internally controllable actions. If this is the case the two
components are incompatible. Figure 10 shows two Interface Automata that are
completely incompatible. If error states exists that are only reachable by exter-
nally controllable actions, then these are pruned from the product automaton
in order to end up with the composite interface F ‖ G. In this way Interface
Automata achieve that restrictions of one component can be propagated to the
common interface when two components are composed. Figure 11 shows an ex-
ample, taken from [AH04], where the dynamic ability of one component to receive
two messages of the same type in a row will carry over to the combined interface.

Independent implementability gives rise to a form of subtype theorem, in that
an interface automaton F always can be replaced by a more refined interface
automaton F ′, such that F � F ′ provided that F and F ′ are connected to the
environment by the same inputs. The side condition is there to ensure that
F ′ cannot create new incompatibilities, by offering new functionality that the
environment would use.

Earlier Work in Behavioral Type Theory

In a separate tradition in the field of Type Theory people have also tried to tackle
the aspects of behavior, both of components and individual data elements, such
as objects.

In the 1994 paper A Behavioral Notion of Subtyping [LW94] Liskov and Wing
starts out by asking: What is subtyping?

They answer this question themselves by defining a subtype requirement: Let
ϕ(x) be a property provable about objects x of type T. Then ϕ(y) should be true
for objects y of type S where S is a subtype of T [LW94]. They only consider
safety properties, something bad will never happen and not liveness properties
something good will eventually happen. They consider two types of safety prop-
erties: Invariants and history properties. They mention other types of safety
properties which they do not consider, e.g: the existence of an object in a state,
the number of objects in a state, or the relationship between objects in a state.
Invariants are defined as predicates on individual states, that must hold for all
states. History properties are defined as predicates over pairs of states.

Liskov and Wing introduce the concept of substitutability, described in their
abstract by the following:

The use of hierarchy is an important component of object-oriented
design. Hierarchy allows the use of type families, in which higher
level supertypes capture the behavior that all of their subtypes have
in common. For this methodology to be effective, it is necessary
to have a clear understanding of how subtypes and supertypes are

20 Introduction

0 1
send !

ok?

Client

h

send ok fail

⊗
5

0 1 2 3 4

6

ack?ok !
ack?

send? trnsmt ! nack? trnsmt !

fail ! nack?

TryTwicesend ok fail

trnsmt ack nack

=
5

0 1 2 3 4

6

ack?ok ;
ack?

send ; trnsmt ! nack? trnsmt !

nack?

Client ⊗TryTwice

trnsmt ack nack

Client ‖ TryTwice =
5

0 1 2 3 4

ack?ok ;
ack?

send ; trnsmt ! nack? trnsmt !

Client ‖ TryTwice

trnsmt ack nack

Figure 11: This figure demonstrates the concepts: Composition and propagation
of restrictions. The two Interface Automata Client and TryTwice are combined
into the product automaton Client ⊗TryTwice. The bottom shows the composite
interface Client ‖ TryTwice that is computed by removing transitions such that
no error states are reachable by internally controllable transitions. The square
state in Client ⊗TryTwice represents an error state, because TryTwice wants
to output a fail message that Client cannot accept. By removing an externally
controllable transition on the path to this state, the requirement that the Client

cannot receive a fail message is propagated such that Client ‖ TryTwice cannot
receive a nack message twice in a row from its environment.

related. This paper takes the position that the relationship should
ensure that any property proved about supertype objects also holds
for its subtype objects. [LW94]

The notion of substitutability is also known as the Liskov Substitution Principle
within the field of type theory.

They propose two forms of subtyping. For both forms invariants are handled
explicitly by stating an invariant property as part of the type definition. All

Interface Theories 21

0 1
send?

ok !

EnvClient

send ok fail

0 1
send !

ok?

SpecClient

send ok fail

Figure 12: A simple Client component specified as an Interface I/O Automata,
where the component is specified by the two parts EnvClient and SpecClient . The
explicit split of assumptions and guarantees allows for easy recombination of
assumptions and guarantees from different settings.

subtypes must then fulfill this invariant. The two different notions of subtyping
differ in how they handle history properties. The first type deals with history
properties directly by requiring that a constraint is specified that states which
types of history properties must be preserved by all subtypes. The second type of
subtyping deals with history properties indirectly by requiring that for each new
method added to a subtype its functionality is explained in the form of functions
that already exist on the super type. This ensures that the new method does not
introduce any genuinely new functionality.

Another more recent development is the Java Modelling Language (JML)
[JP01, LBR06] which is a behavioral interface specification language for Java
with invariants and pre- and post-conditions based on ideas from Eiffel [Mey92]
and Larch specifications [GHW85]. Larch is a two-tiered modelling language
where one level, known as Larch Shared Language, is programming language in-
dependent, and the other, known as interface languages, is specific to the given
programming language that is being modelled [Win87]. Among many other ap-
proaches to behavioral specifications Leavens have adapted Larch specifications
specifically to C++ Modules in [Lea96].

There is an apparent lack of references to work from the other tradition be-
tween the two directions of research, and a closer study of the relationship between
Interface Theories and Behavioral Type Theory is called for.

Interface Input/Output Automata

In Paper B we present an interface theory fashioned for the I/O Automata com-
munity. The contributions of this paper is that it provides an interface theory
for the I/O Automata community. The construction of an interface theory in an
input enabled setting is achieved through an explicit separation of assumptions
and guarantees. Figure 12 shows the simple Client component modeled as an
Interface I/O Automata.

22 Introduction

0 1
send !

ok?

Client

send ok fail

Figure 13: A simple Client component specified as an Modal I/O Automata. In
contrast to the two other Client components shown in Figure 9 and Figure 12
this component will not allow trivial implementations that just do nothing.

Modal I/O Automata

In Paper C we show that interface automata corresponds to a subset of modal
transition systems, and that on this subset the two notions of alternating sim-
ulation and modal refinement coincide. We define modal I/O automata as an
extension of interface automata with modalities. The novel aspect of the inter-
face theory that we build from modal I/O automata is that it can express liveness
properties, such that trivial implementations that exhibit no behavior at all can
be disallowed. The problem of trivial implementations exists for interface theo-
ries build on simulation preorders. Figure 13 shows the simple Client component
modeled as a Modal I/O Automata.

In the following we will present several directions of research, each extending
the interfaces with some new form of information.

Other Interface Theories

Alfaro et al. have in Sociable Interfaces [dAdSF+05] extended interface automata
with a more rich synchronisation scheme allowing for one-to-one, many-to-one,
one-to-many and many-to-many communication as well as communication over
shared variables.

Within the field of telecommunication Carrez et al. in the 2003 paper Be-
havioural Contracts for a Sound Composition of Components [CFN03] present
an interface theory for the telecommunications industry. They are also inspired
by Alfaro and Henzinger’s interface automata and Larsen and Thomsen’s modal
transition systems. They place themselves in the tradition of process algebras.
They have a slightly different interpretation of the must and may modalities, in
that they talk of messages. In their framework a receiving port can, by having an
input must action, require that the other component sends a message of a given
type. They also, like our work in Paper B and C, are able to specify liveness
properties.

In the 1997 paper Specification matching of software components [ZW97]
Zaremski and Wing tackle four different concepts related to component matching.
They describe component matching as the process of determining if two software

Interface Theories 23

components are related. They see the four different but related issues: Retrieval,
reuse, substitution and subtype. They define the four general questions relating
to these concepts as:

Retrieval: How can I retrieve a component from a software library based on its
semantics, rather than on its syntactic structure?

Reuse: How might I adapt a component from a software library to fit the needs
of a given subsystem?

Substitution: When can I replace one software component with another without
affecting the observable behavior of the entire system?

Subtype: When is an object of one type a subtype of another?

The two last questions are directly related to the concepts considered part of an
interface theory by Alfaro and Henzinger. The other two concepts on the other
hand are envisioned in a context where a developer already has access to a large
library of components. Given that the developer has access to the source code of
these components it would be extremely relevant to find components that are a
near match for the desired functionality, which can be modified to fit the specific
purpose. The descriptions of the components are given in Larch/ML, the version
of Larch specifically targeted at the programming language ML.

In the 2006 paper Component substitutability via equivalencies of Component-
interaction automata [ČVZ06] Cerna et al. formally characterize preconditions
that lead to reconfiguration correctness of systems specified using Component-
interaction automata [BvVZ05]. Reconfiguration correctness is defined as proper
substitution and safe independent implementation. They characterize three re-
lations which can be used to compare the behavior of two components with
regards to reconfiguration correctness. Namely; the equivalence relation, the
specification-implementation relation and the substitutability relation.

In the 2002 paper Behavior protocols for software components [PV02] Plasil
and Visnovsky present a framework for adding behavior protocols, specified in
the form of regular expressions to the SOFA architecture modelling language.

In the 2005 paper Causality Interfaces and Compositional Causality Analysis
[LZZ05] Lee et al. create a framework for analysing causality between components
seen as actors. This is similar in spirit to the work of Alfaro and Henzinger.
They define an interface theory which represents the causality between actors
and can compute the composed causality interface when composing components.
They apply their framework to two actor-oriented models, namely synchronous
languages and discrete event models.

In the 2003 paper Resource Interfaces [CdAHS03] paper Alfaro and Henzinger
together with the coauthors Chakrabarti and Stoelinga extend their own frame-
work to cover consumption of continuous resources, exemplified by the power
consumption of components. Resource interfaces are modelled as games hav-
ing quantitative objectives. The framework can help answer questions like; can

24 Introduction

two components achieve their objectives without ever consuming more than the
available peak power level.

In the 2002 paper Conformance Checking for Models of Asynchronous Mes-
sage Passing Software [RR02] Rajamani and Rehof study the concept stuck-
freeness, ensuring that programs do not get stuck trying to send or receive a
message in vein.

Timed interfaces

In the 2002 paper Timed Interfaces [AHS02] the foundations of an automata
based timed interface theory is crafted. This paper does not provide a complete
timed interface theory in that it does not prove any independent implementability
property.

Unlike most of the other research on interface theories, which is based on
automata the following four papers on timed interface theories all base themselves
on stateless assume/guarantee reasoning. The fact that the first paper on Timed
Interfaces did not prove independent implementability and all the subsequent
research is based on stateless formalisms, one might conjecture that it might
be impossible to achieve independent implementability with the combination of
automata and real-time.

In the 2005 paper Real-time interfaces for interface-based design of real-time
systems with fixed priority scheduling [WT05] Wandeler et al. introduce Real-
time Interfaces that connects the principles of Real-time calculus with component
based design.

In the 2006 paper Interface-Based Design of Real-Time Systems with Hierar-
chical Scheduling, [WT06] this approach is extended to real-time systems with a
hierarchical mix of dynamic and static scheduling.

In the 2006 paper An Interface Algebra for Real-Time Components [HM06]
Henzinger and Matic present an interface theory for real-time systems. They
prove both incremental design and independent implementability.

In the 2006 paper Real-time interfaces for composing real-time systems [TWS06]
Thiele et al. aim a unifying different approaches to real-time interfaces. They
prove refinement and independent implementability and state the requirements
that exist to a given framework for these properties to be fulfilled. They also
introduce the novel notion of adaptive interfaces, which support features like
modelling of end-to-end delays, buffer spaces and energy consumption. The ap-
plicability of the presented framework is demonstrated by applying it to a number
of real-time analysis models.

Other Applications

In the 2005 paper An Interface Theory Based Approach to Verification of Web
Services [CWD+06] Chen et al. present a framework for verification of web ser-

Interface Theories 25

vices in which different properties can be verified at different levels of abstraction.
The web services are described as Web Service Interfaces [BCH05]

In the 2006 paper An algebraic theory for behavioral modeling and protocol
synthesis in system design [TG06] an interface framework for the multiple-clocked
synchrony of the chip design world is defined.

Tools

The theory of interface automata is implemented in the tool Chic which seems
to no longer be actively developed. It has been replaced by the tool Ticc

[AdAdS+06] which implements compatibility checking and composition of inter-
faces from the more expressive interface theory of Sociable Interfaces presented
in [dAdSF+05].

This concludes my chosen coverage of related literature within the field of
behavioral interface theory. I have tried to include everything that has been
published which is directly inspired by Interface Automata [AH01]. The coverage
of literature related to behavioral type systems is much more sparse, mainly due
to the fact that this filed of research seems to be both bigger and more diverse. A
closer study of the relation between the two fields could be relevant future work.

26 Introduction

4 Software Product Lines

The term Software Product Line (SPL) is used to describe a set of related software
products with many similarities but varying functionality. SPLs are also know as
software product families and in this context the individual software products are
referred to as family members. Such families of software products arise in many
different contexts. Two main examples are Enterprise Resource Planning (ERP)
Systems and embedded software for families of related hardware devices, such as
mobile phones. The process of managing the development of SPLs is generally
referred to as software product line engineering.

Product 1

A1 B2

Component A

A1
A2
A3

Component B

B1
B2
B3 Product 3

A3 B1

Product 2

A2 B2

Domain engineering Application engineering

Figure 14: Figure giving an overview of a SPL setup. On the left: Domain
engineering where general configurable components (assets) describing the func-
tionality in the domain are created. On the right: Application engineering where
the components (assets) are used to create specific products.

The software product line engineering process is generally divided into two
separate processes: Domain engineering and application engineering. Software
product line engineering is based on heavy reuse of the same components in dif-
ferent software products within the same line of products. It sets itself apart
from normal software reuse in the way the reusable components are developed.
They are not created in an ad hoc style where they are created specifically for
one product first and then later adapted for general reuse. Through the process
of domain engineering they are created with the original intent of being gen-

Software Product Lines 27

eral components that can be reused in several software products. These general
components are also known as assets. In this process the intent is to capture
all common functionality and group it together as components that can be used
as building blocks. The process of creating an individual product of the SPL is
known as application engineering.

The field of research concerning SPLs is very diverse in that it stretches
all the way from software engineering topics such as requirements engineering
[BHLP06, KE03], concrete industrial case studies [JB02, Bos99] over new devel-
opment paradigms [BFK+99] to formal methods. A general overview of Software
Product Line Engineering can be found in [PBvdL05]. In this section we will
only cover the combination of SPLs with formal methods and in particular focus
on behavioral models.

Feature Models

A feature model is a formalism for describing variability and commonality in a
software product family. Many different feature models have been proposed in the
literature [KCH+90, CHE05, Bat05]. A very simple feature model is presented in
Figure 15. A feature model describes both what features remain fixed for every
member of the product family and which features are variation points.

Phone

Display Comm. Technology

Black and White GSMColor UMTS

Figure 15: Figure showing a very basic feature model for a phone product line.
The model describes that it is optional for the phone to have a display but
required to have some form of communication technology. It also shows that in
this particular feature model it is only possible to have exactly one type of display
out of two choices. On the other hand it is allowed to have one or two forms of
communication technologies.

In the 2004 paper [JB04] Jaring and Bosch present a formalization of variabil-
ity dependencies in SPLs. Through a case study in designing a program monitor

28 Introduction

and exception handler they show that the robustness of a SPL architecture is
related to the type of variability.

Feature models can be translated into propositional formulas. In the 2007
paper [CW07] Czarnecki and Wąsowski describe a method for doing a form of
reverse engineering in extracting feature models from propositional formulas.

4.1 Behavioral Models

The following section describes our research and related work within the field of
behavioral models for software product line development. The behavioral models
differentiate themselves from general feature models, in that they describe not
only the structure of which components can be combined, but also the behavior
of the individual components.

Color-blindness

In Paper A we present an SPL framework build around formal models and model
transformations. The formal models that we use are State/Event Systems a
variant of statecharts [Har87]. The research is a behavioral extension of the
static concepts presented in [Wąs04]. The general structure of the framework is
shown in Figure 16. In our framework the domain engineering process consists
of creating one model that incorporates all the functionality that any product
in the product line is going to have. The individual product is then constructed
by first specifying an environment description for the given product. Secondly
the general model is then transformed according to the environment. Thirdly the
actual source code for the product is auto generated from the transformed model.
Automated code generation from the similar formalism is covered in [Wąs03,
Wąs05]. One approach to SPL engineering is to combine it with automated code
generation from formal modals of the software that should be created.

Because all functionality is organized in one model the approach might, in its
current form, be less suited towards larger product families. The general idea on
the other hand is not restricted in this way. The general model might equally
well be a collection of components that can be combined. The novel aspect of
the theory is that the environments describe the inability of the environment
to distinguish various output. This inability is dynamic in such a way that
one might specify that the environment cannot distinguish two different lamps
flashing, but only in the case where button B is pressed and not when button A
is pressed. Paper A gives an example of a product line of alarm clocks in which,
as one of the examples, different levels of lighting cannot be distinguished. This
environment model represent the fact that the developer intend to only use one
type of light bulb in this cheaper model. By specifying this inability, the model
can be specialized and very likely become smaller. Thus resulting in a smaller
code size for the given product.

Software Product Lines 29

snooze!.
ignore{beepOff}?
...

equiv{glow,
lightOff}?
...

models

compilation compilationcompilation

the cheapest product

sp
ec

ia
liz

at
io

n

sp
ec

ia
liz

at
io

n

a medium productthe greatest product

modeling language

target language

hardware+softwareproducts

programs

specifications environment language

07:03 07:0307:03

armed fired delayed
alarmTO/

beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

∨snoozeTO ∧ delayed/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark
/glow

backlight

day night
dark

brightsensor

armed fired
alarmTO/

beepOn

beepOff
alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark
/glow

(alarm ∧ fired ∨ snoozeR)
∧night / glow

backlight

day night
dark

brightsensor

C2
armed fired

alarmTO/
beepOn

beepOff
alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

on

((alarm ∧ fired) ∨ snoozeR)/lightOff

off/glowing

snooze
backlight

C4

Figure 16: Overview of a product line of alarm clocks. The top left model is the
general State/Event System model specified by the developer. The developer has
also specified the usage descriptions in the form of environments, above the two
rightmost columns. This figure is the same as Figure A.1.

Modal I/O Automata

In Paper C we present a behavioral variability theory for product line devel-
opment. This work is closely linked to the interface theory also presented in
Paper C. The components are again specified as Modal I/O Automata. In this
case the Modal I/O Automata are not only descriptions of the interface of the
components that may later be implemented. They are now descriptions of already
existing configurable components. Each model describes a family of component
variants. For the interface theory the type of question that was answered was of
the type: What is the composite interface of two components such that all pos-
sible implementations of the two interfaces will always function together? In the
product line theory based on Modal I/O Automata we ask the question: Is there
at least a pair of implementations of the two components such that these two
implementations will function correctly together? The outcome of this question
is an interface describing all products that can be created from the components at
hand. Given an interface that specifies the desired component it is now possible
to check refinement between this interface and the model of all possible products.
In this way one can determine if the desired product can be built by configuring
already existing assets.

30 Introduction

Extended Modal Transition Systems

In the 2007 extended abstract A behavioural model for product families [FG07]
Fantechi and Gnesi proposes the new model called Extended Modal Labelled
Transition Systems (EMLTSs). They transform Product Line Use Cases (PLUCs)
into EMLTSs. The internal consistency of a family of products defined as an
EMLTS can be verified as well as the family membership of a specific product,
specified as a LTS, can be checked via a refinement relation. The complexity of
checking this refinement relation is not discussed. Citing [LNW07a] they state
that their novel aspect in comparison to our work is the ability to specify that
at least k of n possible transitions should be chosen at a particular point. A sub
case of this is the common scenario where exactly one of a set of components
should be chosen.

In the 2006 paper A foundation for behavioural conformance in software prod-
uct line architectures [FUB06] Fischbein, Uchitel and Braberman define a novel
conformance relation to check whether a LTS is an implementation of a given
modal transition system. The conformance relation, which is called Branching
Implementation is established via a fix-point algorithm. The conformance rela-
tion does not apply directly to checking whether one interface is a refinement of
another, for this purpose they suggest a version of thorough refinement where one
interface refines another if all implementations of one are also implementations
of the other. They hint that this relation might be hard to establish algorith-
mically and based on the PSPACE-hardness proof for the very similar thorough
refinement in Paper E we conjecture that this refinement is indeed PSPACE-hard.

Thesis Summary 31

5 Thesis Summary

Paper A: Modeling Software Product Lines Using Color-

blind Transition Systems

Families of embedded discrete finite state programs are modeled using input-
enabled alternating transition systems. One model describes all functionality,
while each variant is defined by an environment, describing its possible uses. The
environments show both the inputs that a system can receive and indicate which
of the system’s responses are relevant for the environment. The latter trait,
called color-blindness, creates new possibilities for system transformations in the
specialization process. We demonstrate the use of the framework by applying
it to two classes of realistic design languages. An example of a product line of
alarm clocks is used throughout the article.

Contributions

• Introduces the concept of color-blindness; an environments inability to see
the difference between certain output.

• Describes a framework for product lines that can be instantiated for differ-
ent design languages.

• Describes how specialized models can be automatically generated from one
family-model and several color-blind environment models.

• Applies the product line framework to two different, realistic design lan-
guages.

Publication History

A short abstract on the research was presented at the 16th Nordic Workshop on
Programming Theory (NWPT’04). An earlier version of this paper [LLW05] was
presented at the 8th international conference on Formal Approaches to Software
Engineering (FASE’05) and published in LNCS volume 3442 [Cer05]. The present
version was published in a special issue of the International Journal on Software
Tools for Technology Transfer (STTT) devoted to FASE’04/05. [LNW07b]

32 Introduction

Paper B: Interface Input/Output Automata

Building on the theory of interface automata by de Alfaro and Henzinger we
design an interface language for Lynch’s I/O automata, a popular formalism
used in the development of distributed asynchronous systems, not addressed by
previous interface research. We introduce an explicit separation of assumptions
from guarantees not yet seen in other behavioral interface theories. Moreover we
derive the composition operator systematically and formally, guaranteeing that
the resulting compositions are always the weakest in the sense of assumptions,
and the strongest in the sense of guarantees. We also present a method for
solving systems of relativized behavioral inequalities as used in our setup and
draw a formal correspondence between our work and interface automata.

Contributions

• An interface theory based on I/O automata.

• Introduces an explicit split of assumptions from guarantees in the specifi-
cation of interfaces.

• A formally derived composition operator for interfaces, guaranteeing that
the resulting compositions are always the weakest in the sense of assump-
tions, and the strongest in the sense of guarantees.

• Presents a method for solving systems of relativized behavioral inequalities.

• A formal correspondence between our work and Interface Automata [AH01].

Publication History

The first version of this research was presented at the first workshop on Foun-
dations of Interface Technologies (FIT 2005) held in conjunction with CONCUR
2005. The current version of the work [LNW06b] was presented at the 14th In-
ternational Symposium on Formal Methods (FM 2006) and published in LNCS
volume 4085 [MNS06]. An extended version including all proofs and extra mate-
rial was published as a technical report [LNW06a].

Thesis Summary 33

Paper C: Modal I/O Automata for Interface and Product

Line Theories

Alfaro and Henzinger use alternating simulation in a two player game as a refine-
ment for interface automata [AH01]. We show that interface automata correspond
to a subset of modal transition systems of Larsen and Thomsen [LT88], on which
alternating simulation coincides with modal refinement. As a consequence a more
expressive interface theory may be built, by a simple generalization from interface
automata to modal automata. We define modal I/O automata, an extension of
interface automata with modality. Our interface theory that follows can express
liveness properties, disallowing trivial implementations of interfaces, a problem
that exists for theories build around simulation preorders. In order to further
exemplify the usefulness of modal I/O automata, we construct a behavioral vari-
ability theory for product line development.

Contributions

• Shows that Interface Automata [AH01] corresponds to a subset of modal
transition systems of Larsen and Thomsen [LT88]. On this subset alternat-
ing simulation coincides with modal refinement

• Formally defines modal I/O automata, an extension of interface automata
with modality.

• Describes an interface theory which can express liveness properties, disal-
lowing trivial implementations of interfaces.

• Describes a behavioral variability theory for product line development.

Publication History

The paper [LNW07a] was presented at the 16th European Symposium on Pro-
gramming (ESOP 2007) and published in LNCS volume 4421 [Nic07].

34 Introduction

Paper D: On Modal Refinement and Consistency

Almost 20 years after the original conception, we revisit several fundamental
question about modal transition systems. First, we demonstrate the incomplete-
ness of the standard modal refinement using a counterexample due to Hüttel.
Deciding any refinement, complete with respect to the standard notions of im-
plementation, is shown to be computationally hard (co-NP hard). Second, we
consider four forms of consistency (existence of implementations) for modal spec-
ifications. We characterize each operationally, giving algorithms for deciding, and
for synthesizing implementations, together with their complexities.

Contributions

• Demonstrates the incompleteness of the standard modal refinement using
a counterexample due to Hüttel.

• Deciding any refinement, complete with respect to the standard notions of
implementation, is shown to be computationally hard (co-NP hard).

• Operational characterizations of four different forms of consistency.

• Algorithms for synthesizing implementations for all four consistencies.

Publication History

The paper [LNW07c] was presented at the 18th International Conference on Con-
currency Theory (CONCUR 2007) and published in LNCS volume 4703 [CV07].

Thesis Summary 35

Paper E: Complexity of Decision Problems for Mixed and

Modal Specifications

We consider decision problems for modal and mixed transition systems used as
specifications: the common implementation problem (whether a set of speci-
fications has a common implementation), the consistency problem (whether a
single specification has an implementation), and the thorough refinement prob-
lem (whether all implementations of one specification are also implementations
of another one). Common implementation and thorough refinement are shown to
be PSPACE-hard for modal, and so also for mixed, specifications. Consistency is
PSPACE-hard for mixed, while trivial for modal specifications. We also supply
upper bounds suggesting strong links between these problems.

Contributions

• Proves PSPACE-hardness for both mixed and modal specification for com-
mon implementation and thorough refinement.

• Proves PSPACE-hardness for consistency of mixed specifications.

• Shows an upper bound of EXPTIME for common implementation, consis-
tency and thorough refinement.

• Establishes a reduction from common implementation of mixed and modal
specification to consistency of mixed specifications.

• Establishes a reduction from consistency of mixed specifications to thorough
reduction of mixed specifications.

Publication History

The paper [AHL+08] was presented at the Eleventh International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2008)
and published in LNCS volume 4962.

36 Introduction

Paper A

Modeling Software Product Lines
Using Color-blind Transition
Systems

Kim G. Larsen, Ulrik Nyman
Department of Computer Science,
Aalborg University, Denmark

Andrzej Wąsowski
Computational Logic and Algorithms Group,
IT University of Copenhagen, Denmark

Abstract

Families of embedded discrete finite state programs are modeled using input-
enabled alternating transition systems. One model describes all functionality,
while each variant is defined by an environment, describing its possible uses. The
environments show both the inputs that a system can receive and indicate which
of the system’s responses are relevant for the environment. The latter trait,
called color-blindness, creates new possibilities for system transformations in the
specialization process. We demonstrate the use of the framework by applying
it to two classes of realistic design languages. An example of a product line of
alarm clocks is used throughout the article.

Keywords: Product Lines, Embedded Software, Labeled Transition Systems,
Modeling, Relativized Simulation

37

38 Paper A: Modeling Software Product Lines Using Color-blind...

1 Introduction

Modern software becomes increasingly customizable. Embedded devices are often
produced in multiple variants, each needing different software. Our long-term goal
is to provide a theoretical foundation, tools, and a methodology for maintenance
of a family of embedded software products with similar but varying degree of
functionality. Such a family of products is usually known as a product line, and
the process of maintaining the software is known as product line management
[CN01, Gom01]. The present work focuses on a framework for modeling software
product lines and specifying correctness of transformations used in automatic
derivation of family members.

In design of embedded software the final code size is often essential for the
financial success of the product. Even a small reduction in code size may allow
reductions in the production cost, if it makes it possible to use cheaper hard-
ware. Our communications with vendors confirm that many electronic systems
are produced in such large quantities that even a small reduction for each device
can bring enormous savings.

Manual implementation of the different versions of software for different ver-
sions of the product can keep the final code sizes close to optimal, while driving
up the software development cost significantly. The general idea of product line
management is to avoid explicit maintenance of multiple versions of the software,
and use methods for design and development of the entire product family as a
whole.

We propose to use a single general model as a description of all available
functionality in a product family. Such a family may evolve over time, and so
can the general model, but we do not consider this here. A set of hierarchically
organized specifications describes the different environments in which each version
of the embedded software will operate. Pragmatically speaking environments are
descriptions of all possible uses for a given variant of the product. A simpler
system variant usually allows fewer sensor inputs and fewer actuator outputs,
which corresponds to environments not providing the inputs, or not caring about
specific responses received. We will say that the implementation of the system has
been specialized correctly to a given variant if the restricting environment cannot
see the difference between the original and specialized versions of the program.

Fig. A.1 gives an overview of the setup. The designer needs to create the
model containing the complete set of functionality (top-left state diagram) and
the environment specifications (top row). In the depicted setup the general model
is specialized to a given environment in the model language before being com-
piled into the target language. The model obtained after the specialization should
behave identically to the general model as long as the environment behaves ac-
cording to its specification. In pragmatic terms this means that if the environment
models the hardware and the system is specialized with respect to this model,
it should behave as expected as long as it is run on the hardware respecting the

Introduction 39

snooze!.
ignore{beepOff}?
...

equiv{glow,
lightOff}?
...

models

compilation compilationcompilation

the cheapest product

sp
ec

ia
liz

at
io

n

sp
ec

ia
liz

at
io

n

a medium productthe greatest product

modeling language

target language

hardware+softwareproducts

programs

specifications environment language

07:03 07:0307:03

armed fired delayed
alarmTO/

beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

∨snoozeTO ∧ delayed/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark
/glow

backlight

day night
dark

brightsensor

armed fired
alarmTO/

beepOn

beepOff
alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark
/glow

(alarm ∧ fired ∨ snoozeR)
∧night / glow

backlight

day night
dark

brightsensor

C2
armed fired

alarmTO/
beepOn

beepOff
alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

on

((alarm ∧ fired) ∨ snoozeR)/lightOff

off/glowing

snooze
backlight

C4

Figure A.1: Overview of a product line of alarm clocks. The top left model is the
general model specified by a developer. User also provides usage descriptions in
the form of environments (on the very top).

assumptions.
A compelling example of how different two versions of the same product can

be, can be found on Fig. A.2, which shows the front of two different coffee vending
machines by Wittenborg. The simple machine, FB 55, has no coin collection unit
or choice of additives, such as sugar or milk. Such a simple coffee machine is
ideal in circumstances where the coffee is pre-paid, and where the simplicity is
important because people are in a hurry. Indeed many even simpler Wittenborg’s
machines have recently been seen at open areas of Frankfurt and Munich airports.
The more complex machine, ES 5100, is more appropriate for an environment
where people use the same machine every day, such as at work (one can be seen
in CISS, where two of the authors are employed). The control software for these
two machines could have been constructed by creating one model containing
the comprehensive functionality of the most complex coffee machine and then
creating environments for simpler coffee machines. The environments could state
that the user would never use certain buttons, in that these buttons would not
be physically present on the machine.

Throughout the article we will use an alarm clock example. In order to
produce several different versions of alarm clocks we only need to design a general
model with all the functionality (Fig. A.3) and specify the environments in which
the other versions of the alarm clocks are expected to function. Fig. A.7 shows
a very restricted version of the alarm clock, with much less functionality. This
alarm clock can be derived from the original model given a description of an
environment.

40 Paper A: Modeling Software Product Lines Using Color-blind...

Figure A.2: Two variants of Wittenborg’s coffee machine. The simple FB 55
(left) has few buttons and no coin collection unit. The advanced ES 5100 (right)
provides the user with the choice of different coffee specialties and additives.

Our environments not only restrict possible input stimuli, but also exhibit
inabilities in distinguishing output stimuli. Some outputs are indistinguishable
for a given environment in the same way as a color-blind person cannot distinguish
some colors. In the case of Fig. A.7 the environment cannot, among other things,
see the difference between the light in the clock glowing or being completely off.
Inability of a given environment to distinguish certain outputs is dependent on
the state of that environment. Thus an environment can specify that a user, after
pressing one button, will not distinguish between two different outputs, but will
distinguish between these two outputs again after pressing another button, e.g.
a reset button.

The paper proceeds as follows. Section 2 introduces state/event systems and
motivates our work using the alarm clock example. I/O alternating transition
systems are presented in section 3, while the concept of color-blindness is in-
troduced in section 4. Composition operators for environments are discussed in
section 5. Section 6 focuses on adaptation to realistic design languages. The
main alarm clock example is completed in section 7. In section 8 we briefly touch
on available techniques that can be used in specializing code for product variants.
Sections 7–10 refer the related work and conclude.

State/Event Systems 41

2 State/Event Systems

Let Event and Action be finite sets of environment stimuli and system outputs
respectively. A state/event machine Mi = (Si, s

0
i , Ti) is a triple comprising a set

of local states Si, the initial state s0
i ∈ Si and a set of syntactic transitions Ti.

A state/event system consists of n machines M = {M1, . . . ,Mn} with mutually
disjoint sets of states. A global state of the system is a tuple of local states:
State = S1 ×S2 × · · ·×Sn. Transitions in Ti ⊆ Si×Event×Guard×Action×Si
describe reactions undertaken by Mi in reply to a given event, in a given local and
global state. Global states are described by transition guards: simple Boolean
expressions over activity of states, which can be evaluated in any given global
state, giving rise to a natural satisfaction relation � ⊆ State × Guard.

State/event systems are input-enabled : the local transition relation includes
not only the syntactical transitions but also self loops for all configurations for
which reactions are not specified. We write s e o

−−−→i s
′
i, meaning that the reaction

of machine Mi to arrival of event e in global state s is, to change the local state
to s′i and generate the set of actions o:

s
e {a}
−−−−→i s

′
i iff ∃g. (πi(s), e, g, a, s

′
i) ∈ Ti ∧ s � g

s e ∅
−−−→i πi(s) otherwise,

where πi(s) denotes the i’th projection of s. The global transition relation

T ⊆ State × Event × P(Action) × State

subsumes all local reactions

s
e o
−−−→s′ ⇔def ∀i.s

e oi−−−→i πi(s
′) where o = o1 ∪ . . . ∪ on.

Fig. A.3 depicts a state/event model C0 of an alarm clock. The essentials of the
alarm clock are handled by the timer machine. If the timer is in the armed state
and the hardware sends an alarm time-out event (alarmTO) then the beeper is
turned on. The actual timers are not part of the modeled system, and thus the
environment sends a time-out event to the system with a certain delay after a
hardware timer has been activated. The user can postpone the alarm by pressing
the snooze button (event snooze), which allows him to continue sleeping until
the snooze timer times out (snoozeTO). Releasing the button sends a snoozeR
event to the model. The backlight machine controls the built-in lamps. Only a
faint light is displayed in the glowing state, such that the display can be read in
the dark. The full light is on while the alarm is beeping or the snooze button
is being pressed. The sensor machine models the current external light level.
Events dark and bright are generated by the sensor driver whenever the light
level around the clock changes above or below some threshold.

42 Paper A: Modeling Software Product Lines Using Color-blind...

We would like to support automatic derivation of model variants for discrete
control systems like the alarm clock. One such variant C4, which is a very limited
version of the alarm clock is depicted on Fig. A.7. This variant does not have
any snooze functionality, because the environment guarantees that it will never
provide the input snooze. Thus it is as if there were no snooze button on the alarm
clock. This environment also specifies that it cannot see the difference between
the backlight glowing and being completely off. This implies that the hardware
of the clock would only need one lightbulb, for the full light setting, instead of
two lightbulbs for two different light levels. The glowing and off states can now
be combined into one state and the sensor component is no longer necessary.

3 I/O Alternating Transition Systems

The reactive synchronous paradigm seems to be predominant in development of
embedded software. The state/event systems [LNAH+01, IAR] of the previous
section are just an example chosen from a multitude of available formalisms, like
Esterel [Ber00], statecharts [Har87], or Java Card [Sun]. A common assump-
tion about these systems is that they react to any input event at any time and
each reaction occurs infinitely fast, so that the system is always able to observe
the arrival of the next event. Such semantics is conveniently captured by I/O-
alternating transition systems:

Definition 1 An I/O-alternating transition system, or IOATS, is a tuple (In,
Out,Gen,Obs, !

−→, ?
−→, s0), where In and Out are sets of inputs and outputs, Gen

and Obs are finite sets of generators and observers, !
−→ ⊆ Gen × Out × Obs is a

generation relation, ?
−→ ⊆ Obs × In × Gen is an observation relation, and s0 ∈

Gen ∪ Obs is the initial state.

We have distinguished two transition relations: !
−→ is a generation relation ad-

vancing from a generator to an observer, while ?
−→ is an observation relation

advancing from an observer to a generator. This alternation is inherent to the
way synchronous systems operate. We write S o!−→s, instead of (S, o, s) ∈ !

−→ and
s i?−→S instead of (s, i, S) ∈ ?

−→. Small letters are used for observers and capital
letters for generators. In addition observers are required to be input-enabled:

∀s ∈ Obs. ∀i ∈ In. ∃S, o, s′. s i?−→S ∧ S o!−→s′ (A.1)

With these assumptions we can propose a simulation based refinement relation:

Definition 2 Let S1 = (In,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 = (In,Out,

Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) be IOATSs. A binary relation R ∈ Obs1 × Obs2 con-

stitutes a simulation on observers of S1 and S2 iff (s1, s2) ∈ R implies that:

whenever s1
i?−→S1 ∧ S1

o!−→s′1 then also s2
i?−→S2 ∧ S2

o!−→s′2 and (s′1, s
′
2) ∈ R .

I/O Alternating Transition Systems 43

Let R be the largest of such relations ordered by inclusion. An observer s2 sim-
ulates an observer s1, written s1 6 s2, iff (s1, s2) ∈ R. Finally S2 simulates S1,
written S1 6 S2, iff s0

1 6 s0
2.

We distinguish the actual systems from the environments, in which they op-
erate. Environments are free in choice of inputs, while systems independently
determine the outputs. A system S = (InS ,OutS ,GenS ,ObsS ,

!
−→S ,

?
−→S , sS) op-

erates embedded in some environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , sE).

Systems always begin execution in an observer state, so sS ∈ ObsS . Environ-
ments always begin execution in a generator state, so sE ∈ GenE . System S is
compatible with the environment E if InS = OutE and OutS = InE . Composition
of a system S with a compatible environment E is defined in the usual way, by
synchronization on identical labels (and complementary transition types). The
initial observer of the system is composed with the initial generator of the environ-
ment. Due to the compatibility requirement and input-enabledness of observers,
the closed system is able to advance for any input that can be generated by the
environment. For a closed system it is known, which of its states cannot be ex-
ercised by the environment. A given environment may not be able to distinguish
two systems from each other, even though they are not identical. We capture
this with a notion of relativized simulation:

Definition 3 Consider three IOATSs: an environment E = (Out, In,Gen,Obs,
!
−→, ?

−→, E0) and two systems: S1 = (In,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 =

(In,Out,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2). A Gen-indexed family of binary relations

R : Gen → P(Obs1×Obs2) is a relativized simulation iff (s1, s2) ∈ RE implies
that:

whenever E i!−→e ∧ e o?−−→E ′

then whenever s1
i?−→S1 ∧ S1

o!−→s′1
then also s2

i?−→S2 ∧ S2
o!−→s′2 and (s′1, s

′
2) ∈ RE′.

Let R be the largest of such families ordered by component-wise inclusion. We
say that an observer s2 simulates an observer s1 in the generator E, written
E |= s1 6 s2, iff (s1, s2) ∈ RE. The system S2 simulates S1 in the context of E ,
written E |= S1 6 S2, iff E0 |= s0

1 6 s0
2.

The choice of simulation as the preorder underlying our methodology is some-
what arbitrary. Most other behavioral preorders of the linear-time/branching-
time hierarchy of van Glabbeek [vG90] would be adequate, such as testing pre-
order, 2/

3
bisimulation (ready simulation), language inclusion, ioco [Tre96] and

bisimulation. What is important is that the particular preorder preserves prop-
erties of interest and that the preorder may be relativized with respect to envi-
ronmental restrictions.

44 Paper A: Modeling Software Product Lines Using Color-blind...

armed fired delayed
alarmTO/

beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

∨snoozeTO ∧ delayed/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark
/glow

backlight

day night
dark

brightsensor

Figure A.3: The initial model, C0, of the alarm clock

armed fired delayed
alarmTO/

beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed/lightOn

onglowing

∨snoozeTO ∧ delayed/lightOn
alarmTO ∧ armed

off

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

dark
/glow

bright/
lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

snooze

snooze

backlight

day night
dark

brightsensor

C1

Figure A.4: A specialized model, C1, of an alarm clock.

I/O Alternating Transition Systems 45

armed fired
alarmTO/

beepOn

beepOff
alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark
/glow

(alarm ∧ fired ∨ snoozeR)
∧night / glow

backlight

day night
dark

brightsensor

C2

Figure A.5: A specialized model, C2, of an alarm clock.

armed fired
alarmTO/

beepOn

beepOff
alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

onglowing

/lightOn
alarmTO ∧ armed

off

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

dark
/glow

bright/
lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

snooze

snooze

backlight

day night
dark

brightsensor

C3

Figure A.6: A specialized model, C3, of an alarm clock.

46 Paper A: Modeling Software Product Lines Using Color-blind...

armed fired
alarmTO/

beepOn

beepOff
alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

on

((alarm ∧ fired) ∨ snoozeR)/lightOff

off/glowing

snooze
backlight

C4

Figure A.7: A specialized model, C4, of an alarm clock

ignore{}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

ignore{}?

snooze! snoozeR!

dark!

snoozeTO!
bright!

ignore{}?

alarm!

alarmTO!

Figure A.8: Environment Interleave snooze snoozeR.

I/O Alternating Transition Systems 47

E ′
:

ignore{lightOn}?ignore{}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

Figure A.9: Environment E ′ ignoring the lightOn output produced in reaction
to the snooze button.

E ′′
:

ignore{}? ignore{beepOn}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

snoozeTO!
ignore{beepOff}?

Figure A.10: Environment E ′′ ignoring the snooze function of the clock.

E ′′′
:

equiv{glow, lightOff}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

snoozeR!

snooze!

Figure A.11: Environment E ′′′ Equiv glow lightOff .

48 Paper A: Modeling Software Product Lines Using Color-blind...

4 Color-blind I/O-alternating Transition Systems

In the previous section we have stated that two systems are in a refinement
relation with respect to a certain context if this context cannot activate their in-
compatible parts. However, in industrial development, it often happens that the
environment cannot distinguish two systems, not because it makes incompatible
parts unreachable, but because its ability to distinguish different outputs might
be limited depending on its actual state. A variant of the alarm clock may have
only one lightbulb installed, which should be lit whenever the backlight is on
or glowing. The environment, being a model of the hardware in this case, will
treat the glow and lightOn outputs as identical, allowing for optimizations when
generating code for this specific type of hardware.1 For this particular example,
the distinguishing capability of the environment is clearly static and hence the
specification of code optimization is realizable using simple process algebraic op-
erations such as relabelling and hiding. However, environmental restrictions can
be dynamically changing. This is the case for the environment leading to the
specialized model C1 (Fig. A.4). Here the environment only becomes blind for
the lightOn action after the production of the snooze event. To give a proper
treatment of such situations we relax the equivalence of labels in relativized simu-
lation and label observation transitions of environments with sets of inputs called
observation classes. Such transitions can be taken in the presence of any of the
inputs in their observation class.

Definition 4 A color-blind IOATS is a tuple E = (In,Out,Gen,Obs, !
−→, ?

−→, E0),
where In and Out are sets of inputs and outputs, Gen and Obs are finite sets of
generators and color-blind observers, !

−→ ⊆ Gen×Out×Obs is a generation rela-
tion, ?

−→ ⊆ Obs×P(In)×Gen is a color-blind observation relation, and E0 ∈ Gen
is an initial state.

A color-blind environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , E) and a usual

IOATS S = (InS ,OutS ,GenS ,ObsS ,
!
−→S ,

?
−→S , s) are compatible if their signa-

tures match: InE = OutS ∧ OutE = InS . Since we only consider compatible sys-
tems and environments, we fix the meaning of the input and output, choosing
the system’s perspective. We denote the set of inputs of the system by In (which
is also the set of outputs of the environment). Similarly Out is the set of outputs
of the system (but the set of inputs for the environment). A single input will be
denoted by i, single output by o, and classes of outputs by capital O. We still
write E i!−→e instead of (E, i, e) ∈ !

−→ and e O?−−→E instead of (e, O,E) ∈ ?
−→.

We require that the observers in color-blind IOATS are deterministic and
input enabled, so that the observation classes on the transitions outgoing from a

1Note that this is an alternative to the version presented in Fig. A.7, where glow and lightOff
are considered identical.

Color-blind I/O-alternating Transition Systems 49

single state form a partitioning of the inputs into equivalence classes. Formally:

∀e ∈ ObsE .∀O1, O2 ⊆ Out.∀E1, E2 ∈ GenE .

e O1?−−−→E1 ∧ e O2?−−−→E2

⇒ O1 ∩ O2 = ∅ ∨ (O1 = O2 ∧E1 = E2)

∀e ∈ ObsE .∀o ∈ Out.∃O ⊆ Out.∃E ∈ GenE .

e O?−−→E ∧ o ∈ O. (A.2)

The generation relation should also be deterministic:

∀E ∈ GenE . ∀i ∈ In.∀e1, e2 ∈ ObsE .E
i!−→e1 ∧ E i!−→e2 ⇒ e1 = e2 . (A.3)

Note that determinism in this sense does not limit the freedom of the environment
in choosing inputs, but means that each input choice uniquely determines the
target state.

Consider a blind environment B with two states, a generator B and an ob-
server b. Intuitively B can execute all parts of the system, but does not care
about the responses it gets:

∀i ∈ In. B i!−→b and b
Out?−−−→B .

Dually, a perfect vision environment V observes all the outputs:

∀i ∈ In.V i!−→v and ∀o ∈ Out.v {o}?−−−→V .

A compatible environment–system pair forms a closed system, advancing in
lock-steps. The generation transition of the system, synchronizes with the obser-
vation transition of the environment, whenever the output produced falls into the
right observation class. We enrich our previous definition of relativized simulation
to accommodate this new synchronization principle:

Definition 5 Let E = (Out, In,Gen,Obs, !
−→, ?

−→, E0) be a color-blind environ-
ment IOATS and S1 = (In,Out,Gen1,Obs1,

!
−→1,

?
−→1, s

0
1), S2 = (In,Out,Gen2,

Obs2,
!
−→2,

?
−→2, s

0
2) be two system IOATSs. A Gen-indexed family of relations

R :Gen→P(Obs1×Obs2) is a relativized simulation iff (s1, s2)∈RE implies that:

whenever E i!−→e ∧ e O?−−→E ′

then whenever s1
i?−→S1 ∧ S1

o1!−−→s′1 ∧ o1 ∈ O

then also s2
i?−→S2 ∧ S2

o2!−−→s′2 ∧ o2 ∈ O

and (s′1, s
′
2) ∈ RE′.

Let R be the largest of such families ordered by component-wise inclusion. An ob-
server s2 simulates an observer s1 in the context of generator E, written
E |= s1 6 s2, iff (s1, s2) ∈ RE. An IOATS S2 simulates another IOATS S1

in the context of a compatible color-blind IOATS E , written E |= S1 6 S2, iff
E0 |= s0

1 6 s0
2. Finally S1 is equivalent to S2 in the context of E , written S1 ≶E S2,

iff E |= S1 6 S2 and E |= S2 6 S1.

50 Paper A: Modeling Software Product Lines Using Color-blind...

F1:I: F2:M:

i2!

{o4}? {o1, o2}?

i1! {o3}?

i3?

o4!o1!

i2? i1?

i2! {o1}?

{o4}? {o2}?

{o3}?i1!

i3? o3!

o2! o4!

i2? i1?

Figure A.12: Systems M and I and compatible environments F1, F2

Let S1, S2 be IOATSs and E be a color-blind IOATS compatible with them,
as in the above definition. Let R be an endofunction on a Gen-indexed family of
binary relations:

R(R) = λE.{(s1, s2) | ∀i, e, O, E
′. ∀i, S1, o1, s

′
1. ∃S2, o2.

E i!−→e ∧ e O?−−→E ′ ∧ s1
i?−→S1 ∧ S1

o1!−−→s′1 ∧ o1 ∈ O

implies s2
i?−→S2 ∧ S2

o2!−−→s′2 ∧ o2 ∈ O ∧ (s′1, s
′
2) ∈ RE′} .

Proposition 1 A Gen-indexed family of relations R constitutes a relativized sim-
ulation with respect to a color-blind IOATS iff R ⊆ R(R) (inclusion interpreted
component-wise).

Proof 1 R is a monotonic endofunction on the complete lattice of Gen-indexed
famillies of binary relations over Obs1 × Obs2 ordered by inclusion. By Tarski’s
theorem [Tar55] R has the greatest fixpoint

⋂∞
j=0 R

j(λE.ObsS1
×ObsS2

), equal to
the relativized simulation of Def. 5. Since the fixpoint contains all relativized sim-
ulations, we can use a classic proof technique: to show that one IOATS simulates
another in an environment, find any relativized simulation relating them. �

Even though we have initially postulated that typical execution contexts do
not exercise all possible traces of the system, we shall now require that environ-
ments can always produce any of the inputs in In. This requirement surprisingly
does not defeat our initial goal. We can direct all transitions producing impossible
inputs to the observer b and embed the blind environment B with a suitable sig-
nature in every environment. Instead of specifying that the environment cannot
produce i, we state that i can be produced, but the subsequent system behavior
is irrelevant. Proposition 2 justifies this formally:

Proposition 2 For any two observers s1, s2 from IOATSs S1, S2 with identical
signatures: B |= s1 6 s2 (where B ∈ B such that B closes S1 and S2).

Fig. A.12 presents two systems and two compatible color-blind environments.
Environment transitions from generators to the blind observer b have been omit-
ted. There is one such transition for each input–generator pair, for which the
transition is not drawn. Observe that the system M simulates I in the environ-
ment F1 (written F1 |= I 6M) not due to the fact that F1 is not able to exercise
the differing parts of the two systems, but because F1 cannot distinguish between

Color-blind I/O-alternating Transition Systems 51

the outputs (o1, o2) produced by I and M. The F2 environment distinguishes I
and M, by observing the outputs o1 and o2 with two separate transitions.

Relativized simulation is a weaker notion than usual simulation and the per-
fect vision environment V is the most discriminating environment:

Proposition 3 For any two systems S1, S2 and for any compatible color-blind
environment E it holds that S1 6 S2 =⇒ E |= S1 6 S2 and S1 6 S2 ⇐⇒
V |= S1 6 S2.

With the above propositions we have hinted at the notion of discrimination—
the ability of environment to distinguish systems from each other:

Definition 6 A color-blind IOATSF is more discriminating than E , written
E ⊑ F , iff F distinguishes more processes: E ⊑ F iff ∀S1,S2.F |= S1 6 S2 ⇒
E |= S1 6 S2.

The blind environment B is the least discriminating—it cannot distinguish
any two systems from each other (proposition 2). By proposition 3 the perfect
vision environment V is the most discriminating one.

The notion of discrimination will soon prove fundamental for our develop-
ments. We shall use it to design composition operators for behavioral properties,
facilitating hierarchical modeling of product lines. Unfortunately the definition
of the discrimination is rather abstract. The quantification over all systems,
makes it infeasible to reason about it mechanically. To remedy this obstacle we
introduce a new preorder on environments: a simulation for color-blind IOATSs.

Definition 7 Let E = (Out, In,GenE ,ObsE ,
!
−→E ,

?
−→E , E

0) and F = (Out, In,
GenF ,ObsF ,

!
−→F ,

?
−→F , F

0) be color-blind environments. A pair of binary rela-
tions, R1 ⊆ GenE × GenF and R2 ⊆ ObsF × ObsE , constitutes a simulation be-
tween states of color-blind IOATSs iff (E,F) ∈ R1 implies that

whenever E i!−→e then also F i!−→f and (f, e) ∈ R2 ,

and (f, e) ∈ R2 implies that whenever f Of?−−−→F

then also e Oe?−−−→E and Of ⊆ Oe and (E,F) ∈ R1 .

Let (R1, R2) be the largest such pair of relations (ordered by point-wise inclusion).
A generator F simulates a generator E, written E 6 F , iff (E,F) ∈ R1. An
observer e simulates an observer f , written f 6 e, iff (f, e) ∈ R2. An environment
F simulates E , written E 6 F , iff E0 6 F 0.

Let E , F be color-blind environments as in the above definition. Let S be an
endofunction on pairs of binary relations on states of these environments such

52 Paper A: Modeling Software Product Lines Using Color-blind...

that:

S(R1, R2) = ({(E,F) | ∀i, e. ∃f.E i!−→e =⇒ F i!−→f and (f, e) ∈ R2},

{(f, e) | ∀Of , F
′. ∃Oe, E

′. f Of ?−−−→F ′ =⇒ e Oe?−−−→E ′

and Of ⊆ Oe and (E ′, F ′) ∈ R1})

Proposition 4 A pair of binary relations (R1, R2) constitutes a simulation be-
tween color-blind IOATSs iff (R1, R2) ⊆ S(R1, R2) (pointwise inclusion).

Proof 2 S is a monotonic endofunction on a complete lattice of pairs of bi-
nary relations. By Tarski’s theorem S has the greatest fixpoint

⋂∞
j=0 S

j(GenE×
GenF ,ObsF ×ObsE), equal to the simulation of Def. 7. Since the fixpoint con-
tains all simulations, it enables use of the known proof technique: to show that
an IOATS simulates another, find any simulation relating them. �

The simulation preorder can be established mechanically for finite state sys-
tems using state exploration [EMCGP99]. Thanks to the following central result,
these techniques can also be used to verify discrimination properties:

Theorem 5 For any two color-blind environments E and F : E ⊑ F iff E 6 F .

We prove the theorem at the state level, which generalizes directly to the
IOATS level.

Definition 8 Let E and F be color-blind environments with identical signatures
and let E ∈ GenE , F ∈ GenF be generators. The generator F is more discrimi-
nating than E, written E ⊑ F , iff for all observers s1, s2 of all systems S1, S2

(compatible with E , F) F |= s1 6 s2 implies E |= s1 6 s2.

Lemma 1 For any generators E ∈ GenE and F ∈ GenF it holds that E 6 F ⇒
E ⊑ F .

Proof 3 Let S1, S2 be systems compatible with E , F . Also let E 6 F , like
in the lemma. We show that for any observers s1, s2 of S1 and S2 respectively,
F |= s1 6 s2 implies E |= s1 6 s2, or in other words that (6F) ⊆ (6E). We
proceed in two steps: first we introduce a GenE -indexed family of relations R
such that (6F) ⊆ RE, second we argue that RE is an E-relativized simulation, so
RE ⊆ (6E).

RE = {(s1, s2)∈ObsS1
×ObsS2

| ∃F ′∈GenF . E 6 F ′ ∧ F ′ |= s1 6 s2}

First step: (6F) ⊆ RE, since E 6 F . Second step: take s1, s2 and E ′ such
that (s1, s2) ∈ RE′. Let E ′ i!−→e′ and e′ Oe?−−−→E ′′ and s1

i?−→S1 and S1
o1!−−→s′1 and

Color-blind I/O-alternating Transition Systems 53

i1?

ik?

o!l(I, o) L(I, o)

i1?

ik?

o′!l(In, o′) L(In, o′)

S1 : S2 :

ik?

i1?

ik−1?

o′!

o′′!
S1

ik?

i1?

ik−1?

o!
S′

1

L(In, o)

ik?

i1?

ik−1?

o!
S′

2

L(In, o)

S1 : S2 :

Figure A.13: a) L(I, o). b) Counter example systems S1 and S2. c) S1 and
S2 created in the inductive step of the proof of lemma 2. Although all these
examples assume that In = {i1, . . . , ij}, the finiteness of In is only a visualization
convention and is not relied upon in the proofs.

o1 ∈ Oe. We need to find S2, o2, s
′
2 such that s2

i?−→S2 and S2
o2!−−→s′2 and o2 ∈ Oe

and (s′1, s
′
2) ∈ RE′′. But since (s1, s2) ∈ RE′ there must exists F ′ such that

F ′ |= s1 6 s2 and E ′ 6 F ′. The latter means that there exist f ′, Of , F
′′ such that

F ′ i!−→f ′ and f ′ Of?−−−→F ′′ and o1 ∈ Of ⊆ Oe and E ′′ 6 F ′′, which combined with the
former implies that s2

i?−→S2 and S2
o2!−−→s′2 and o2 ∈ Of ⊆ Oe. It remains to be

shown that (s′1, s
′
2) ∈ RE′′, which follows from the definition of R, as E ′′ 6 F ′′.

Lemma 2 For any generators E ∈ GenE and F ∈ GenF it holds that E ⊑ F ⇒
E 6 F .

For a set of inputs I ⊆ In and an output o ∈ Out define a looping system
L(I, o) (Fig. A.13). Let L(I, o) denote a generator and l(I, o) denote an observer.
In L(I, o) there is an observation transition from l(I, o) to L(I, o) for every i ∈ I
and a single generation transition L(I, o) o!−→l(I, o).

Proof 4 We prove the contrapositive: for all E ,F and E, F , their generators,
E 66 F implies E 6⊑ F (there exist systems S1,S2 and their observers s1, s2 such
that F |= s1 6 s2 but E 6|= s1 6 s2).

Since E 66 F then there exists n ≥ 1 such that (E,F) ∈
⋂n−1
j=0 S

j(GenE ×

GenF ,ObsF × ObsE) and (E,F) /∈
⋂n
j=0 S

j(GenE × GenF ,ObsF × ObsE).
1◦. if n = 1 then there exist input ik, observation class Of and observers e,f
such that E ik!−−→e and F ik!−−→f and f Of !−−→F ′, but for all transitions outgoing from
e, e Oe?−−−→E ′, we have that Of 6⊆ Oe. Because of this and the fact that the obser-
vation classes of e form a partitioning of Out (see (A.2)), there exist two distinct
observation classes O′

e, O
′′
e of e, such that O′

e ∩ Of 6= ∅ and O′′
e ∩ Of 6= ∅. Let o′

be an arbitrary element from O′
e ∩Of and similarly o′′ ∈ O′′

e ∩Of . We shall now

54 Paper A: Modeling Software Product Lines Using Color-blind...

construct our two systems S1 and S2. The idea is that the first steps of S1 and S2

differ insufficiently to be distinguished by f , but sufficiently for e to distinguish
them. In the subsequent steps both systems behave identically. Let S1 just consist
of l(In, o′) and S2 be as on Fig. A.13b. It is easy to observe that F |= s1 6 s2,
but E 6|= s1 6 s2.

2◦. Inductive step. Now consider that n > 1. In a similar manner as above we
would like to construct two systems which violate E-relativized simulation in the
nth step on the very trace, on which E and F disagree. On all other traces of
length n, and all longer traces they should behave identically.

Consider the prefixes of the execution witnessing E 66 F : E ik!−−→e,e Oe?−−−→E ′

and F ik!−−→f , f Of?−−−→F ′. Since n > 1, Of ⊆ Oe and there exists a violation of
simulation between E ′ and F ′ in n− 1 steps. By our induction hypothesis there
exist systems S ′

1 and S ′
2 and states thereof S ′

1 and S ′
2 such that F |= S ′

1 6 S ′
2

and E 6|= S ′
1 6 S ′

2. We create a new pair of systems S1 and S2 by adding new
initial observers s1, s2 and generators S1, S2 with transitions s1

ik?−−→S1, S1
o!−→s′1

and s2
ik?−−→S2, S2

o!−→s′2, where o ∈ Of ⊆ Oe and s′1 and s′2 are the initial states
of S ′

1 and S ′
1. Both for s1 and s2 we also add transitions for all inputs different

than ik to l(In, o). See Fig. A.13c. It is not hard to see that F |= s1 6 s2, but
E 6|= s1 6 s2. �

5 Composition of Behavioral Properties

Typical code generators do not use any context information, assuming that the
model is combined with the perfect vision environment V. Another extreme
would be a program synthesis tool requiring a precise environment model, im-
posing a significant burden on engineers. We propose light-weight, composable,
partial specifications of environments in the form of behavioral properties like:
that certain events always come interleaved (e.g. on/off switch), or that there is
causality between an input and an output (e.g. a timer only timeouts after it has
been started). Each property can be expressed as a simple color-blind IOATS. In
this section we consider ways of composing such properties in a conjunctive and
disjunctive manner. Conjunctions express adding up inabilities of environments.
If one event is unobservable and another event is unobservable then both are
unobservable. Disjunctions express adding up abilities. If one event is observ-
able or another is observable, then both might be observable. This means that
conjunction decreases discriminative power, making observation classes coarser
in the transition systems representing properties, while disjunction increases dis-
criminative power, making observation classes finer. It turns out that the suitable
semantics for both connectives can be constructed using greatest lower bounds
(glbs) and least upper bounds (lubs) with respect to the discrimination preorder
⊑.

As said before, every observer e of a color-blind IOATS induces a partitioning

Composition of Behavioral Properties 55

of Out into observation classes. Let us denote this partitioning by Pe. The set of
all equivalence relations over Out ordered by inclusion forms a complete lattice
(and hence the set of all partitionings). Consequently for any set of partitionings
{Pk}k∈L there exist the greatest lower bound

d
k∈L Pk, which is the coarsest par-

titioning finer than any of Pk and the least upper bound
⊔

k∈L Pk, which is the
finest partitioning coarser than all Pk.

The composition is defined for environments with the same I/O signatures.
We consider two kinds of composition: a sum and a product. Due to the alter-
nating nature of communication in our setup, sums and products alternate too:
a sum of generators evolves into a product of observers, and dually a sum of
observers evolves into a product of generators.

Definition 9 Let E = (Out, In,GenE ,ObsE ,
!
−→E ,

?
−→E , E

0) and F = (Out, In,
GenF ,ObsF ,

!
−→F ,

?
−→F , F

0) be color-blind environments. We define their sum to
be a color-blind IOATS E+F = (Out, In,GenEF ,ObsEF ,

!
−→, ?

−→, {E0, F 0}), where
GenEF = P(GenE∪GenF), ObsEF = P(ObsE∪ObsF) and !

−→, ?
−→ are defined by

recursively applying the SG and PO rules given shortly.

Sums intuitively correspond to disjunctions of properties. The composition is
synchronous: all composed generators take identical steps simultaneously. From
the system’s perspective a single input is generated. A sum should be as dis-
criminating as any of the summands. For this reason after taking a generation
transition over an input i, the sum advances to a product of generators reachable
by i from any of the summands. This product, which also embeds determiniza-
tion, builds the coarsest observation relation that is finer than any of the original
observation relations, guaranteeing that indeed the constructed observer is as
discriminative as necessary:

E1
i!−→e1 . . . En

i!−→en
n
∑

k=1

Ek
i!−→

n
∏

k=1

ek

SG

O ∈
nd
k=1

Pek
E = {E|∃1 ≤ k ≤ n.∃O′ ⊆ Out.ek

O′?−−−→E ∧ O ⊆ O′}

n
∏

k=1

ek
O?−−→
∑

E

PO

Observation classes in the product of observers (PO) are finer than observation
classes of any of the composed processes. Whenever any output o is observed
by the result of the composition we advance to the state E composed of states
reachable by o from all ek’s. Since O is finer than some class in any of these
observers there is always exactly n such reachable generators.

The product of two environment IOATSs is defined as follows.

56 Paper A: Modeling Software Product Lines Using Color-blind...

Definition 10 Let E = (Out, In,GenE ,ObsE ,
!
−→E ,

?
−→E , E

0) and F = (Out, In,
GenF ,ObsF ,

!
−→F ,

?
−→F , F

0) be color-blind environments. Their product is an
IOATS E × F = (Out, In,GenEF ,ObsEF ,

!
−→, ?

−→, {E0, F 0}), where GenEF =
P(GenE ∪ GenF), ObsEF = P(ObsE ∪ ObsF) and transition relations !

−→, ?
−→

are defined by recursively applying the PG and SO rules given shortly.

A product of generators corresponds to a conjunction of properties (or syn-
chronous composition in CSP [Hoa85]). Again the generator rule is very simple
and synchronous, but the observer rule this time builds the finest observation
relation that is coarser than any of the factors:

E1
i!−→e1 . . . En

i!−→en
n
∏

k=1

Ek
i!−→

n
∑

k=1

ek

PG

O ∈
n
⊔

k=1

Pek
E = {E|∃1 ≤ k ≤ n.∃O′ ⊆ O.ek

O′?−−−→E}

n
∑

k=1

ek
O?−−→
∏

E

SO

Observation classes in the sum of observers (SO) are coarser than classes of
any of the composed observers. The transition relation follows to those generators
that can be reached by any output belonging to such an extended class. The size
of E can exceed the number of original observers n.

The result of a composition is a well-formed color-blind IOATS enjoying the
following essential property:

Theorem 6
∑n

k=1{Ek} is the least environment with respect to 6, which simu-
lates all summands, while

∏n
k=1{Ek} is the greatest environment with respect to

6, which is simulated by all the factors.

Since discrimination and simulation coincide (Thm. 1) ⊑ can replace 6 in
the above theorem: The sum of environments is the least discriminating environ-
ment, more discriminating than each of the summands. The product is the most
discriminating environment, less discriminating than each of the factors. These
in turn are standard expectations about conjunction and disjunction. A conjunc-
tion (product) of two properties expressing inability to observe two behaviors,
will result in a property expressing inability to observe either. Disjunction (sum)
of two properties expressing ability to observe something, results in a property
expressing the ability to observe both. See example on Fig. A.14.

Proof 5 We shall show the theorem on the state level (the result on the IOATSs
level follows directly). First show that ∀k = 1 . . . n. Ek 6

∑n
k=1Ek. This is in

fact the case because the product of observers creates observation classes which
are always subsets of original classes (partitioning of the original classes). More

Composition of Behavioral Properties 57

{o
1
}?

{o
2
}?

{o
3
}?

{o
4
}?

i 3
!

i2!
i 3

!

i1! {
o
4 }

?

{
o
3 }

?

{
o
2 }

?

{
o
1 }

?

Interleave i1 i2

i3!

i2!

i1!

Equiv o1 o2

{o1, o2}?

{o4}?

{o3}?

(Interleave i1 i2) + (Equiv o1 o2)

i1!

i2!

{o
1
}?

{o
1
}?

{o
2
}?

{o
3
}?

{o
4
}?

i 3
!

{o
2
}?

{o
3
}?

i 3
!

{o
4
}?

{o4}?
i1!

{o3}?

{o1, o2}?

i2!

i3!

i1!

i2!

(Interleave i1 i2) × (Equiv o1 o2)

i 3
!

i2!

i1!

i 3
!

{o
4
}?

{o
1
,o

2
}?

{o
3
}?

{o
1
,o

2
}?

{o
4
}?

{o
3
}?

Figure A.14: Environments Interleave i1 i2 (left) and Equiv o1 o2 (right), their
sum (top) and product (bottom). Transitions to the blind observer b are su-
pressed. The product can only generate what both of the factors could generate
and distinguish only what both of them could distinguish. The sum can generate
what any of the summands could generate and observe what any of them could
observe. In particular o1 and o2 are distinguished in the traces for which the
Interleave property is preserved and not otherwise.

58 Paper A: Modeling Software Product Lines Using Color-blind...

formally it can be argued by showing that the pair of relations (R1, R2), defined
as below forms a simulation on environments:

R1 =

{(

Ej ,
∑

k∈I

Ek

)

∣

∣

∣

for any finite I and gen-
erators {Ek}k∈I and j ∈ I

}

R2 =

{(

∏

k∈I

ek, ej

)

∣

∣

∣

for any finite I and obser-
vers {ek}k∈I and j ∈ I

}

(A.4)

It remains to show that for all such generators F that ∀k = 1 . . . n. Ek 6 F , it
holds that also

∑n
k=1Ek 6 F . This in turn is achieved by showing that the pair

of relations (R3, R4) forms a simulation on environments, where:

R3 =

{(

∑

k∈I

Ek, F

)

∣

∣

∣

∀ finite I. ∀{Ek}k∈I .
∀F. ∀k ∈ I.Ek 6 F

}

R4 =

{(

f,
∏

k∈I

ek

)

∣

∣

∣

∀ finite I. ∀{ek}k∈I .
∀f.∀k ∈ I. f 6 ek

}

(A.5)

The proof of the case for products of generators is dual.�

6 Toward Realistic Design Languages

Until now we have assumed that outputs of systems are atomic. This assump-
tion however often does not hold for realistic languages, which typically support
structured output: sets, multisets, sequences or even sequences of sets of atomic
actions produced in a single step. We will study two groups of languages. We have
successfully applied our framework to the semantics of languages producing sets
(state/event systems of section 2, Harel’s statecharts [Har87], synchronous lan-
guages [Ber00]) and sequences (Java Card [Sun], UML state diagrams [Obj99]).
Each of these language groups, set based and sequence based, will be discussed
in the two following subsections. The set based version is further demonstrated
by example in Section 7.

From now on assume a finite set of environment events Event and a finite set
of atomic output actions Action. In order to be able to handle realistic languages
we need to instantiate our framework for a given reaction style. This includes not
only giving mappings from Event and Action to In and Out, but also proposing
suitable representation for observation classes and computing bounds on classes.

6.1 Set based

State/event models of section 2 are synchronous and non-blocking, so they meet
all the assumptions of our framework. The set of abstract events In = Event,

Toward Realistic Design Languages 59

F:E: E + F : E × F:

(¬a1)?

(a1)?

e2!

e1!

(¬a2)?

(a2)?

e2!

e1!

e2!

e1!

(true)?

(¬a1 ∧ ¬a2)?

(¬a1 ∧ a2)?

(a1 ∧ ¬a2)?

(a1 ∧ a2)?

e2!

e1!

Figure A.15: Left: environments E and F , suitable for executing set-based re-
active systems. Right: the sum and product of E and F . Observational classes
computed according to propositions 7 (for sum) and 8 (for product)

while the set of abstract outputs contains all possible subsets of Action.

In = Event Out = P(Action)

Each state configuration s ∈ State corresponds to a single observer at the abstract
level, while a new generator is added for each pair of configurations (in practice it
suffices to consider pairs of configurations related in the global transition relation):

Obs = State Gen = State × State

Finally for every global transition s
e o
−−−→s′ at the model level we introduce a single

observation transition s e?−−→(s, s′) and a single generation transition (s, s′) o!−→s′ in
the abstract IOATS. Remaining states are not related.

These definitions allow us to use the framework of previous sections and model
environments for State Event Systems as color-blind IOATSs. Note though, that,
since Out is a powerset now, observation classes are not simply sets of outputs, but
sets of subsets of Action. How should these classes be specified and represented?
How can we compute the greatest lower bounds (glbs) and least upper bounds
(lubs) on partitionings in this domain to efficiently obtain sums and products of
IOATSs?

Subsets of finite sets, such as Action, are conveniently described with proposi-
tional formulæ. For each formula ϕ over variables representing elements of Action
consider a corresponding set of its satisfiable assignments. Each assignment de-
scribes a set of actions, or a single output. We can use propositional formulæ
instead of explicit enumerations as specifications of observational classes. More
importantly we can efficiently implement them symbolically using Reduced Or-
dered Binary Decision Diagrams, or BDDs [Bry86].

We still need to make sure that classes represented on transitions leaving
from a single observer are indeed disjoint and form a partitioning (see (A.2)).
To achieve this we require that all corresponding formulæ are mutually exclusive
and that they add up to the complete universum. For a set of formulæ ϕ1, . . . , ϕn
labeling all distinct transitions outgoing from a single observer state the following

60 Paper A: Modeling Software Product Lines Using Color-blind...

two conditions must hold:

∀i, j∈ {1..n}. i 6= j ⇒ ϕi ∧ ϕj ≡ false (A.6)
ϕ1 ∨ . . . ∨ ϕn ≡ true (A.7)

These conditions are feasible to verify computationally, especially easily using a
BDD engine, or a SAT-solver.

Syntactically correct environments can be combined in sums and products
using the operational rules presented in section 5. In particular the rules for
observers rely on the existence of glbs and lubs for partitionings. Even though
these glbs and lubs exists, we still need to give an efficient way to compute them:

Proposition 7 Consider two equivalence relations ∼ϕ and ∼ψ defined on
P(Action), such that the observation classes of ∼ϕ are described by formulæ
ϕ1, . . . , ϕm and observation classes of ∼ψ are described by formulæ ψ1, . . . , ψn.
Then the equivalence relation ∼ϕ ⊓ ∼ψ is characterized by formulæ:

{ϕi ∧ ψj |i = 1 . . .m, j = 1 . . . n} .

Obviously some of the new observational classes may be empty, since usually not
all conjunctions are satisfiable. Unsatisfiable formulæ can be eliminated since
corresponding BDDs automatically reduce to false.

The lub of two equivalence relations is a transitive closure of the union of these
two relations. The computation of this transitive closure is realized by the classic
Union-Find algorithm (see [CLRS01, chapter 21]) applied to the observation
classes of both relations. Any two overlapping classes should be merged until
no more classes overlap. An overlapping occurs if the conjunction of the two
respective formulæ is satisfiable. A union of the class represented by ϕ with a
class represented by ψ corresponds to replacement of the two formulæ with a
disjunction ϕ ∨ ψ of the two.

Proposition 8 Let ∼ϕ, ∼ψ be equivalence relations on P(Action), such that their
observation classes are described by formulæ ϕ1, . . . , ϕm and ψ1, . . . , ψn respec-
tively. Then the equivalence relation ∼ϕ ⊔ ∼ψ is characterized by formulæ com-
puted using the Union-Find algorithm applied to the set {ϕ1, . . . , ϕm, ψ1, . . . , ψn},
where two formulæ are unifiable, if their conjunction is satisfiable, and disjunc-
tion is the union operation.

Fig. A.15 presents examples of environments with observational classes repre-
sented by propositional formulæ together with their sum and product computed
using the intersection and the Union-Find algorithm.

We remark, that a nearly identical adaptation allows applications of our
framework to other set-based languages including many hardware description
languages, synchronous languages [Ber00] and Harel’s statecharts [Har87].

Toward Realistic Design Languages 61

E + F : E × F:F:E:
e1!

?

e2!

a1

a1

?

a2

a2

a2

? ?

a1

a1

a2

a1

e1!

?

e2!

a2

a1

e1!

?

?

e2!
a2

a2

a1

a2

e1!

?

?

e2!

a1

a2

a1

Figure A.16: Environments E and F observing sequences, their sum and product.

6.2 Sequence based

Let us now turn from systems producing outputs structured as sets towards
systems that produce outputs structured as sequences of atomic actions—for
example UML state diagrams. Now each observation transition of the system
awaits a single input from the Event set, while each generation transition produces
an output which is a finite sequence of actions from Action:

In = Event and Out = Action∗ .

The first step in adapting the theory is linking the concrete states of models
(for example state configurations in statecharts, or variable store in Java Card) to
abstract states of the IOATS. This can normally be done in a direct way (at least
for finite state models) in the same spirit as in the previous section. Subsequently
the observation and generation relations must be extracted from the semantics
of the language in question. Observation classes on the environment side (color-
blind) become sets of sequences of actions. Partitioning of Action∗ into classes
that are regular languages can be described by a finite automaton.

Definition 11 A classifier DFA over alphabet A is a quadruple c = (S,A, s,−→),
where S is a finite set of states, A is a finite set of symbols, s ∈ S is an initial
state and −→ ∈ S → A→ S is an input-enabled transition function, meaning that
for every s ∈ S function −→(s) is defined for each element of its domain A. We
usually write s a−→s′ instead of −→(s)(a) = s′.

A classifier DFA consecutively applies −→ to a state and the head of the input
sequence obtaining a new state and input sequence. An execution over a list of
symbols s a1−−→s1

a2−−→ . . . an−−→sn is abbreviated with s a1...an−−−−→∗sn.

Definition 12 Let c = (S,A, s,−→) be a classifier. Sequences σ1, σ2 ∈ A∗ are
equivalent with respect to c if both advance c to the same state: ∃s′.s σ1−−→∗s′ ∧
s σ2−−→∗s′.

The equivalence with respect to a classifier is an equivalence relation and parti-
tions A∗ into a finite set of classes, isomorphic with the reachable states.

62 Paper A: Modeling Software Product Lines Using Color-blind...

For a classifier e = (Se,Action, se,−→e) consider a mapping of its states to
generators γe : Se → Gen. Each observer of the environment comprises a classifier
and a generator mapping. Environments advance from an observer (e, γe) to a
generator γe(s) if it observes a sequence σ advancing the classifier to a state s:

(e, γe)
{σ | se

σ−→∗s} ?−−−−−−−−−−−→γe(s) .

Fig. A.16 shows two color-blind IOATSsE and F of signature: Event = {e1, e2}
and Action = {a1, a2}. E distinguishes reactions containing at least one occur-
rence of a1 from those not containing a1 at all. Similarly F distinguishes between
sequences containing at least one a2 from those not containing a2 at all. Ob-
servers are drawn as boxes containing classifier DFAs. Classifier transitions are
represented as dotted arrows to distinguish them from IOATS transitions.

The product of classifiers is a central construction in computing products of
observers, supporting composition of environments:

Definition 13 Let e = (Se, A, se,−→e) and f = (Sf , A, sf ,−→f) be classifiers.
A product of e and f is a classifier e ⊗ f = (Se × Sf , A, (se, sf),−→), where
(se, sf)

a−→(s′e, s
′
f) if se

a−→s′e and sf
a−→s′f .

Proposition 9 Let ∼e and ∼f be two equivalences on Action∗ induced by clas-
sifiers e and f . Their greatest lower bound ∼e ⊓ ∼f exists and is induced by
e⊗ f .

Fig. A.16 presents the sum E + F obtained by application of operational rules
of section 5 (SG,PO) and the above proposition. E + F distinguishes four classes
of outputs: an empty sequence, sequences consisting of occurrences of a1, con-
sisting of occurrences of a2, and containing occurrences of both a1 and a2.

As we have seen before, the least upper bound of two partitionings ∼e ⊔ ∼f

is usually computed using a Union-Find algorithm, which unifies any two over-
lapping classes, until all classes are disjoint. In this case classes are represented
by states in the classifiers e and f . We need to apply the algorithm to states of e
and f , ultimately producing a classifier, whose states are sets of states of f and
e. The two classes s1 and s2 overlap, whenever there is an output sequence, that
can advance one classifier to a state in s1, and the other classifier to a state in
s2. The initial set of classes is given by reachable states of the product classifier
e⊗ f :

i. S := {{ei, fj} | (ei, fj) is reachable in e⊗ f}.

ii. If there exist s1, s2 ∈ S such that s1∩s2 6= ∅ then S := S\{s1, s2}∪{s1∪s2}.

iii. Repeat (ii) until no more classes can be unified.

Environment Driven Specialization 63

The final value of S is the set of states of the new classifier DFA. The initial
state is the class that contains initial states of e and f (note that both of them
will be in the same class). The transition function −→ is a sum of transition
functions −→e and −→f lifted to sets of states. For s1, s2 ∈ S:

s1
a−→s2 if ∃.p1 ∈ S1.∃p2 ∈ S2. p1

a−→e p2 or p1
a−→f p2

The following proposition claims that this function is well-defined, deterministic
and input-enabled:

Proposition 10 Let s1, s2 ∈ S be any two of the sets of states (not necessarily
distinct) constructed with the above algorithm. Then for any states p1, p2 ∈ s1,
p′1, p

′
2 ∈ s2 of the original classifiers and any symbol a: p1

a−→1 p
′
1 and p′1 ∈ s2 iff

p2
a−→2 p

′
2 and s′2 ∈ s2, where −→i denotes −→e if si ∈ Se or −→f if si ∈ Sf .

It follows that the classifier g = (S,A, s,−→) constructed above is a well de-
fined classifier DFA. Moreover, the observation classes that it induces are coarser
than any class of ∼e and ∼f . Due to the properties of the union-find algorithm,
∼g is actually the least equivalence encompassing both ∼e and ∼f :

Proposition 11 Let ∼e and ∼f be equivalences over Action∗, induced by clas-
sifiers e = (Se,Action, se,−→e) and f = (Sf ,Action, sf ,−→f). The equivalence
∼e ⊔ ∼f is induced by a classifier g such that its states are computed apply-
ing the Union-Find algorithm to the set

{ {ei, fj} | (ei, fj) reachable in e⊗ f } ,

where two sets s1,s2 are unifiable if s1 ∩ s2 is not empty. The union operation is
a set union, the initial state is the set containing initial states of e and f , and
the transition function is a sum of transition functions lifted to sets of states.

The rightmost IOATS on Fig. A.16 is a product of E and F obtained by appli-
cation of the composition rules from section 5 (PG,SO) and the above algorithm.
This product gives rise to the observer which does not distinguish any sequences.

7 Environment Driven Specialization

We shall now broaden the meaning of a model of a system to encompass a family
of systems, and let it represent functionality, which in its entire richness may
not be present in any of the actual members being produced. Particular family
members will be specified using models of environments, and derived by trans-
formations preserving relativized equivalence in a given color-blind environment.
Each transformation can only be applied if its application precondition is satis-
fied. We face two proof obligations here. The first is a manual proof of correctness

64 Paper A: Modeling Software Product Lines Using Color-blind...

of the transformation itself, which can be done ahead of time. The second is the
application precondition satisfaction check, which takes place at the specializa-
tion time. This proof should be obtained automatically using one of the available
technologies (type checking, static analysis and model-checking). In this section
we firstly formulate correctness condition for transformations and then informally
demonstrate a product line derivation scenario, hinting at what techniques could
be used to make such automatic derivation viable.

Let T be a model transformation, M a family model and E an environment
defining a specific family member. Then we will say that T is correct iff the
original model and the derived member are in E-relativized two-way simulation
relation. T (M, E) ≶E M. This means that E cannot distinguish the behavior of
the two systems.

We will now present a family of environment specifications and a correspond-
ing family of alarm clocks derived from the original alarm clock model using
the environments. The transition relation of state/event systems (see section 2)
produces sets of actions during a single reaction step. In such a setting the
observational classes of environments become sets of sets (powersets) of actions.

For a set A ⊆ Action let ignore A denote observation classes, which ignore
elements of A, but distinguish all the other actions:

ignore A =
{

{o ∪ o′|o′ ∈ P(A)}
∣

∣ o ∈ P(Action \ A)
}

Note that ignoring the empty set, ignore ∅, means observing all differences in
outputs. Another abbreviation equiv A denotes observation classes, which are
unable to distinguish between any actions in A:

equiv A =
{

{o ∪ o′|o′ ∈ P(A) \ ∅}
∣

∣ o ∈ P(Action \ A)
}

∪ P(Action \ A)

We shall begin with stating general requirements, which hold for all the en-
vironments used to execute the alarm clock. These general requirements usually
reflect the physical nature of actuators and sensors. In the case of our alarm clock
events dark/bright and snooze/snoozeR are always generated in an alternating
fashion:

E0 = Interleave snooze snoozeR ∧ Interleave dark bright .

Fig. A.8 demonstrates how Interleave could be defined using a set-based seman-
tics.

In section 2 the most restricted family member C4 was introduced in figure
Fig. A.7. Here we will first introduce some family members that are less restricted.

The least restricted member of the family C1 is shown in Fig. A.4. This
model operates in an environment, which becomes blind for the lightOn action
right after generating the snooze event. Formally the environment in which C1

behaves identical to C0 is E1 = E0 ∧ E ′, where E ′ is defined on Fig. A.9.

Environment Driven Specialization 65

E0

E3

E4

E2E1

Figure A.17: Relationships between
the environments.

C2

C0

C3

C4

C1

E1 E2

E4

E3

E3

Figure A.18: Relationships between
the product variants.

Fig. A.5 presents a new clock C2, which is devoid of the actual snooze function.
The user of this clock can still press the snooze button, but the only effect it has
is turning the backlight on for a short while. This user becomes blind to beepOn
and beepOff actions initiated by the snooze and snoozeTO events. Formally
E2 = E0 ∧ E ′′, where E ′′ is defined on Fig. A.10.

The third clock variant C3 is a combination of C1 and C2. It has neither the
snooze function nor the snooze activated backlight. We obtain it by specialization
against the E3 environment, where E3 = E1 ∧ E2. The model is presented on
Fig. A.6. Note that C3 still needs a snooze button, which exhibits a slight anomaly
in turning on the glow mode, namely that the glow mode will not be activated,
while this button is pressed. This is a perfectly correct reminiscence of our
original model, which could be easily remedied by adding another constraint to
the environment, that event snooze never occurs.

We would like to consider yet another restriction of the clock behavior. The
clock denoted C4, shall be deprived of the glowing mode (Fig. A.7). The glow-
mode lamp is not installed and the glow action is reimplemented to turn off the
main lamp instead. A corresponding environment E ′′′ is defined on Fig. A.11.
This environment is itself interesting as it specifies a less shiny alarm clock,
which may find its happy customers. Nevertheless, we decided to combine its
characteristics with the restrictions of E3, giving rise to an even more simple alarm
clock with neither the snooze related functions nor the glow mode: E4 = E3 ∧E ′′′.

One can describe surprisingly many more reasonable variants even for such a
simple system. Figures A.17–A.18 present an overview of environments and sys-
tems in our product line. Edges represent simulation and relativized simulation.
Proposition 12 explains how to interpret transitivity in the hierarchy of systems
(Fig. A.18).

Proposition 12 For any systems S1, S2 and S3 and any two compatible color-
blind environments E and F it holds that: E |= S1 6 S2∧F |= S2 6 S3∧E 6 F ⇒
E |= S1 6 S3.

66 Paper A: Modeling Software Product Lines Using Color-blind...

8 Model Transformations

While discussing techniques for implementation of optimizers, we rely as much
as possible on existing techniques that are well known in compiler technology,
partial evaluation and model-checking. What is important, we believe that op-
timizations should be designed and implemented for particular languages, not
for their abstract semantics. Despite the fact that many transformations can
be generalized beyond the particular language, such generalizations rarely lead
to successful implementations in specialization tools and compilers. There is
very little hope that we can translate any reactive synchronous program into an
IOATS, apply the transformations on the abstract layer, and then transform it
back to the modeling language, code generate and still obtain significantly opti-
mized code. Contrary—it is most likely that this process of multiple translation
will increase the code size significantly. Instead the semantic layer of IOATS
should be used for making proofs of correctness of transformations operating on
the level of concrete modeling language. We also use the semantic properties,
like color-blindness, to inspire our search for transformations.

8.1 Environment Independent Transformations

Many simple optimizations can be achieved just by analysis of the state/event
models in absence of any environment, relying on classical data-flow analysis
[App98, chpt. 17] [Muc97, chpt. 8] and interpreting the model as a control
graph. These include constant propagation [Muc97, p. 329], deadcode elimi-
nation [Muc97, p. 580], and, to some extent, elimination of side-effect-free code
[Muc97, p. 592]. In reactive synchronous models, like state/event systems, these
optimizations correspond to simplification of guards, dropping transitions never
enabled, dropping states not being targets of any transitions, and dropping entire
state machines or processes that produce no side-effects and are never referred
to. The notion of side-effect-free part of the model is perhaps a bit less standard
than the others, so let us discuss it briefly.

A state machine is pure if there are no guards in other machines that refer
to it, and it has no outputs on transitions (this is a static property). A set of
state machines is mutually pure if none of the state machines in the set has any
outputs on transitions and none of the state machines outside the set refer to
its states in guards. It is not hard to see that a maximal set of mutally pure
state machines can safely be removed from the model without any execution
environment ever observing this change. Formally this can be argued by making
a two-way relativized simulation proof in our framework, assuming a perfect
vision environment. Note that we have removed the sensor component from the
alarm clock model using precisely this reasoning (see C4, Fig. A.7).

Typically, all optimizations mentioned above are not applicable for reactive
models when used in isolation: programmers rarely write code that is dead, does

Model Transformations 67

not compute anything or makes a complex computation that always results in
the same constant. In most of such cases these are manifestations of errors,
which should be reported. Basic optimizations are nevertheless essential, when
combined with more advanced techniques described below, which often produce
code with constants in expressions, unreachable states and transitions, etc.

8.2 Optimizations with Static Environments

Knowledge of static properties of environment may allow to apply the above
optimizations more aggressively. If some events can never be input to the system,
then they can obviously invalidate some guards (a never constraint on an event
can be propagated as false to guard conditions and constant propagation may be
applied subsequently). If some outputs are never being observed (always ignored),
they can be erased from transitions’ actions, which may introduce mutually pure
components in the model, that could be ereased subsequently as described above.

Perhaps the most interesting optimizations, which are also new, can be per-
formed for static environments exhibiting color-blindness (Equiv constraints). If
some actions are always equivalent, we can definitely substitute one for another.
Remember that actions correspond to invocations of actuator drivers, so if we
could eliminate one driver/handler it can potentially save a significant amount
of program memory. In order to justify the choice, one needs more information
about the properties of drivers. In the following we assume that each action
ai ∈ Action has a weight wi assigned describing a measure to be minimized (ex-
ecution time, code size, price of the respective actuator, etc). We formulate the
problem as follows:

Input: a set of actions Action = {a1, . . . , an}, corresponding weights w1, . . . , wn,
and an equivalence relation E on Action.

Output: An optimal selection of equivalence class representatives, so that when
substituted in the model for all call places they minimize the total cost for the
model:

n
∑

i=1

xiwi ,

where xi = 1 if ai has been chosen as a representative for some class, and xi = 0
otherwise. This problem can be solved computing equivalence classes using a
Union-Find like algorithm, and then choosing the cheapest element for each
class. Again proofs of correctness of the above optimizations can be written
using two-way relativized simulation as a requirement, assuming an IOATS en-
vironment that represents the static properties required (all such environments
have exactly one generator state and one observer state).

68 Paper A: Modeling Software Product Lines Using Color-blind...

8.3 Optimizations with Dynamic Environments

There is no doubt, that introducing behavior in environments, vastly increases
the amount of possible optimizations. For example precise reachability analysis
can be executed on the model, to achieve more aggressive kind of code elimina-
tion, or identify more parts of guards as being constants. Nevertheless we shall
not discuss all these possibilities here. Instead, we focus on a transformation that
directly exploits color-blindness of our environments. Ultimately we would like to
consider an algorithm for Action-Set-Minimization, an extension of the one
presented in the previous paragraph, but with the equivalence relation on actions
changing dynamically. This complicates the problem significantly, as now each
transition, not each action, may require choosing a different substitute for its ac-
tions. Moreover this substitute candidate has to satisfy observation requirements
of all environment transitions that can possibly be executed in parallel with the
given system transition.

We can use reachability analysis [LNAH+01, EMCGP99] to find pairs of en-
vironment/system transitions that can fire simultaneously. We are particularly
interested in identifying pairs containing one observation transition of environ-
ment and one generation transition of the system. During the model exploration
one should record information about what sets of actions are observed in what
observation classes of environments, ultimately gathering a list of pairs: each
consisting a subset of call places and a formula describing the observation class.
This information can be translated into a constraint satisfaction problem, with
the objective to minimize a cost function (most typically reflecting the code size
as above). An off-the-shelf tool like ILOG’s CPLEX [ILO] could be used to solve
the problem, returning for each set of actions a cheaper replacement for this set.
In fact, as it is typical in industrial optimization problems, the optimality of the
solution is not required for the correctness of our application, so an approximat-
ing solver could be used (for example LP (Linear Programming) based), or the
ILP (Integer Linear Programming) solver can be interrupted early to use the best
solution found so far, if finding the optimal solution proves intractable. Finally
the information obtained from the solver is used to restructure the transition
layout and actual calls placed on transitions. Ultimately less drivers are needed
in the final product, and the kernel code is smaller.

9 Related Work

Derivation of product lines is often associated with partial evaluation [JGS93,
DGT96, HMT99]. There have been approaches to enable partial evaluation based
on execution traces instead of fixed input values [HKY96, Mur95, EG98], never-
theless they were never implemented for realistic languages. We fear that these
transformations, designed for abstract process calculi, can be barely applied in

Conclusion & Future Work 69

such contexts. Our framework allows more transformations than known before
due to the color-blindness, which allows some non-reductive mutations in the
program.

Wąsowski [Wąs04] presented a static framework for specifying environments
for reactive models, which relies solely on state independent properties. The
present paper, itself an extension of [LLW05], provides a theoretical foundation
for a product line management setup similar to Wąsowski’s [Wąs04], but based
on behavioral properties.

Relativized simulation has been introduced by Larsen in [Lar87, Lar86, LM92].
Our framework is modeled after this work, rephrased in the setting of IOATSs and
extended with color-blindness. In Larsen’s formulation, based on simple labeled
transition systems [Mil89], it was impossible to directly express an environments’
inability to distinguish outputs. Further results on color-blind environments, as
well as detailed proofs, can be found in [Wąs05].

The study of systems embedded into behavioral contexts is quite mature
[Lar86, AH01, Lyn88, RR02, IK01]. Our work stems out from the field, by its
direct support for observability specifications via color-blindness. This support
is needed, if the tools based on this framework, are to be useful for development
of product lines of embedded systems.

Czarnecki and Antkiewicz [CA05] present a dual approach to product line
derivation. We specify variants by legal use (black-box), they specify variants by
annotating model internals with conditions (white-box). In our case the deriva-
tion is difficult, but safety properties are preserved. In their case the derivation
is relatively easier, while specifications still need to be verified.

10 Conclusion & Future Work

We have presented the semantics of a specification language for environments
of reactive synchronous systems, together with a notion of context-dependent
refinement based on color-blindness. This refinement relation is more liberal than
usual in allowing some mutations to program outputs, instead of bare reductions.
We have explained and demonstrated how partial specifications of behaviors can
be composed and used to define families of products. The framework was designed
as a core of an upcoming tool for compact code generation and product line
derivation for discrete control embedded systems. Our specifications shall be used
as preconditions for advanced model optimizers/specializers. We have thoroughly
discussed issues, which arise in the implementation of the theory for realistic
languages, especially focusing on languages with sequences as outputs.

An implementation [sco] of a powerful context-aware optimizer for models
based on model-checking and program analysis is planned. This prototype tool
is supposed to be compatible with an industrial development environment for
embedded systems [IAR], which will allow for realistic case studies.

70 Paper A: Modeling Software Product Lines Using Color-blind...

Paper B

Interface Input/Output Automata

Kim G. Larsen, Ulrik Nyman
Department of Computer Science,
Aalborg University, Denmark

Andrzej Wąsowski
Computational Logic and Algorithms Group,
IT University of Copenhagen, Denmark

Abstract

Building on the theory of interface automata by de Alfaro and Henzinger we
design an interface language for Lynch’s I/O automata, a popular formalism
used in the development of distributed asynchronous systems, not addressed by
previous interface research. We introduce an explicit separation of assumptions
from guarantees not yet seen in other behavioral interface theories. Moreover we
derive the composition operator systematically and formally, guaranteeing that
the resulting compositions are always the weakest in the sense of assumptions,
and the strongest in the sense of guarantees. We also present a method for
solving systems of relativized behavioral inequalities as used in our setup and
draw a formal correspondence between our work and interface automata.

Keywords: I/O automata, Interface Theory, Interfaces, Behavioral Inequalities

71

72 Paper B: Interface Input/Output Automata

0 1
send?

ok !

EnvClient

send ok fail

0 1
send !

ok?

SpecClient

send ok fail

Figure B.1: Client = (EnvClient , SpecClient)

1 Introduction

A suitably expressive interface language lies at the very center of any component-
oriented development framework. Interfaces are abstractions of components, car-
rying all essential information necessary to establish cross-component compati-
bility. Instead of reasoning about components directly, one typically examines
compatibility of their interfaces, while the adherence of a particular implemen-
tation to its interface is tested separately. This, not only allows for independent
development of components, but also by introducing compositionality helps to
combat the state space explosion problem in various automatic analyses.

Type annotations, type checking, and type inference have traditionally been
used to decide compatibility of components soundly with respect to memory
safety. However, static type correctness in this traditional sense fails to guar-
antee more elaborate properties, like correctness of communication, or deadlock
freeness. This observation has inspired a long line of research on behavioral type
systems and behavioral interface languages suitable for specification of highly
trusted computer systems (see [IK01, RR02, LX04, LZZ05] and references therein
for examples).

We follow de Alfaro and Henzinger [AH01, AH04] in studying an automata
based interface language, or interface automata. Unlike them however, we explic-
itly separate, in the interface description, the assumptions that a component may
make about its use from the guarantees that it needs to commit to. Assumptions
describe the possible behaviors of the component’s external environment, while
guarantees describe the possible behaviors of the component itself.

Each interface in our theory consists of two I/O automata. The first, called
the environment, represents assumptions. The second, called the specification,
describes guarantees. Figure C.1 shows an interface for a Client component
consisting of the automata EnvClient and SpecClient . The arrows incoming to or
outgoing from the box surrounding each of the automata visualize their static
types, or signatures. The environment EnvClient specifies that even though the
static type does allow a fail action, the emission of this action is disallowed for
all compliant execution environments. The only legal input is send. One can still
use the Client component in a context that syntactically permits fail, but the

Introduction 73

5

0 1 2 3 4

6

ack !ok?
ack !

send ! trnsmt? nack ! trnsmt?

fail? nack !

EnvTryTwicesend ok fail

trnsmt ack nack

5

0 1 2 3 4

6

ack?ok !
ack?

send? trnsmt ! nack? trnsmt !

fail ! nack?

SpecTryTwicesend ok fail

trnsmt ack nack

Figure B.2: TryTwice = (EnvTryTwice , SpecTryTwice)

behavior of the Client is only guaranteed in environments that do not fail.
Alfaro and Henzinger model assumptions about the use of a component by

the interface’s inabilities to receive inputs. The output transitions of the very
same interface automaton describe its guarantees. Since we separate the two, we
alleviate the need for blocking. Our automata are input enabled—accepting any
input from their signature in every state. In order to avoid clutter we usually do
not draw loop transitions, which correspond to ignoring an input. There is one
such implicit transition 1 send?−−−−→1 in EnvClient and three in SpecClient .

Two interfaces can be combined into a composite interface, describing a new
set of assumptions and guarantees. Interface TryTwice, presented in Fig. B.2 can
be composed with Client . The two components do not form a closed system, but
are intended for use together with a further unspecified LinkLayer component.

Composition of interfaces is a central construction in any interface theory. One
of our contributions is that the composition is derived systematically: we formally
state requirements for it in the form of a system of inequalities, and derive a result
of the composition as a maximal solution of this system. Consequently properties

74 Paper B: Interface Input/Output Automata

0 2 3 4 T

ack !

ack ! trnsmt?

nack ! ack !

trnsmt? nack ! trnsmt? trnsmt?

EnvComp1

trnsmt ack nack

0 2 3 4 6

ack?

ack?

trnsmt ! nack? trnsmt ! nack?

SpecComp1

trnsmt ack nack

Figure B.3: (EnvTryTwice , SpecTryTwice) ⊗ (EnvClient , SpecClient) = Comp1

of the composition hold by construction.
Figure B.3 shows the interface resulting from composing Client and TryTwice.

Later we shall explain how it has been computed. Now observe that any com-
ponent legally interacting with this new interface may not send a nack twice in
response to the transmt request—a simple consequence of the fact that this would
make TryTwice respond with a fail to Client, violating the assumptions of the
latter. The additional state T manifests the fact that the computed environment
expresses the weakest assumptions. It allows receiving arbitrary behavior after
a second transmt in a row, because any compliant implementation would never
send it, and thus would never be affected by the subsequent behaviour.

An advantage of separating assumptions from guarantees is that one of the au-
tomata can be changed without affecting the other. Thus the same guarantees can
be used for multiple interfaces. In [LLW05] we have argued that this is useful for
modeling software product lines: a family of component variants may be specified
using a single specification (guarantee) and multiple environmental restrictions
(assumptions). An advanced compiler may use the assumptions to derive special-
ized versions of the component from the same source code. Let us illustrate this
with an example. Figure B.4a gives an alternative environment EnvNoNack for
the SpecTryTwice specification. This environment disallows the sending of a nack
as a response to a trnsmt request. Any implementation of TryTwice is also an
implementation of (EnvNoNack , SpecTryTwice). If it is only used in EnvNoNack , then
it could be automatically specialized to these specific circumstances. The error

Introduction 75

(a)

0 1 2 5

ok?
ack !send ! trnsmt?

send ok fail

trnsmt ack nack

(b)

0 2 T

ack !
nack !

ack !
trnsmt? trnsmt?

trnsmt ack nack

Figure B.4: (a) The environment EnvNoNack and (b) the environment EnvComp2 .

handling code could be removed as it is not needed in such a context. The compo-
sition Comp2 = (EnvNoNack , SpecTryTwice) ⊗ (EnvClient , SpecClient) has exactly the
same specification part as the Comp1 composition. The resulting environment
EnvComp2 (Fig. B.4b) disallows the generation of the nack input even though the
static type permits this.

As we have also argued in [LLW05] the separation supports a simple declar-
ative style of modeling assumptions: simple properties can be modeled as stan-
dalone automata and combined using the process algebraic operators of sum and
product, corresponding to disjunction and conjunction of properties respectively.

An interesting theoretical side effect of our exposition, is an informal corre-
spondence drawn between blocking and non-blocking interface theories. A single
blocking interface automaton of [AH01] expresses both the assumptions of a com-
ponent and its commitments. When a blocking interface automaton is unable to
accept an input, it effectively assumes that any compatible environment will never
provide it. In the theory for non-blocking systems the interfaces are composed of
two non-blocking automata, and the same effect is achieved by explicitly using
one of the automata for describing the permissible behavior of the surroundings.

The paper develops as follows. Section 2 defines I/O automata and interfaces.
Section 3 discusses refinement of interfaces. The most central section, Section 4,
is devoted to composition, while a more technical section, Section 5, is devoted
to systems of inequalities used in section 4 and is a contribution in itself. But
reading it is not essential for appreciating our interface theory. Section 6 draws
a correspondence between interface automata and our interfaces, while section 7
discusses other related work. We conclude in section 8. A particularly interested
reader can find the proofs of all our claims in an upcoming BRICS report.

76 Paper B: Interface Input/Output Automata

2 I/O Automata and Their Interfaces

Definition 1 An I/O automaton S=(statesS, startS, inS, outS, intS, stepsS) is a
6-tuple, where statesS is a set of states, startS ∈statesS is an initial state, inS is
a set of input actions, outS a set of output actions, and intS is a set of internal
actions. All of the action sets are mutually disjoint. We abbreviate extS = inS ∪
outS and actS = extS ∪ intS. Then stepsS ⊆ statesS × actS × statesS is the set
of transitions. I/O automata are input enabled: for every state s and any action
i ∈ inS there exists a state s′ and a transition (s, i, s′) ∈ stepsS.

We write q a−→S q
′ if (q, a, q′) ∈ stepsS. We often explicitly suffix external ac-

tions with direction of communication writing q a!−→S q
′ if a ∈ outS, and q a?−−→S q

′ if
a ∈ inS. Notice that the labels a! and a? still denote exactly the same action, and
we can drop the suffixes whenever the direction of communication is irrelevant.
We write q a

6−→, meaning that there is no q′ such that q a−→q′.

Definition 2 An execution of an I/O-automaton S starting in a state q0 is a
finite sequence of labels q0, a0, q

1, a1, q
2, a2, . . . , q

n−1, an−1, q
n such that all qi’s are

members of statesS, all ai’s are members of actS and for every k = 0 . . . n− 1 it
is the case that qk ak−−→S q

k+1. A trace σ of S is an execution ψ of S starting in
the initial state, with all the states and internal actions deleted: σ = ψ ↾ extS,
where ψ ↾ X denotes a sequence created from ψ by removing symbols that are not
in set X. The set of all traces of automaton S is denoted TrS.

Two I/O-automata S1 and S2 are syntactically composable if their input and
output sets do not overlap and their internal actions are not shared: inS1

∩inS2
=

outS1
∩outS2

= intS1
∩actS2

= actS1
∩intS2

= ∅. Two syntactically composable au-
tomata S1=(statesS1

, startS1
, inS1

, outS1
, intS1

, stepsS1
) and S2=(statesS2

, startS2
,

inS2
, outS2

, intS2
, stepsS2

) can be composed into a single product automaton S =
S1 ⊗ S2, where S=(statesS, startS, inS, outS, intS, stepsS) and statesS = statesS1

×
statesS2

, startS =(startS1
, startS2

), inS = inS1
∪ inS2

\ outS1
\ outS2

, outS =outS1
∪

outS2
\ inS1

\ inS2
, intS = intS1

∪ intS2
∪ (extS1

∩extS2
), and stepsS are defined by

the following rules:

if q1 a−→S1
q′1 and a∈actS1

\actS2
then (q1, q2)

a−→S1⊗S2
(q′1, q2)

if q2 a−→S2
q′2 and a∈actS2

\actS1
then (q1, q2) a−→S1⊗S2

(q1, q
′
2)

if q1 a−→S1
q′1 and q2 a−→S2

q′2 then (q1, q2)
a−→S1⊗S2

(q′1, q
′
2)

In practice unreachable states may be removed from the product, without affect-
ing the results presented below.

Our composition (same as in [AH04]) differs from the standard I/O automata
composition in that it applies hiding immediately. It is equivalent with the stan-
dard composition as long as each action is only shared by at most two components.

We define an interface model to be a pair (E, S) of I/O automata:

Refinement of Interfaces 77

Definition 3 A pair of I/O automata (E, S) is an interface if E ⊗S is a closed
system, i.e. inE=outS and outE= inS.

The environment automaton E drives the specification automaton S. Any
implementation I of S must conform to S as long as it is receiving input that
conforms to E. The behavior of I on sequences of inputs that cannot be provided
by E is not constrained. We formalize this using relativized refinement:

Definition 4 An I/O automaton I implements an interface (E, S), written
E |= I 6 S, iff outI = outS and inI = inS and TrE ∩ TrI ⊆ TrS.

3 Refinement of Interfaces

We establish a hierarchy on interfaces in order to quantify their generality.

Definition 5 Let (E1, S1) and (E2, S2) be two interfaces with the same signa-
tures. We will say that (E1, S1) is a stronger interface than (E2, S2), written
(E1, S1) � (E2, S2), if (E1, S1) has less implementations than (E2, S2), so for any
I/O automaton I: E1 |= I 6 S1 implies E2 |= I 6 S2.

The refinement of interfaces can be seen as a subtyping relation in a behavioral
type system for components. In such an interpretation we would say that (E1, S1)
is a subtype of (E2, S2). We propose several simple sound characterizations of
the above refinement that are useful in making proofs:

Theorem 1 Let (E1, S1), (E2, S2) be interfaces with identical signatures. Then

1◦ TrE1
∩TrS1

= TrE2
∩TrS2

implies (E1, S1) � (E2, S2) and (E2, S2) � (E1, S1)

2◦ TrE2
⊆TrE1

∧ TrS1
⊆TrS2

implies (E1, S1) � (E2, S2)

3◦ TrE1
\ TrS1

⊇ TrE2
\ TrS2

implies (E1, S1) � (E2, S2)

The above characterizations are convenient in establishing subtyping relations
among interfaces in many concrete cases. However none of them are complete.
The refinement of interfaces can be characterized in a sound and complete man-
ner using a notion of tests that resembles failure traces of Hoare [Hoa85], but
determinized, relativized with respect to the environment, and suffix closed.

Definition 6 The set of conformance tests of interface (E, S) is defined as:

test(E,S) = {σ · a | σ∈ TrE ∩ TrS, σ · a∈ TrE \ TrS} · ext
∗
E ,

where X∗ denotes the set of all finite sequences over alphabet X.

Theorem 2 Let (E1, S1) and (E2, S2) be two interfaces with identical signatures.
Then test(E1,S1) ⊇ test(E2,S2) iff (E1, S1) � (E2, S2).

Without spelling out the details, we remark that a finite automaton, such
that test(E,S) is its accepted language, can be computed in quadratic time, and
can be used for testing containment in applications of the above theorem.

78 Paper B: Interface Input/Output Automata

4 Interface Compositions

We would like to abstract compositions of components by compositions of their
interfaces. For any two compatible interfaces (E1, S1) and (E2, S2) we should be
able to derive an interface of their composition (E, S), the one that is implemented
flawlessly by any two implementations of (E1, S1) and (E2, S2).

Two interfaces are syntactically composable if the I/O automata comprising
them are pointwise syntactically composable. This guarantees that any compo-
nents I1 and I2 implementing syntactically composable interfaces (E1, S1) and
(E2, S2), are also syntactically composable. The question that we want to ad-
dress is the dynamic compatibility of I1 and I2: can I1 violate the environmental
assumptions expressed in E2? Can I2 violate the assumptions in E1?

We may be tempted to say that the composite interface is the composition of
the interface parts: (E, S) = (E1 ⊗E2, S1 ⊗ S2). This construction, however, is
unsound. It is possible to find two compliant implementations that, when com-
posed together, violate (E, S). In order to arrive at a sound and complete notion
of composition, we will state the requirements for the composite interface, and
then derive the construction from them. The three requirements are: independent
implementability [AH04], mutal deadlock freeness, and associativity.

Independent implementability means that (E, S) is such, that the implemen-
tations of (E1, S1) and (E2, S2) can be developed independently of each other,
and their composition will implement the composition of their interfaces:

For all I1, I2. E1 |= I1 6 S1 and E2 |= I2 6 S2 implies E |= I1|I2 6 S . (B.1)

Mutual deadlock freeness means that any two correct implementations, when
composed and embedded in an environment that obeys the assumptions of E,
will not violate each other’s assumptions:

For all I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2

implies I1 |= E ⊗ I2 6 E1 and I2 |= E ⊗ I1 6 E2 . (B.2)

You may find it useful to refer to the flowgraph on Fig. B.5a, while studying the
above rule. Observe that in the composed system I1 is indeed the environment
in which E ⊗ I2 operates. The composition E ⊗ I2 is also the environment for I1
and it is supposed not to violate any of the assumptions expressed in E1.

Finally, associativity means that in whatever order compositions are applied,
they give rise to equivalent interfaces:

((E1, S1) ⊗ (E2, S2)) ⊗ (E3, S3) � (E1, S1) ⊗ ((E2, S2) ⊗ (E3, S3))

(E1, S1) ⊗ ((E2, S2) ⊗ (E3, S3)) � ((E1, S1) ⊗ (E2, S2)) ⊗ (E3, S3) . (B.3)

A disadvantage of the above requirements is that they are not constructive.
They rely on quantification over all implementations, which makes them useless

Interface Compositions 79

(a)

I1 I2

E

E2E1

(b)

0 1
send !

fail?

EnvAlwaysFail

send ok fail

0 1
send?

fail !

SpecAlwaysFail

send ok fail

Figure B.5: (a) Flowgraph for a composition of (E1, S1) and (E2, S2). (b)
AlwaysFail

for computing the composition. Fortunately the quantification can be eliminated.
The following theorem reduces the property of mutual deadlock freeness of all
implementations to mutual deadlock freeness of the interfaces being composed:

Theorem 3 Any environment E fulfills the requirement (B.2) iff it fulfills the
following condition:

S1 |= E ⊗ S2 6 E1 and S2 |= E ⊗ S1 6 E2 . (B.4)

The above reduction is very fortunate, as (B.4) also implies independent im-
plementability with the choice of the guarantees component to be S1 ⊗ S2:

Theorem 4 Let (E1, S1) and (E2, S2) be syntactically composable interfaces, and
E be an environment I/O automaton satisfying property (B.4). Then for all I1
and I2 such that E1 |= I1 6 S1 and E2 |= I2 6 S2 we have E |= I1 ⊗ I2 6 S1 ⊗ S2.

Consequently if we were able to find an environment E satisfying (B.4), then
the interface (E, S1 ⊗ S2) would satisfy mutual deadlock freeness and indepen-
dent implementability—a good candidate for the composition of environments.
However, the environment satisfying (B.4) may not always exist. This is the case,
if S1 unconditionally, independently of E’s behavior, violates the assumptions of
S2 expressed in E2. In this case (E1, S1) and (E2, S2) are said to be incompatible.

Definition 7 Interfaces (E1, S1), (E2, S2) are incompatible if there exists no I/O
automaton E such that: S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2.

Figure B.5b shows an interface AlwaysFail , which has a signature compati-
ble with the signature of Client . Nevertheless the dynamic types of Client and
AlwaysFail are incompatible in that they share only one nonempty trace, con-
sisting of one step, and this trace ends in a deadlock.

In fact there typically exist many pairs (E, S) that satisfy all our require-
ments. For example an interface (M,U), consisting of a mute environment M
never producing any outputs and a universal system specification U generating

80 Paper B: Interface Input/Output Automata

all possible traces, would satisfy the composition requirements of any two com-
patible interfaces. The interface (M,U) allows any implementation—it says that
its implementations will behave in an arbitrary fashion (U), not allowing any
external stimulation (M). Clearly, as a component interface, (M,U) is useless.

We should ensure that our composition operator produces the interface that
carries over all the information available from its components. It must have the
smallest possible set of implementations, while still satisfying all our require-
ments. Similarly, it must maximize the set of components compatible with it (as
opposed to the set of components implementing it). We shall call this optimal
interface the most general. Intuitively to achieve this optimality we need an en-
vironment E satisfying the requirements such that it is maximal with respect to
trace inclusion. By increasing the set TrE we make it easier for components to
be compatible with our interface. Similarly we make it harder to implement the
composite interface, as increasing the set of traces of E decreases the assump-
tions that an implementation can make. The following theorem says that such a
maximal E always exists for compatible interfaces:

Theorem 5 Let (E1, S1) and (E2, S2) be two syntactically composable interfaces.
If there exists an I/O automaton E enjoying property (B.4) then there also exists
a maximal such environment with respect to trace inclusion.

Theorem 6 The composition operator mapping interfaces (E1, S1) and (E2, S2)
to (E, S1 ⊗ S2), where E is the maximal solution of (B.4), is associative.

Theorems 5–7 together with our earlier observations suggest that the interface
(E, S1|S2), where E is this maximal solution of equations (B.4), is even more likely
to be the most general interface that we are searching for. A maximal solution of
(B.4) can be found algorithmically for finite state interfaces. Section 5 describes
a method that can be used for this purpose.

As increasing the environment E makes the interfaces more general, so does
decreasing the specification S (within the limits set by the requirements). For
any particular selection of E satisfying (B.1), no S can be smaller (relative to E)
than S1|S2, because S1 and S2 themselves are valid implementations. So S1|S2

is the smallest possible specification of the composite interface with respect to
any particular choice of E. This observation can be generalized to a claim that
(E, S1 ⊗ S2) is the most general interface possible:

Theorem 7 Let (E1, S1), (E2, S2) be interfaces. Let E be the maximal solution
to (B.4) and let (E ′, S ′) satisfy independent implementability and mutual dead-
lock freeness. If (E ′, S ′) is compatible with (E ′′, S ′′) then also (E, S1 ⊗ S2) is
compatible with (E ′′, S ′′).

Having concluded that (E, S1 ⊗ S2), where E is a maximal solution of (B.4), is
well defined and the most general, we can use it as a definition of the composition
operator. We will denote this composite interface by (E1, S1) ⊗ (E2, S2).

Furthermore our composition of interfaces is complete in the following sense

Solving Behavioral Inequalities 81

Theorem 8 For compatible interfaces (E1, S1), (E2, S2) and any (E ′, S ′) satis-
fying independent implementability and mutual deadlock freeness:

(E1, S1) ⊗ (E2, S2) � (E ′, S ′) .

We remark that our composition would not be complete if we only required
independent implementability. It seems likely from the work presented in [Mai03]
that it is indeed impossible, for our setting, to be complete in the above sense
using only independent implementability. Similarly we would not be complete if
we only required mutual deadlock freeness, simply because it does not restrict
the S component, which can then be taken to be mute, likely yielding a smaller
interface than ours. Still our composition is sound and complete with respect to
both requirements combined. Requirements (B.2) and (B.3) have been introduced
solely for their inherent usefulness. Their interplay guaranteeing soundness and
completeness is a pleasant side effect.

Definition 8 Let (E1, S1), (E2, S2) be syntactically composable interfaces. Their
composition, denoted (E1, S1) ⊗ (E2, S2), is an interface (E, S1 ⊗ S2), where E
has the same signature as E1 ⊗ E2, and is a maximal solution of (B.4).

The operator of Def. 8 is associative, supports independent implementability
and mutual deadlock freeness, and produces the most general interfaces.

5 Solving Behavioral Inequalities

Computing compositions of interfaces requires a method for finding solutions
of systems of relativized linear inequalities. In particular we are interested in
systems of inequalities of the following form:

C(E) :

P1 |= E ⊗ S1 6 F1
...

Pm |= E ⊗ Sm 6 Fm

(B.5)

where {Pi}i=1..m, {Si}i=1..m and {Fi}i=1..m are states of the three I/O automata
P , S and F and E is a single unknown automaton. We are interested in finding a
greatest such E with respect to 6, or in reporting incompatibility between com-
ponents, if no solutions exist. Since in (B.4) various components of inequalities
come from separate automata, in order to apply the method below we need to
construct three automata P , S and F as the disjoint unions of the automata that
appear in the given place of the constraints in (B.4). We introduce three conve-
nient mapping functions in, out and ext which from a state of the two automata
F and S return respectively the set of input, output or external actions of the
automata that this state originates from in the disjoint union computation. We

82 Paper B: Interface Input/Output Automata

will use them in the algorithm below to recover some of the signature information
lost by making the disjoint union.

For simplicity of exposition we shall also assume that all I/O automata in-
volved in the systems are deterministic. Otherwise they can be determinized
without loss of information, as long as our refinement criterion is based on lan-
guage inclusion. This assumption is not inherent to the method, though.

We should now state a property similar to Theorem 5, but formulated for
systems of inequalities in general. We expand it to any number of constraints
and do not require that all the I/O automata come from the same interfaces.

Theorem 9 Let C(E) be a finite system of relativized inequalities:

C(E) :

P1 |= E ⊗ S1 6 F1
...

Pm |= E ⊗ Sm 6 Fm

If C(E) has a solution (an I/O automaton satisfying all the constraints), then
C(E) also has a greatest solution with respect to trace set inclusion.

We begin with constructing a modal transition system [LT88] corresponding
to C(E), and then choose a maximal solution from its states and transitions.
From our perspective modal transition systems are automata with two transition
relations −→may and −→must.

Definition 9 A modal transition system is a quadruple S= (Q,A,−→may,−→must),
where Q is a set of systems of constraints (states), A is a set of actions, −→may ⊆
Q × A ×Q is the may transition relation, and −→must ⊆ Q× A× Q is the must
transition relation, −→must ⊆ −→may.

Systems of relativized inequalities can be seen as sets of constraint triples
{(P1, S1, F1), . . . , (Pm, Sm, Fm)} over the solution E. The constraints evolve when
any of their components, including the unknown E, takes an action. This evo-
lution comprises not only state changes of the I/O automata, but also removing
and introducing constraints. Legal actions of the unknown component E in any
of its states are dependent on the states of the constraints—on what all the Pi’s,
Si’s and all the Fi’s can do. This is why we label states of our modal transi-
tion systems with systems of inequalities (sets of constraints). All the steps that
are allowed by the constraints, but are not strictly required (like a possibility to
produce an output) should give rise to may transitions in the modal transition
system. While all the steps that are strictly required (like input actions enforced
by input-enabledness) give rise to corresponding must transitions.

Formally three I/O automata P, S, F induce a modal transition system E =
(Q,A0,−→may,−→must), where elements of Q are sets of constraints over states of
P , S and F, enriched with a distinct primitive constraint False denoting an

Solving Behavioral Inequalities 83

empty set of solutions. The initial state A0 is equal to the set {(P1, S1, F1), . . . ,
(Pm, Sm, Fm)} of initial constraints, and the transition relations are defined ac-
cording to the following rules:

E a!−→mayE
′ if and only if both of the following rules are satisfied:

For all (P, S, F) ∈ E such that a ∈ outE \ inS
If ∃F ′. F a!−→F ′ and ∃P ′. P a−→P ′ then (P ′, S, F ′) ∈ E ′

Else if ∃P ′.P a?−−→P ′ and F a!
6−−→ then False ∈ E ′

For all (P, S, F) ∈ E and all S ′ such that a∈outE ∩ inS
If S a?−−→S ′ also (P, S ′, F) ∈ E ′

E a?−−→mustE
′ and E a?−−→mayE

′ iff both of the following rules are satis-
fied:

For all (P, S, F) ∈ E and all F ′ such that a ∈ inE \ outS
If F a?−−→F ′ and P a!−→P ′ then (P ′, S, F ′) ∈ E ′

For all (P, S, F) ∈ E such that a ∈ inE ∩ outS
If S a!−→S ′ then (P, S ′, F) ∈ E ′

Each state E ∈ Q of E is minimal such that it satisfies the above transition rules
and the following closure rules :

For all (P, S, F) ∈ E and a ∈ extS ∩ extF
If ∃S ′. S a−→S ′ and ∃F ′. F a−→F ′ and ∃P ′. P a−→P ′

then also (P ′, S ′, F ′) ∈ E.

For all (P, S, F) ∈ E and a ∈ extS ∩ extF
If S a!−→S ′ and F a!

6−→ and ∃P ′. P a?−−→P ′ then False ∈ E.

The two may rules discuss E making an output transition concerning an
external output, or an internal communication with S respectively. The must
rules state that E needs to accept all the inputs from the outside and from S
respectively. Finally the closure rules allow S to advance without any interference
with E on its own external actions. Whenever there is a possibility of violation
of the relativized trace inclusion, we add false to the target state of E, hinting
that E should not be allowed to make that step.

Definition 10 The state consistency relation S over a modal transition system
E = (Q,A,−→may,−→must) is the maximal subset of Q such that if E ∈ S then
False /∈ E and whenever E a−→mustE

′ then E ′ ∈ S.

84 Paper B: Interface Input/Output Automata

ST0 |= � | SC0 6 ET0
SC0 |= � | ST0 6 EC0

ST1 |= � | SC1 6 ET1
SC1 |= � | ST1 6 EC1

ST5 |= � | SC1 6 ET5
SC1 |= � | ST5 6 EC1

ST0 |= � | SC0 6 ET0
SC0 |= � | ST0 6 EC0
ST1 |= � | SC1 6 ET1
SC1 |= � | ST1 6 EC1

ST4 |= � | SC1 6 ET4
SC1 |= � | ST4 6 EC1

ST2 |= � | SC1 6 ET2
SC1 |= � | ST2 6 EC1

ST3 |= � | SC1 6 ET3
SC1 |= � | ST3 6 EC1 TRUE

trnsmt? trnsmt?

nack!

ack!

trnsmt?

ack!

trnsmt?

trnsmt?

Figure B.6: The resulting modal transition system for the computation of
EnvComp1 .

Definition 11 A consistent set of transitions T of a modal transition system
E = (Q,A,−→may,−→must) with respect to consistency relation S is a maximal
subset of −→may, where whenever (s, a, s′) ∈ T then s ∈ S and s′ ∈ S.

Theorem 10 Let C(E) be a system of inequalities as required above, and E = (Q,
A,−→may,−→must) be the modal transition system induced by C. Then the maximal
solution of C(E) is an I/O automaton E such that its set of states statesE is a
maximal consistency relation over E ,

startE ={(F1, S1), ..., (Fm, Sm)},

inE =
m
⋃

i=1

(inFi
\ inSi

) ∪
m
⋃

i=1

(outSi
\ outFi

)

outE =

m
⋃

i=1

(outFi
\ outSi

) ∪
m
⋃

i=1

(inSi
\ inFi

),

and its set of transitions stepE is a maximal consistent set of transitions of E
with respect to statesE. If the maximal state consistency relation of E is empty
then C has no solutions.

The set S can be found by a simple maximal fixpoint computation. In practice
the consistency of the initial state may be decided in a local fashion without
constructing the entire modal transition system.

Figure B.6 shows the consistent part of the modal transition system induced
by (EnvTryTwice , SpecTryTwice) ⊗ (EnvClient , SpecClient). It can then be minimized
in order to obtain EnvComp1 , shown in Fig. B.3. Similarly SpecComp1 from Fig. B.3
has been obtained by minimizing SpecTryTwice ⊗ SpecClient .

Interface Automata 85

6 Interface Automata

The relation of our theory to interface automata [AH01, AH04] requires special
attention, as we address several issues of that work; most importantly the repre-
sentation of assumptions and guarantees within a single automaton. We clearly
separate assumptions from guarantees, and the pairs of assumptions and guaran-
tees can be constructed independently. In [AH04] Alfaro and Henzinger discuss
static Assume/Guarantee interfaces featuring a similar split, however they do not
persue the idea to the dynamic case.

In a larger perspective our work can be seen as a study of building interface
theories as such: starting with a selection of the building blocks, going through
requirements analysis, deriving the composition operator, and studying its gen-
erality. Let us review this process briefly. We begin with selecting important
ingredients such as a component model, an interface model, an implementation
relation and a refinement relation. The particular choice of input-enabled sys-
tems and (relativized) trace inclusion is not crucial for our developments. In fact
we believe that a similar theory can be built using (relativized) simulation, or
for timed automata. We choose I/O automata and trace inclusion because they
are very different from Alfaro and Henzinger’s interface automata, so we inciden-
tally provide a component theory for a different community—the I/O automata
community. At the same time our choice challenges some opinions expressed in
[AH01, AH04] that building such a theory, especially supporting contravariant
refinement, is impossible using language inclusion criteria or in a non-blocking
setting.

Furthermore we show how the composition operator can be derived from re-
quirements (by analysis, reduction and automated solving), while Alfaro and
Henzinger introduce this operator in a rather ad hoc manner. After having de-
rived our operator we discuss its generality, and conclude that it is indeed the
most general operator possible, meeting our requirements with respect to trace
inclusion, with respect to the � refinement, and with respect to compatibility
with other components. We conjecture that the operator of our predecessors is
also the most general in their setting, however they never make that claim.

Let us now draw a formal correspondance between the two interface theories.

Definition 12 (after [AH04]) An interface automaton is a six-tuple
S = (statesS, startS, inS, outS, intS, stepsS), where statesS is a finite set of states,
startS ∈ statesS is an initial state, inS, outS, and intS are three pairwise disjoint
sets of input, output, and internal actions respectively, and stepsS ⊆ statesS ×
actS × statesS is an input-deterministic transition relation, with actS = inS ∪
outS ∪ intS

Notice that the transition relation of interface automata may be non input-
enabled. Syntactic composability of interface automata is governed by the same

86 Paper B: Interface Input/Output Automata

rule as the composability of I/O automata, defined on p. 76. The composed
interface is computed by taking a product of the two automata, and removing
from it all incompatible states. A state of the product is an error state if one of its
components can produce a shared output, that the other is unable to receive. A
state of the product is incompatible if it can reach an error state by an execution
over internally controllable transitions (transitions labeled with actions from:
intS1⊗S2

∪ outS1⊗S2
).

Definition 13 Two syntactically composable interface automata S1 and S2 are
compatible iff removing all incompatible states from their product leaves an inter-
face automaton with a non-empty set of reachable states.

The function unzip defined below translates an interface automaton to an I/O
automaton interface. If A is an interface automaton then unzipA := (E, S), where
statesS = statesE = statesA ∪ {T}, startS = startE = startA, inS = outE = inA,
outS = inE = outA, intS = intE = intA. The transition relations of E and S
are created from the transition relation of A by making it input-enabled on the
respective input sets:

stepsE = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inE , s
a
6−→A}

stepsS = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inS, s
a
6−→A}

Theorem 11 If A1 and A2 are two compatible interface automata, then unzipA1

and unzipA2
are compatible I/O automata interfaces.

The zip function is a reverse of unzip: it translates an I/O automata interface
into a single interface automaton, by computing the product of the two parts using
the classic algorithm [HMU01, chpt. 4.2] from automata theory: zip(E,S) := A,
where statesA = statesE × statesS, startA = (startE, startS), inA = inS, outA =
outS, intA = intS ∪ intE, and stepsA = {((s, e), a, (s′, e′))|s a−→s′ and e a−→e′}.

Theorem 12 If (E1, S1), (E2, S2) are compatible deterministic I/O automata
interfaces, then zip(E1,S1), zip(E2,S2) are compatible interface automata.

The fact that our compatibility only implies compatibility in the interface
automata sense for unzippings of deterministic interfaces is not surprising. It is
actually expected, due to the very different nature of the refinement relations
used in the two theories: trace inclusion and alternating simulation [AHKV98].

Alfaro and Henzinger choose alternating simulation to support contravariant
treatment of inputs and outputs. We stress that input-enabledness and relativized
trace inclusion already guarantee contravariant treatment of behaviors in a very
similar spirit. Still our theory somewhat strictly requires that implementations of
an interface have precisely the same sort as their interfaces, so it is technically not

Other Related Work 87

possible to substitute a richer component in place of a simpler one, if they are the
same on shared functionality. We stress that this deficiency is not inherent, while
it simplifies the presentation. Contravariant signature extensions can be easily
realized with relativized trace inclusion in the input-enabled setting. Instead of
requiring inI = inS and outI = outS in Def. 3, insist on inS ⊆ inI and outI ⊆ outS.
In fact the only significant change required in later developments is the addition
of a side condition to the independent implementability rule:

∀I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2 and
inI1 ∩ outS2

⊆ inS1
and inI2 ∩ outS1

⊆ inS2
implies E |= I1|I2 6 S . (B.6)

This is the very same side condition that Alfaro and Henzinger add to indepen-
dent implementability in order to support contravariant signature extensions. It
ensures that even though the implementation allows additional inputs, it will
only be used as described in this interface. The other components will not com-
municate with it on these additional inputs.

7 Other Related Work

Our work relates directly to the original version of interface automata [AH01,
AH04], which was later extended with time and resource information in [AHS02]
and [CdAHS03]. To strengthen the case, we have used some examples from
[AH04] adapting them to our framework, and aligned the terminology with [AH01,
AH04] as much as possible. Another approach to compatibility for blocking-
services is taken by Rajamani and Rehof in [RR02] targeting compatibility of web
services. We work in the input-enabled asynchronous setting of I/O-automata
[Lyn88], which is semantically closer to implementations of embedded systems.
To the best of our knowledge similar properties have not been studied in the I/O
automata community yet.

The notion of relativized refinement and equivalence, or more precisely simu-
lation and bisimulation, is due to Larsen [Lar86, Lar87]. It was so far applied in
the setting of protocol verification [LM92], automatic testing [LMN05] and mod-
eling software product lines [LLW05]. Here we adapt it to a language inclusion
based refinement.

The general method of solving systems of behavioral equations using disjunc-
tive modal transition systems and bisimulation as a requirement was published in
[LX90]. The method presented in section 5 is an adaptation of this earlier work to
an input-enabled setting and language-inclusion based refinement. The original
method does not assume determinism of processes in the system of constraints.

The preliminary version of this paper [LNW05] featured a stronger definition
of mutual deadlock freeness: E|S1 6 E2 and E|S2 6 E1. Being stronger, this for-
mulation also implies independent-implementability, but it rules out many useful

88 Paper B: Interface Input/Output Automata

compositions as incompatible. The relativized version proposed here (B.2) is
weaker, but still strong enough to imply independent implementability. As
we have seen in the previous section, it behaves reasonably allowing roughly
the same kind of compatible interfaces as interface automata. The present paper,
completely rewritten, reworks the theory with this new characterization, adding
associativity, refinement of interfaces, a new method for solving systems of in-
equalities, contravariant signature extension, and the correspondence to interface
automata.

8 Conclusion

We have proposed an interface theory for distributed networks of asynchronous
components modeled as I/O automata. The characteristic feature of our inter-
faces is an explicit separation of assumptions from guarantees. Apart from the
usual engineering advantages offered by such a separation of concerns, it also
allows modeling of families of interfaces implemented by software product lines.

We demonstrated that it is possible to build a reasonably behaved interface
theory in an input-enabled setting, with language inclusion as refinement. We
emphasize that our derivation of interface composition is systematic: we state
requirements for composition and reduce the problem to finding a solution of a
corresponding system of behavioral inequalities. We also discuss the generality
of the constructed interface, concluding that it exhibits the weakest assumptions
and the strongest guarantees that are possible with our requirements. Finally
we describe a method for solving systems of inequalities arising in our setup and
draw a formal correspondence between the present work and interface automata.

Paper C

Modal I/O Automata for Interface
and Product Line Theories

Kim G. Larsen, Ulrik Nyman
Department of Computer Science,
Aalborg University, Denmark

Andrzej Wąsowski
Computational Logic and Algorithms Group,
IT University of Copenhagen, Denmark

Abstract

Alfaro and Henzinger use alternating simulation in a two player game as a refine-
ment for interface automata [AH01]. We show that interface automata correspond
to a subset of modal transition systems of Larsen and Thomsen [LT88], on which
alternating simulation coincides with modal refinement. As a consequence a more
expressive interface theory may be built, by a simple generalization from interface
automata to modal automata. We define modal I/O automata, an extension of
interface automata with modality. Our interface theory that follows can express
liveness properties, disallowing trivial implementations of interfaces, a problem
that exists for theories build around simulation preorders. In order to further
exemplify the usefulness of modal I/O automata, we construct a behavioral vari-
ability theory for product line development.

Keywords: Modal I/O Automata, Interface Theory, Product Lines, Interface
Automata, Modal Transition Systems

89

90 Paper C: Modal I/O Automata for Interface and Product Line...

1 Introduction

An interface theory [AH01, CdAHS03, AHS02, LNW06b, ČVZ06, HRS05] is a
type-system-like theory for component languages, where types (interfaces) de-
scribe components (implementations) with composition being the only operator
available. A type error proves that either a component does not conform to
its interface, or that two composed components are incompatible. Since the
overall structure of these type systems is so simple, it is often accepted not
to give typing rules explicitly when describing interface theories (for example
[AH01, CdAHS03, AHS02, LNW06b, ČVZ06]), focusing instead on the essential
ingredients of conformance, compatibility and composition.

Regular, non-component types are only applied to existing objects in program
code. In contrast for interface theories it makes sense to discuss interfaces as spec-
ifications of application’s architecture in isolation from actual source code. An
interface abstracts the component in terms of the assumptions made by the com-
ponent and the guarantees that it provides. One reasons about possible connec-
tions between component implementations (compositions) by using properties of
composition of interfaces; most importantly independent implementability (that
any implementations conforming to compatible interfaces are compatible) and
generality properties (that the composition of interfaces produces an interface
with the weakest assumptions and strongest guarantees).

We consider behavioral interface theories suitable for specification of com-
munication protocols between components (web services or embedded systems).
Such theories typically require a contravariant treatment of inputs and outputs
to ensure deadlock-free implementations: inputs guaranteed by the specification
are always offered by the implementation and that the implementation never
produces more outputs than the specification. This observation led de Alfaro,
Henzinger and colleagues [AH01, CdAHS03, AHS02] to a conclusion that game
theoretical models of interaction are most suitable as building blocks for behav-
ioral interface theories. While we do appreciate the values of the game theoretical
formulations, we disagree with some claims in the above cited work and argue
that game formulations are insufficient in themselves: there is a genuine value
in combining the game theoretical approach with more traditional formulations
based on transition systems, or more precisely on modal transition systems.

The two worlds of game models and modal transition systems convey largely
orthogonal information about the moves of a system. Game models specify who
has control over transitions, while modal transition systems focus on require-
ments, modality : which moves are allowed and which are required. In this paper
we try to relate the two worlds, explain their weaknesses and their qualities.
Eventually we combine them into a unified interface theory.

Game theoretical notions of conformance are often based on alternating sim-
ulation [AHKV98]. We show that alternating simulation in a two player setting,
as used in interface automata [AH01, AH04], is just a special case of modal tran-

Introduction 91

sition systems refinement developed by Larsen and Thomsen [LT88] in the late
eighties. This suggests that the real value of the game theoretic approach to
component theories does not lie in the use of alternating simulation, but in the
use of control information in the composition synthesis algorithms.

Not surprisingly then, modal transition systems themselves cannot be used
to build an interface theory, without adding control information. We build a
new interface theory around modal I/O automata, which combine features of
both game theoretic models and modal transition systems. Thanks to this new
combination, our interfaces are now able to express liveness properties, which was
impossible in existing interface theories (after this work has been completed we
have learned about [CFN05], which achieves a similar effect in a different setting).

In order to further demonstrate the usefulness of our modal I/O automata,
we construct a product line [Par76, CE00, PBvdL05] theory. In simple words a
product line is a set of similar products built by combining assets from a com-
mon platform available in the development process. The differences between the
products are referred to as variability. Our theory is a behavioral formalism for
describing the variability of components. The theory supports deciding whether
given requirements can be satisfied by choosing concrete instances from the set of
available assets. This theory, though very small, is to the best of our knowledge
one of the very few attempts at describing software product lines in a behav-
ioral fashion, and unlike the previous work [LLW05], which takes a top-down
approach to describing product families, it facilitates a bottom up construction
of products, which is how product line development is more typically understood
in the software engineering community. This contribution is not meant to be
comprehensive, highly developed and well set in the tradition of the product line
development. It should be understood as a simple example that emphasizes the
semantic difference between modeling components in component based develop-
ment and modeling assets for product family development. We do hope to extend
this theory soon and report about it separately in detail.

The paper proceeds as follows. In the next section we shall explain the main
results of the paper in nontechnical terms. Our main results concentrate in sec-
tions 3, 5 and 6. In Section 3 we draw a correspondence between the alternating
simulation and observational modal refinement. In Section 4 modal I/O automata
are defined, which are then used to construct an interface theory in Section 5 and
a product line theory in Section 6. Sections 5 and 6 are largely independent,
though they share a lot of intuitions. We conclude in Section 8.

92 Paper C: Modal I/O Automata for Interface and Product Line...

2 3

3

2

send! ok? fail?

send!

ok?

4

send! ok? fail?

Figure C.1: The Client interface (left) and a trivial implementation of it (right).

2 Interface Automata vs Modal Automata: An

Example

Consider an example interface automaton for a Client component (Fig. C.1 (left),
originally presented in [AH01]). This simple model describes a component that
occasionally may want to send a package, and once it has made the request it is
ready to receive an acknowledgment. The signature of the interface also mentions
a fail input, but the component is never able to receive it. This means that Client

is only capable of interacting with network links that never fail.
In interface automata, due to a game theoretic semantics, all outputs are

controlled by the component itself (called the Output player), while all inputs
to such components are controlled by the environment player (called the Input
player). An implementation conforms to the interface iff whenever some input
is offered by the interface, then it is also offered by the implementation, and
whenever an implementation produces any output, this output is also present in
the interface (conformance formalized as alternating simulation [AHKV98]).

Such a notion of conformance implies that compatibility can be passed from
interfaces to components: if there is no winning strategy for the input player
that leads to a deadlock in the interface automaton, then there won’t be such
a strategy for the same player that interacts directly with any implementation.
Similarly if there is no strategy for the output player that leads to an output that
cannot be accepted by the environment, then there is also no such strategy for
any of the implementations.

Unfortunately this notion of conformance, though very much safety oriented,
does not enforce that the implementations take on any useful activities at all.
Consider for example the diagram in the bottom of Fig. C.1. It presents a model
of an implementation that does not perform any actions ever. In other words
this is a network application that does not use the network at all. Still this new
model conforms to its interface on the left, as in its initial state it does not add
any illegal outputs and it offers all the inputs that were offered by the interface.

If we turn this into the terminology used in modal transition systems it means

Interface Automata vs Modal Automata: An Example 93

that all the inputs are required, which is indicated by the 2 (must) modality on
the corresponding transition, and the outputs are allowed, which is indicated by
the 3 (may) modality on the transitions. In a modal transition systems perspec-
tive, conformance is based on modal refinement [LT88]. This refinement requires
that whenever an implementation makes a step, then it must be possible to mimic
it by an allowed transition of the specification; whenever the specification makes
a required step it must be possible to match it with some required step of the cor-
responding state in the implementation. With the assignment of may to output
transitions and must to input transitions this sounds nearly like the alternating
simulation described above. In Section 3 we prove that indeed the two relations
coincide if we require that the may transition relation is input-enabled.

Consequently modality gives strictly more modeling power than alternating
refinement. Various modalities can be assigned to actions regardless of whom
controls them. Instead of allowing all possible extensions on inputs, as in inter-
face automata, the designer is able to control what extensions are allowed. For
example we can change the Client model of Fig. C.1 to have a must modality (2)
on the send! transition, which will have the effect that now all the implementa-
tions must be able to proceed producing an output. This would rule out trivial
implementations as the one presented on the right side of Fig. C.1.

The game theoretic formulation of conformance gives a certain interpretation
to inputs and outputs. Namely that inputs are incoming requests for service
(for example remote procedure calls), while outputs are outgoing requests for
service (also remote procedure calls, albeit in the other direction). With such
an interpretation it becomes clear that removing services from the promised list
should be illegal, while removing calls to external services is perfectly fine. This is
exactly what alternating simulation achieves. What it misses is a more complex
structure of communication.

In asynchronous systems some messages indeed convey calls for service, how-
ever many other return feedback from the services (return a value). When a given
output models returning a value from a component, then clearly it should never
be removed, as then the whole component becomes useless. Fig. C.2 illustrates
another interface modeling a data link layer, which exploits the interplay between
control and modality. The must modality is placed on transmt! transitions, as
the data link layer would be useless if the implementation was permitted not to
forward packets down the stack. Similarly the transition sending back the error
message cannot legally be removed. At the same time the call for linkStatus! is a
may transition as some implementations are allowed not to consult the hardware
link explicitly to detect errors. Finally not all implementations are forced to be
able to work with links that fail twice in a row, which is modeled by the second
nack! transition being a may transition.

Now consider how the two interfaces of Fig. C.1 (left) and Fig. C.2 (top)
should be composed. The composition resembles a product computation (taken
separately for the may transition relation and the must transition relation). As

94 Paper C: Modal I/O Automata for Interface and Product Line...

14 15 16 17 18

19

202122

2 2 2 2

2
2

2 3

2

2

3

23

trnsmt! log! up?

send? ok! fail!

send? trnsmt! nack? trnsmt!
ack?

ack?ok!

nack?fail!
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

202122

3 2 2 2

2
2

3

2

2

3

23

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

Figure C.2: DataLink layer with nontrivial modalities (top). Composition
DataLink ⊗Client (bottom). State 22 is an error state, where DataLink can
produce the fail action, not accepted by Client .

a result we obtain the interface presented in the bottom of Fig. C.2. Because
the client component was so weak, the ultimate interface shows a system that
possibly may never do anything. However if Client will send some packets, these
packets will certainly be processed by the composition, unless the hardware link
is broken. In such a case it might be that the implementation will produce a
fail! message which will cause a deadlock with the current version of the Client
(this can happen when the composition is in state 22). Since we cannot modify
the composed system we instead synthesize a new interface which restricts the
use of the composition in order to guarantee error freeness. States of the com-
position that can experience deadlocks are called error states. We follow Alfaro
and Henzinger in removing error states, and transitively all states from which
error states can be reached by following internally controllable transitions of the

Interface Automata vs Modal Automata: An Example 95

14 15 16 17 18

19

20

3 2 2 2

2
2

3

2

2

3

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?

linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

2021

3 2 2 2

2
2

3

2

2

3

2

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
down?

linkStatus!

up?

linkStatus! ack? nack? down?

Figure C.3: Composed interfaces LinkLayer |Client and variability models
LinkLayer ·Client

component (outputs and internal actions). This leads to the interface on Fig. C.3
(top), expressing the fact that this component works well as long as the physical
link never goes down.

The pruning mechanism described above would not be possible without the in-
formation describing which transitions are internally controllable being explicitly
present in the model. It does not seem possible to compute the safe fragment of
the product automaton, by just investigating the modalities of transitions. While
we have said that modal refinement is strictly more expressive than alternating
simulation, the control information of interface automata has its unique qualities
too: it enables valuable synthesis algorithms not otherwise possible.

Let us now revisit the model of Fig. C.2 (top) giving it a different interpreta-
tion than previously. Instead of perceiving it as an abstraction of a component,
we should now see it as a description of a set of components. A modal automaton

96 Paper C: Modal I/O Automata for Interface and Product Line...

describes in fact a whole, often infinite, set of possible implementation automata1.
One can think of them as all possible configurations of the model. This feature of
modal automata suggests the possibility of using them as a behavioral formalism
in describing variability in product lines.

A product line is a collection of products that are similar in that they offer
overlapping functionality, and in that they are built from assets selected from
a common platform. In here we want to describe both assets and the whole
product line by modal I/O automata. If each of the assets is modeled as a modal
I/O automaton we can model the capabilities of the family by composing these
descriptions. However this time we would not be interested in a composition that
guarantees compatible behavior of any selection of assets. It is normally expected
that not all the assets in a product line platform are mutually compatible. Some
of them will deadlock (for example a failing link layer and our Client component).
The requirement for composing the variability descriptions is not to synthesize an
interface that guarantees correctness of composition of all possible combination
of assets, but to precisely describes what the correct combinations are: i.e. what
are the deadlock free behaviors respecting the modalities that can be constructed
with the available automata.

It turns out that a composition like that exists and it resembles the pruning
of the product automaton for interface automata. The only difference is that
now error states are the states where the error must be possible to realize (so one
party must be required to produce an output that the other party must not be
allowed to receive) and that we prune all the states from which reaching an error
state is unavoidable (in our interface theory we have pruned states from which
reaching errors might be possible).

The result of composing Client and LinkLayer using the variability model
semantics is presented on the bottom of Figure C.3. This result contains a slightly
bigger model than the interface automaton composition on the top. It states that
there exists a pair of assets (implementations of Client and LinkLayer) such that
it is able to accept a link down message without an error message. The transition
with the down message was removed in the interface compositions as, for some
pairs of implementations, it would lead to a deadlock.

Can a given specification be implemented by choosing components from avail-
able assets? Is the result of the composition the most general possible, containing
all possible legal products? Can we find what the configuration of these elements
should be? We address some of these questions in section 6, with an intention of
elaborating more in upcoming work.

1This is also true for interface automata, though to a much lesser extent. Due to the lack
of modality the set of implementations for an interface automaton is much simpler than it can
be for a modal automaton.

Alternating Simulation vs Modal Refinement 97

3 Alternating Simulation vs Modal Refinement

Let us begin with defining modal automata, a version of modal transition sys-
tems [LT88] extended with signatures. A modal automaton has two transition
relations indicating respectively allowed (may) and required (must) behavior.

Definition 1 (Modal Automaton) A modal automaton S is a six tuple: S =
(statesS, startS, extS, intS,−→3

,−→2
) where statesS is a finite set of states, startS

∈ statesS is the initial state, extS and intS are disjoint sets of external and internal
actions and actS = extS ∪ intS, −→3S ⊆ statesS × actS × statesS is the may
transition relation describing allowed behavior, and −→2S ⊆ statesS × actS ×
statesS is the must transition relation describing required behavior.

Throughout the paper we sometimes use the symbols “!”, “?” and “;” after
an action. This is done in order to increase the readers intuition of whether the
action is respectively an output, input or internal action. No symbol is used
when the action can be of more than one type. These symbols could be left out
completely as it is the identity of the action that is significant.

In the following we write s τ−→∗
2
s′ meaning that there exists a sequence of in-

ternal must actions leading from s to s′. The same is defined for may transitions.
A modal automaton is syntactically consistent if everything that is required

is also allowed, such that −→2
⊆ −→3

. In the following we only consider syntac-
tically consistent modal automata. A modal automaton is an implementation if
the two transition relations coincide.

A modal automaton describes a set of possible implementations. Simplisti-
cally when refining a modal automaton specification into an implementation one
can remove a may transition, that does not have a corresponding must transi-
tions or strengthen it into a must transition. In general this refinement is not
syntactic, but behavioral, so it is not the syntactic transitions that are refined
but the actual steps taken by the transition system. The same transition can be
refined differently each time it is taken.

Definition 2 (Modal Refinement) For a pair of modal automata S and T
with the same signature, a binary relation R ⊆ statesS × statesT is a modal
refinement if whenever sRt and a ∈ actS it holds that

if t a−−→2
t′ then ∃s′.s a−−→2

s′ and (s′, t′) ∈ R.
if s a−−→3

s′ then ∃t′.t a−−→3
t′ and (s′, t′) ∈ R.

Modal refinement ≤mis defined as the largest such relation. We say that a modal
automaton S modally refines a modal automaton T , written S ≤m T , iff there
exists a modal refinement containing (startS, startT).

Observational modal refinement is a weaker refinement in which the two modal
automata can take internal transitions, that cannot be directly observed by the
other automaton. In absence of internal actions the observational refinement
coincides with the non-observational one.

98 Paper C: Modal I/O Automata for Interface and Product Line...

Definition 3 (Observational Modal Refinement) For a pair of modal au-
tomata S and T with the same signature, a binary relation R ⊆ statesS × statesT
is an observational modal refinement if whenever sRt and a ∈ actS it holds that

if t a−−→2
t′ and a ∈ extT then ∃s′. s a−−→2

s′ ∧ (s′, t′) ∈ R.

if s a−−→3
s′ and a ∈ extS then ∃t′.t τ−→∗

3
t′.∃t′′. t′ a−−→3

t′′ ∧ (s′, t′′) ∈ R.

if s a−−→3
s′ and a ∈ intS then ∃t′.t τ−→∗

3
t′.(s′, t′) ∈ R

Observational modal refinement ≤∗
mis defined as the largest such relation. We say

that a modal automaton S observationally refines a modal automaton T if there
exists an observational modal refinement containing (startS, startT).

Interface Automata [AH01] can be considered a subset of modal automata in
which the external actions extS are partitioned into inputs inS and outputs outS.

Definition 4 (Interface Automaton) An interface automaton P is a tuple
P = (statesP , startP , inP , intP , outP ,−→P) where statesP is a finite set of states,
startP ∈ statesP is the initial state, inP , outP and intP are three pairwise dis-
joint sets of input, output and hidden (internal) actions respectively, and −→P ⊆
statesP × actP × statesP is the set of transitions where actP = inP ∪ outP ∪ intP .

We require that the transition relation is input-deterministic such that for all
s, s′, s′′ ∈ statesP and all input actions a ∈ inP if s a?−−→s′ and s a?−−→s′′ then s′ = s′′.

Similarly as for Modal Automata we define s τ−→∗s′ for Interface Automata
to mean that there exists a sequence of internal transitions leading from s to
s′. We define alternating simulation for interface automata as commonly used
in software specification [AH04], which is slightly less general than the original
[AH01]:

Definition 5 (Alternating Simulation) For a pair of interface automata S
and T with the same signature, a binary relation R ⊆ statesS × statesT is an
alternating simulation if whenever sRt and a ∈ actS it holds that:

if t a?−−→t′ and a ∈ inT then ∃s′.s a?−−→s′ and (s′, t′) ∈ R

if s a!−→s′ and a ∈ outS then ∃t′.t τ−→∗t′.∃t′′.t′ a−→t′′ and (s, t′′) ∈ R

if s a;−→s′ and a ∈ intS then ∃t′.t τ−→∗t′ and (s′, t′) ∈ R

Alternating simulation ≤ais defined as the largest such relation. We say that S
simulates T , written S ≤a T , if there exists an alternating simulation containing
(startS, startT).

In order to compare interface automata with modal automata, we construct
a translation function T mapping from the former to the latter. The result
of the translation always fulfills the conditions listed below. It is easy to see
that for modal automata that fulfill these conditions a reversed mapping can be
constructed, too.

Modal I/O Automata 99

1◦ The may transition relation is input enabled, meaning that for each state
s ∈ statesS and each input action a ∈ inS there exists a state s′ and a may
transition s a?−−→3

s′

2◦ The constructed modal automaton is syntactically consistent: −→2
⊆ −→3

3◦ Must transitions are only labeled by inputs: −→2S ⊆ statesS× inS× statesS

Let smayall be a fresh state that allows all behavior but does not require any
behavior. If U denotes the universe of all inputs, such that for all interface
automata P , inP ∈ U , then we define the translation function as follows:

T (statesP , startP , inP , outP , intP ,−→P) = (statesS, startS, extS, intS,−→3
,−→2

)

where statesS = statesP ∪ {smayall}, startS = startP , extS = U ∪ outP , intS = intP
and s1

a−−→3

S s2 if s1
a−→Ps2 and a ∈ outP ∪ intP

and s3
a−−→2

S s4 and s3
a−−→3

S s4 if s3
a−→Ps4 and a ∈ inP

and s3
a−−→3

S smayall if ∀s′ ∈ statesP (s3, a, s
′) /∈ −→P and a ∈ U ,

and smayall is a fresh state such that ∀a ∈ actS.smayall
a−−→3

S smayall.

Theorem 1 Alternating simulation and observational modal refinement coincide
for interface automata in the following sense:

for any two interface automata S, T : S ≤a T iff T (S) ≤∗
m T (T) (C.1)

Theorem 1 suggests that the usefulness of game theoretical models for component
theories does not lie in its conformance relation. The crux is the use of control
information in synthesis algorithms, when paths to error states are pruned. If this
is the case we can construct an interface theory based on modal refinement and
modal automata augmented with control information. Since modal refinement is
richer and we can use a generalization of the synthesis algorithm used for interface
automata, we will obtain a more expressive interface theory.

The fact that alternating simulation coincides with the observational version
of modal refinement is expected, because Definition 5 embeds a closure on inter-
nal transitions. In fact in the absence of internal actions alternating simulation
coincides with the regular modal refinement, as described in Definition 1, which
is easy to prove. In order to simplify the developments we use the regular modal
refinement (≤m) from now on, even though most of our theorems can reasonably
be considered for the observational refinement (≤∗

m), too.

4 Modal I/O Automata

Let us now define modal I/O automata, an extension of modal automata with
control information, that will be the main ingredients of our interface theory and
the product line theory coming in the next sections.

100 Paper C: Modal I/O Automata for Interface and Product Line...

Definition 6 A modal I/O automaton S is a tuple S = (statesS, startS, inS, outS,
intS,−→3

,−→2
), where statesS is a set of states, startS ∈ statesS is an initial

state, inS, outS and intS are pairwise disjoint sets of inputs, outputs and internal
actions respectively (actS = inS∪outS∪intS), −→3S ⊆ statesS×actS×statesS is a
may-transition relation, and −→2S ⊆ statesS×actS× statesS is a must-transition
relation. Like previously we only consider syntactically consistent modal I/O
automata here, so −→2

⊆ −→3
.

The composition for modal I/O automata combines both the modal aspects
and the communications aspects. Two modal I/O automata S1,S2 are composeable
iff their actions only overlap on complementary types: (inS1

∪ intS1
) ∩ (inS2

∪
intS2

) = ∅ and (outS1
∪ intS1

) ∩ (outS2
∪ intS2

) = ∅. The composition S1 ⊗ S2

gives rise to a modal I/O automaton S such that statesS = statesS1
× statesS2

,
startS = (startS1

, startS2
), inS = (inS1

\ outS2
) ∪ (inS2

\ outS1
), outS = (outS1

\
inS2

) ∪ (outS2
\ inS1

), intS = intS1
∪ intS2

∪ (inS1
∩ outS2

) ∪ (outS1
∩ inS2

). The
transition relations are given by the following rules (see Fig. C.2 for an example):

s1
a!−→γs

′
1 s2

a?−−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}
s1

a?−−→γs
′
1 s2

a!−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}

s1
a−→γs

′
1 a /∈ actS2

s1 ⊗ s2
a−→γs

′
1 ⊗ s2

γ ∈ {2, 3}
s2

a−→γs
′
2 a /∈ actS1

s1 ⊗ s2
a−→γs1 ⊗ s′2

γ ∈ {2, 3}

For technical reasons (efficiency and simplicity) we always assume that un-
reachable states are removed after computing a composition (both here and in
later sections). The following theorem is a simple corollary from the general fact
that the modal refinement is a precongruence [BL90, Lar89]:

Theorem 2 Modal refinement is a precongruence with respect to the above com-
position operator: for any four modal I/O automata T1, T2, S1, S2 such that
T1 ≤m S1 and T2 ≤m S2 it holds that T1 ⊗ T2 ≤m S1 ⊗ S2.

The composition operator (⊗) defined above corresponds to a usual compo-
sition of software (hardware) components. Whenever we use it below we mean
an unrestricted connection of components, which does not preclude deadlocks or
other kinds of errors. We shall soon introduce two seemingly similar composition
operators, (|) and (·) having a very different use. In fact they are algorithms
synthesizing specifications of how a result of simple composition (⊗) should be
used in order to guarantee the absence of certain errors.

5 A Modal Interface Theory

Interface theories support component based development. The aim is to specify
component interfaces and from these interfaces to derive the interfaces of compos-
ite components. The novel aspect of the interface theory presented here is that

A Modal Interface Theory 101

the components can specify both required and allowed behavior, consequently it
is suitable for expressing liveness properties.

In our specific interface theory an interface is given by a modal I/O automa-
ton. A given interface specifies a set of potential implementations (concrete
implementations have identical transition relations −→3

= −→2
). The goal of our

interface theory is to be able to use interface descriptions to describe legal imple-
mentations of components in a component based system. The implementation
relation, the relation that specifies which implementations conform to a given
interface description is modal refinement ≤m. From the interface descriptions
of two components it should be possible to derive the interface of the combined
component. This is done without knowing more about the implementations, than
the fact that they conform to their individual interface specification.

The result of composing two interfaces is a subset of the result of composing
two modal I/O automata, in which all possible internally controllable paths lead-
ing to error states are removed. An error state is a state in which one component
can output something that the other component might be unable to receive:

err i
S1,S2

= {(s1, s2) ∈ statesS1⊗S2
| there exists a ∈ intS1⊗S2

and states s′1, s
′
2

such that (s1
a!−−→3

S1 s′1 and s2 6 a?−−→2

S2) or (s2
a!−−→3

S2 s′2 and s1 6 a?−−→2

S1)} (C.2)

State 22 on Fig. C.2 is an error state, witnessed by the fail action.
We are now ready to define the set of states of the composition:

statesS1|S2
=

∞
⋂

n=0

pruneni (statesS1⊗S2
\err i

S1,S2
) , (C.3)

where prunei(S) = {s ∈ S | ∀s′ ∀a ∈ intS1⊗S2
. s a−−→3

s′ implies s′ ∈ S}, which is a
monotonic function that removes, from the set of states S, all those states that
in one internally controllable step may reach a state that is not in S.

See Figure C.3 (left) for an example of how pruning works. State 22 has been
removed as an error state, then state 21 was pruned as an error state can be
reached from it by the internally controllable transition log!. Then all transitions
involving states 21 and 22 were removed. State 20 remains in the result as the
must transition labeled down is externally controllable.

Definition 7 (Composition) The composition of two interfaces S1 and S2 is
defined if S1 and S2 are composable modal I/O automata and startS1⊗S2

∈ statesS1|S2

(see above). The composition results in a modal I/O automaton S1|S2 such that
S1|S2 = (statesS1|S2

, startS1⊗S2
, inS1⊗S2

, outS1⊗S2
, intS1⊗S2

,−→3

S1⊗S2 ∩
(statesS1|S2

×actS1⊗S2
×statesS1|S2

),−→2

S1⊗S2 ∩(statesS1|S2
×actS1⊗S2

×statesS1|S2
)).

Two interfaces are compatible if the set of states resulting from composition,
statesS1|S2

, contains the initial state (startS1
, startS2

).

102 Paper C: Modal I/O Automata for Interface and Product Line...

A desirable property of an interface theory is that components can be im-
plemented independently of each other once the specifications are known. The
following theorem formally states that this theory satisfies the property.

Theorem 3 (Independent Implementability) For any two compatible inter-
faces S1, S2 and for any two implementations I1, I2, I1 ≤m S1 and I2 ≤m S2, it
holds that I1 ⊗ I2 ≤m S1|S2.

This has three implications. First, I1 ⊗ I2 would deliver all the required behavior
promised by S1|S2 as long as it interacts with an environment obeying S1|S2.
Second, I1 ⊗ I2 will not do anything that S1|S2 would not allow in such an
environment. Third, since S1|S2 does not contain error states then I1 ⊗ I2 will
not deadlock.

Theorem 4 (Deadlock Freeness Preservation) For any two compatible in-
terfaces S1, S2, any two implementations I1, I2, so I1 ≤m S1 and I2 ≤m S2, and
any interface T compatible with S1|S2, if T⊗(S1|S2) has no reachable error states
then T ⊗ (I1 ⊗ I2) has no reachable error states.

Finally the composition operator (|) is commutative and associative up to
graph isomorphism.

6 A Product Line Theory

In product line development one typically maintains a family of existing assets
that are composed in a bottom-up fashion in order to build a product. Here we
assume that existing assets are sufficient to build the product and no genuinely
new programming is required. Assets are organized in small subfamilies, that can
be thought of as configurable components. Choosing an asset from a subfamily is
a configuration process. We model subfamilies as modal I/O automata, and call
them variability models, to distinguish them from interfaces. The configuration
process amounts to finding a suitable modal refinement of a variability model.

There is a need for a mechanism for composing variability models, to en-
able reasoning about the products that can be constructed using available assets.
As in the interface theory we are interested in computing the legal uses for the
composition of two models, without reaching error states. However we weaken
the requirement this time: we do not require that all possible pairs of imple-
mentations give an error free composition, but only that there exists a pair of
implementations that can avoid errors under a suitable use.

Two variability models are composable if their input, output and hidden ac-
tions do not overlap (the general rule for modal I/O automata). Two composable
families can be composed, resulting in a description of a higher level component
family. The signature of this variability model is found in the same way as for
modal I/O automata. The requirement for the description of this more abstract

A Product Line Theory 103

family is that a specification that refines its description can be realized by choos-
ing some concrete implementations from both lower level families involved. So
that in effect one can configure the final product by configuring the abstract com-
posed variability model, being sure that the selected configuration can be refined
to configurations of each of the smaller components, available in the collection of
assets. We give a sufficient condition for a refinement of a variability model to
be decomposable.

The ultimate composition closely resembles the composition (|) for interface
automata: it uses the regular modal I/O automata composition (⊗) first and
then removes error states. However now only internally controllable required
transitions are pruned, while in the interface theory we had also removed states
reachable by allowed executions of the same kind. The very existence of allowed
internally controlled execution to an error state was considered dangerous in the
interface theory—it is not in the product line theory. This is because we are not
interested in eliminating errors by all means, but only in making sure that there
exist error-free realizations of the specification. For two syntactically composable
variability models we define the set of error states, err v

S1,S2
, to be:

err v
S1,S2

= {(s1, s2) ∈ statesS1⊗S2
| there exists a ∈ intS1⊗S2

and states s′1, s
′
2

such that (s1
a!−−→2

s′1 and s2 6 a?−−→3
) or (s1 6 a?−−→3

and s2
a!−−→2

s′2)} (C.4)

In Figure C.2 (right) state 22 is still an error state, though for a different
reason than previously: in state 22 the LinkLayer must be able to produce fail,
but the Client is not allowed to receive it. If a product of two variability models
contains an error state it means that there exist configurations of composed assets
that cannot safely work together. However, in the same spirit as in the interface
theory, we can compute the set of legal uses that guarantee that there exist pairs
of compatible configurations to interact with them. We remove from the product
S1 ⊗ S2 all the states that according to the variability specification must be able
to reach an error state. If there is no states left then the two variability models
are incompatible. Otherwise we arrive at a specification of states and transi-
tions among the compatible states that constraint possible legal implementations
obtained from these two families. Formally:

statesS1·S2
=

∞
⋂

n=0

prunenv(statesS1⊗S2
\errv

S1,S2
) , (C.5)

where prunev(S) = {s ∈ S | ∀s′. ∀a ∈ intS1⊗S2
∪ outS1⊗S2

. s a−−→2
s′ and s′ ∈ S}.

We compute the two transition relations for the composition, by projecting the
transition relations of the parallel composition S1⊗S2 onto the new set of states:

−→3

S1·S2 = −→3

S1⊗S2 ∩ (statesS1·S2
× actS1⊗S2

× statesS1·S2
) (C.6)

−→2

S1·S2 = −→2

S1⊗S2 ∩ (statesS1·S2
× actS1⊗S2

× statesS1·S2
) . (C.7)

104 Paper C: Modal I/O Automata for Interface and Product Line...

Finally we can state the complete result of the composition: a modal I/O au-
tomaton S1 ·S2 such that S1 · S2 = (statesS1·S2

, (startS1
, startS2

), inS1⊗S2
, outS1⊗S2

,
intS1⊗S2

,−→3

S1·S2,−→2

S1·S2) and all the components are defined above.

Definition 8 Two variability models are compatible if they are composable and
their composition is nonempty.

It turns out that observationally consistent refinements of compositions of
variability models are realizable with existing assets. We define observational
consistency for states of a single automaton. Let t A−−→2

∗t′ mean that t′ is reach-
able from t via a possible empty sequence of required transitions labeled by
possibly different actions from a set A.

Definition 9 Let T be a modal automaton and let A ⊆ actT be a set of actions.
A relation C ⊆ statesT × statesT is an observational consistency relation with
respect to A if for any pair of states (t1, t2) ∈ C the following two properties hold:

1◦ ∀t′1. if t1
A−−→2

∗t′1 then ∀a /∈ A. ∀t′′1. t
′
1

a−−→2
t′′1 implies ∃t′2. t2

a−−→3
t′2∧ (t′′1 , t

′
2) ∈

C.

2◦ ∀t′2. if t2
A−−→2

∗t′2 then ∀a /∈ A. ∀t′′2. t
′
2

a−−→2
t′′2 implies ∃t′1. t1

a−−→3
t′1∧ (t′1, t

′′
2) ∈

C.

Two states are observationally consistent if there exists an observational consis-
tency relation relating them. A set of states is said to be observationally consis-
tent with respect to A if all possible pairs of states from the set are observationally
consistent with respect to A. An automaton T is observationally consistent with
respect to A iff the set {startT} is an observationally consistent set.

The following theorem states the existence of decomposition formally:

Theorem 5 (Decomposability) Let T1, T2 be deterministic composable vari-
ability models, and S be a configuration (a deterministic variability model itself)
such that S ≤m T1 · T2, and T1, S are observationally consistent with respect to
actT1

\ actT2
and T2, S are observationally consistent with respect to actT2

\ actT1
.

Then there exist S1 and S2 such that S1 ≤m T1 and S2 ≤m T2 and S1 ⊗ S2 ≤m S.

A version of the theorem, not requiring observational consistency, does not
hold, which can be demonstrated with a counter-example, not included here.

An important corollary is that the decomposition can be carried over down to
precise configurations: if a concrete configuration of a product is required, then
there exist concrete configurations of assets to realize it. The question whether
a specification is realizable with given assets is reduced to establishing observa-
tional consistency and a modal refinement between the postulated requirement

Conclusion & Future Work 105

and the variability model. Consequently the abstract variability model can be
communicated to configuration engineers and used to configure final products.

Let us close our discussion with a statement that the (·) operator is general
enough to describe all implementations safely realizable with existing assets.

Theorem 6 (Completeness) For any two compatible variability models T1, T2

and any two compatible concrete implementation specifications I1, I2, where I1 ≤m

T1 and I2 ≤m T2 it holds that I1 · I2 ≤m T1 · T2.

7 Conclusion & Future Work

We have investigated the relation between alternating simulation as used in in-
terface automata and observational modal refinement, concluding that former is
a case of the latter. We have argued that the strength of the game theoretic ap-
proach to interface theories does not lie in alternating refinement itself, but in the
labeling of transitions with control information; in partitioning the actions into
internally and externally controllable. We have extended modal transition sys-
tems with this information and demonstrated that in this way interface theories
tracking liveness properties, can be built. Finally we have presented a product
line theory describing variability in behavior of component families.

In the future we would like to extend the product line theory of Section 6
to a full featured theory based on observational modal refinement and study its
properties in depth. Also it appears interesting to investigate the relation between
the general notion of alternating refinement [AHKV98] and (modal) transition
systems, lifting the restrictions accepted in Section 3 after the interface automata
model.

106 Paper C: Modal I/O Automata for Interface and Product Line...

8 Proofs

This appendix contains proofs of theorems and lemmas, along with some coun-
terexamples for negative claims or one-way implications. The appendix is not an
integral part of the paper, and reading it is not required in order to assess the
value of the results.

8.1 Appendix for Section 3

This section uses formulations of Alternating Simulation and Observational Modal
Refinement with ǫ-closure(s) instead of s τ−→∗.

Proof 1 (of Theorem 1) The proof will be divided into two directions. First
we will prove that

∀S, T ∈ IA. S ≤a T =⇒ T (S) ≤∗
m

T (T).

We will prove this by showing that alternating simulation is a subset of obser-
vational modal refinement on the translation of IA: ≤a ⊆≤∗

m. This will be shown
by showing that the following relation is a modal refinement.

R = {(s, t)|∃ŝ, t̂.s = T (ŝ) ∧ t = T (t̂) ∧ ŝ ≤a t̂} ∪ {(s, smayall)|s ∈ statesS}

This is shown in three different cases, one for each of the rules that define
observational modal refinement.

1◦ Must transition, external action: Take t.t a−−→2
t′ ∧ a ∈ extT . We can

conclude from the definition of translation that this case only exists for
a ∈ inT . By R we have that ∃t̂.t̂ a?−−→t̂′. From the definition of Alternating
Simulation we have that ∃ŝ.ŝ a?−−→ŝ′ ∧ (s′, t′) ∈ R. By translation we have
that s a−−→2

s′ and this implies that (s′, t′) ∈ R.

2◦ May transition, external action: Take s.s a−−→3
s′ ∧ a ∈ outS ∪ inS it

means, by R, that ∃ŝ.ŝ a−→ŝ′

2.1 a ∈ outS∧ŝ a!−→ŝ′, by ŝ ≤a t̂ and the definition of alternating simulation
we have that t̂ a!−→t̂′ ∧ ŝ′ ≤a t̂

′. By translation we have t a−−→3
t′ this all

implies that (s′, t′) ∈ R.

2.2 a ∈ inS ∧ ŝ a?−−→ŝ′ ∧ t̂ a?−−→t̂′, by ŝ ≤a t̂, the definition of alternating
simulation and the fact that IA are input deterministic we have that
ŝ a?−−→ŝ′ ∧ ŝ′ ≤a t̂

′ and this implies that (s′, t′) ∈ R.

2.3 a ∈ inS ∧ ŝ a?−−→ŝ′ ∧ t̂ 6 a?−−→, by translation we have t a?−−→3
smayall and by

definition of R we have that (s, smayall) ∈ R

Proofs 107

3◦ May transition, internal action: Take s.s a−−→3
s′∧a ∈ intS it means, by

R and translation, that ŝ a;−→ŝ′ ∧ s = T (ŝ). By the definition of alternating
simulation we have that ∃t̂′.t̂ τ−→∗t̂′ ∧ ŝ′ ≤a t̂

′. By translation we have that
∃t′.t τ−→∗

3
t′.t′ = T (t̂′). This all implies (s′, t′) ∈ R.

We will now prove the other direction:

∀S, T ∈ IA. S ≤a T ⇐= T (S) ≤∗
m

T (T).

We will prove this by showing that observational modal refinement, on the
translation of IA, is a subset of alternating : ≤∗

m⊆ ≤a. This will be shown by
showing that the following relation is an alternating simulation.

Q = {(ŝ, t̂)|∃s, t.s = T (ŝ) ∧ t = T (t̂) ∧ s ≤∗
m
t}

This will be split into three cases, one for each of the rules in the definition
of Alternating Simulation.

1◦ Take t̂ a?−−→t̂′ by Q and translation we have that a ∈ inT ∧ t a−−→2
t′. We

have by s ≤∗
m

tand the definition of Observational Modal Refinement that
∃s′.s a−−→2

s′ ∧ s′ ≤m t′ and by translation we have that ŝ a−→ŝ′ where s′ =
T (ŝ′) which implies that (ŝ′, t̂′) ∈ Q.

2◦ Take ŝ a!−→ŝ′, by Q and translation we have that a ∈ outS.s a−−→3
s′. We

have by s ≤∗
m

tand the definition of Observational Modal Refinement that
∃t′.t τ−→∗

3
t′. ∃t′′. t′ a−−→3

t′′ and s′ ≤∗
m

t′′ . By translation we have that this will
give rise to a sequence of internal transitions followed by an a transition
such that we know that ∃t̂′.t̂ τ−→∗t̂′.t̂′ a!−→t̂′′ ∧ ŝ′ ≤a t̂

′′ This all implies that
(ŝ′, t̂′′) ∈ Q.

3◦ Take ŝ a;−→ŝ′. By Q and by translation we have that a ∈ intS ∧ s a−−→3
s′

We have by s ≤∗
m

tand the definition of Observational Modal Refinement
that ∃t′.t τ−→∗

3
t′ ∧ s′ ≤∗

m
t′. By translation we know that this sequence of

zero or more internal transitions will give rise to an identical sequence of
internal transitions such that ∃t̂′.t̂ τ−→∗t̂′ and ŝ′ ≤a t̂

′. This all implies that
(ŝ′, t̂′) ∈ Q

�

8.2 Appendix for Section 4

Lemma 1 For any two composeable and syntactically consistent modal I/O au-
tomata S1, S2 their parallel composition S1 ⊗ S2 is also syntactically consistent.

108 Paper C: Modal I/O Automata for Interface and Product Line...

8.3 Appendix for Section 5

Proof 2 (of Theorem 3) This theorem is proven by showing that the relation
R is a modal refinement:

R = {(i, s) ∈ statesI1⊗I2×statesS1|S2
|i = (i1, i2)∧s = (s1, s2)∧i1 ≤m s1∧i2 ≤m s2}

The proof is divided into two cases, one for each of the rules in the definition
of modal refinement.

1◦ s a−−→2
s′. This means that (s1, s2)

a−−→2
(s′1, s

′
2) .

We want to show that ∃i′.i a−−→2
i′ ∧ (i′, s′) ∈ R. This will be divided into

five sub cases depending on how (s1, s2)
a−−→2

(s′1, s
′
2) is achieved. Several of

these cases are symmetric versions of each other.

1.1 s1
a!−−→2

s′1 ∧ a ∈ intS1|S2
. We know that s2

a?−−→2
s′2 must exists, else the

output transition would have been pruned. We know i1 ≤m s1∧i2 ≤m s2

which gives us i1
a!−−→2

i′1 ∧ i2
a?−−→2

i′2. So take i = (i′1, i
′
2), by definition

of I1 ⊗ I2 we have that i a−−→2
i′ and this implies that (i′, s′) ∈ R.

1.2 This case is completely symmetric, where it is s2 that outputs.

1.3 s1
a!−−→2

s′1∧a ∈ outS∧a ∈ extS1|S2
by i1 ≤m s1 we have that i1

a!−−→2
i′1∧

i′1 ≤m s′1. Also in this case we have, by composability, that s′2 = s2 ∧
i′2 = i2 and (i1, i2) a!−−→2

(i′1, i2). For i′ = (i′1, i2) ∧ s
′ = (s′1, s2) this all

implies that (i′, s′) ∈ R.

1.4 s1
a?−−→2

s′1 ∧ a ∈ inS ∧ a ∈ extS1|S2
. This case is symmetric with the

previous case.

1.5 s1
a;−−→2

s′1 ∧ a ∈ intS ∧ a ∈ intS1|S2
. This case is symmetric with the

previous case. All three cases also have symmetric cases where the
transition in question is part of S2.

2◦ i a−−→3
i′ this means that (i1, i2)

a−−→3
(i′1, i

′
2).

We want to show that ∃s′.s a−−→3
s′ ∧ (i′, s′) ∈ R. This will be divided into

five sub cases depending on how (i1, i2)
a−−→3

(i′1, i
′
2) is achieved. Several of

these cases are symmetric versions of each other.

2.1 i1
a!−−→3

i′1 ∧ i2
a?−−→3

i′2. By R and the definition of ≤mwe have that
s1

a!−−→3
s′1 ∧ s2

a!−−→3
s′2 ∧ i

′
1 ≤m s′1 ∧ i

′
2 ≤m s′2 which gives us that

((i′1, i
′
2), (s

′
1, s

′
2)) ∈ R.

2.2 This case is completely symmetric, where it is i2 that outputs.

2.3 i1
a!−−→3

i′1∧a ∈ outI∧a ∈ extI1⊗I2 by i1 ≤m s1 we have that s1
a!−−→3

s′1∧
i′1 ≤m s′1. Also in this case we have, by composability, that s′2 = s2 ∧
i′2 = i2 and (s1, s2)

a!−−→3
(s′1, s2). For i′ = (i′1, i2) ∧ s

′ = (s′1, s2) this all
implies that (i′, s′) ∈ R.

Proofs 109

2.4 i1
a?−−→3

i′1 ∧ a ∈ inI ∧ a ∈ extI1⊗I2. This case is symmetric with the
previous case.

2.5 i1
a;−−→3

i′1 ∧ a ∈ intI ∧ a ∈ intI1⊗I2. This case is symmetric with the
previous case. All three cases also have symmetric cases where the
transition in question is part of I2.

�

Proof 3 (of Theorem 4) The proof proceeds as a contrapositive proof in which
we show that if an error state was reachable in T ⊗ (I1 ⊗ I2) then an error state
would also be reachable in T ⊗ (S1|S2). There are two ways in which an error
state could be reachable in T ⊗ (I1 ⊗ I2).

1◦ err i
T,(I1⊗I2)

∩ reachable(T ⊗ (I1 ⊗ I2))is non empty.

2◦ Π2(reachable(T ⊗ (I1 ⊗ I2))) ∩ err i
I1,I2

is non empty.

Contrapositive proof:

1◦ Assume that (t, i) ∈ err i
T,(I1⊗I2)

and that (t, i) is reachable. No we want to

show that ∃(t, s) ∈ err i
T,(S1|S2) and that (t, s) is reachable.

Because t is reachable and I1 ⊗ I2 ≤m S1|S2 (Theorem 3) we know that
∃s ∈ statesS1|S2

and i ≤m s ∧ s is reachable by may transitions in S1|S2.

1.1 t a!−−→3
t′ ∧ i 6 a?−−→2

∧ a ∈ intT⊗(I1⊗I2) but then s 6 a?−−→2
. We now need

to argue that (t, s) is reachable by may transitions. This follows from
I1 ⊗ I2 ≤m S1|S2 (Theorem 3). Because of consistency we only con-
sider may transitions.

Executions of T and I1 ⊗ I2 is a sequence of may transitions of T and
I1 ⊗ I2. All the may transitions of I1 ⊗ I2 can be matched by may
transitions of S1|S2

1.2 i a!−−→3
i′ ∧ t 6 a?−−→2

∧ a ∈ intT⊗(I1⊗I2). The argument is identical to the
previous case.

2◦ Assume that i1
a!−−→3

i′1∧ i2 6
a?−−→2

and ∃t.(t, i1, i2) is reachable. This implies
that s1

a!−−→3
s′1 ∧ s2 6 a?−−→2

. So we can conclude that an error state would be
reachable in T ⊗ (S1|S2) in this case.

Lemma 2 For any two composeable and syntactically consistent modal interface
automata S1, S2 their parallel composition S1|S2 is also syntactically consistent.

Theorem 7 (Associativity) ∀S1, S2, S3. pairwise compatible S1|(S2|S3) is iso-
morphic with (S1|S2)|S3.

110 Paper C: Modal I/O Automata for Interface and Product Line...

8.4 Appendix for Section 6

Lemma 3 For any two composeable and syntactically consistent modal variabil-
ity models S1, S2 their parallel composition S1 ·S2 is also syntactically consistent.

Definition 10 (A-closure) For a set of actions A we define an A-closure of
a pair of states (s, t1) ∈ statesS × statesT1

as a subset Σ of statesS × statesT1

consisting of (s, t1) itself and all pairs (s′, t′1) in which s′ can be reached from s
by following a sequence of steps from −→2

S labeled solely by actions in A and t′1
can be reached from t1 by following an identical sequence (sequence with the same
labels) of steps from −→2

T1. Closures for pairs of states of S and T2 are defined
analogously.

Definition 11 (A-closure) We lift definition 10 to sets of pairs of states, such
that the result is simply the union of the A-closures of all pairs.

Let t A−−→2

∗t′ mean that t′ is reachable from t via a possible empty sequence of
required transitions labeled by actions from a set A (possibly different actions).

We will define observational consistency for states of a single automata.

Definition 12 Let T be a modal automaton and let A ⊆ actT be a set of actions.
A relation C ⊆ statesT × statesT is an observational consistency relation with
respect to A if for any pair of states (t1, t2) ∈ C the following two properties hold:

1◦ ∀t′1. if t1
A−−→2

∗t′1 then ∀a /∈ A. ∀t′′1. t
′
1

a−−→2
t′′1 implies ∃t′2. t2

a−−→3
t′2∧ (t′′1 , t

′
2) ∈

C.

2◦ ∀t′2. if t2
A−−→2

∗t′2 then ∀a /∈ A. ∀t′′2. t
′
2

a−−→2
t′′2 implies ∃t′1. t1

a−−→3
t′1∧ (t′1, t

′′
2) ∈

C.

Two states are observationally consistent if there exists an observational consis-
tency relation relating them. A set of states is said to be observationally consis-
tent with respect to A if all possible pairs of states from the set are observationally
consistent with respect to A.

An automaton T is observationally consistent with respect to A iff the set
{startT} is an observationally consistent set.

Lemma 4 Consistency is transitive in the following sense: for a consistency
relation C if (t1, t2) ∈ C and (t2, t3) ∈ C then (t1, t3) ∈ C.

Lemma 5 Let S, T1, T2 be modal I/O automata and S ≤m T1 · T2. If s ∈ statesS
and t2 ∈ statesT2

are observationally consistent states wrt to actT2
\ actT1

then
projections of (actT2

\actT1
)–closure(s, t2) on the first and second2 component give

2For the current version of the proof we only need to claim consistency when projected on
the first component.

Proofs 111

observationally consistent sets of states with respect to the same set of actions
actT2

\ actT1
.

Similarly if s ∈ statesS and t1 ∈ statesT1
are observationally consistent states

wrt to actT1
\ actT2

then projections of (actT1
\actT2

)–closure(s, t1) on the first and
second component give observationally consistent sets of states with respect to the
same set of actions actT1

\ actT2
.

These claims generalize also to sets of consistent states.

Proof 4 (of Thm. 5) We shall construct S1 and S2 exhibiting the requirements
of the theorem. The signatures of S1 and S2 are identical to those of T1 and T2:

intSi
= intTi

, outSi
= outTi

, intSi
= intTi

. (C.8)

Since S ≤m T1 · T2 there exists the least relation R ⊆ statesS × (statesT1
×

statesT2
), which is a modal refinement of T1 · T2 by S. Let

statesS1
= {(Σ1, t1) | t1 ∈ statesT1

and Σ1 ⊆ {(s, t2) | (s, (t1, t2)) ∈ R}} (C.9)
statesS2

= {(Σ2, t2) | t2 ∈ statesT2
and Σ2 ⊆ {(s, t1) | (s, (t1, t2)) ∈ R}} (C.10)

and

startS1
= (Σ0

1, startT1
), where Σ0

1 =(actT2
\actT1

)–closure(startS, startT2
) (C.11)

startS2
= (Σ0

2, startT2
), where Σ0

2 =(actT1
\actT2

)–closure(startS, startT1
) (C.12)

We create only one transition relation for each of S1 and S2 (or more precisely
both will have two, but identical transition relations). Intuitively this transition
relation for S1 will contain all steps allowed by T1 and required by S. Formally it
is given by the following rules:

a ∈ actS1
\actS2

t1 a−−→3

T1t′1 ∃(s, t2)∈Σ1. s a−−→2

S

Σ′
1 = {(s′, t2) | ∃(s, t2)∈Σ1. s

a−−→3

Ss′}

(Σ1, t1)
a−−→3

S1((actT2
\actT1

)–closure(Σ′
1), t

′
1)

(C.13)

a ∈ actS1
∩actS2

t1
a−−→3

T1t′1 ∃(s, t2)∈Σ1. s
a−−→2

S

Σ′
1 = {(s′, t′2) | ∃(s, t2)∈Σ1. s

a−−→3

Ss′ ∧ t2 a−−→3

T2t′2}

(Σ1, t1)
a−−→3

S1((actT2
\actT1

)–closure(Σ′
1), t

′
1)

(C.14)

a ∈ actS1
∩actS2

t1
a−−→2

T1t′1 ∀(s, t2)∈Σ1. s 6 a−−→2

S

(Σ1, t1)
a−−→3

S1(∅, t′1)
(C.15)

a ∈ actS1
\actS2

t1
a−−→2

T1t′1

(∅, t1) a−−→3

S1(∅, t′1)
(C.16)

112 Paper C: Modal I/O Automata for Interface and Product Line...

We take the must transition relation −→2

S1 to be identical with −→3

S1. Note
that effectively S1 follows all must transition relations of S in its sort, except
that whenever T1 requires an input that is not followed by S (as T2 is not able to
synchronize on this input), we redirect the transition relation to a region where all
must transitions of T1 are mapped. We do that as minimum addition to maintain
refinement of T1 by S1, on the functionality not explored by S.

We refrain from showing the rules for S2 here—they can be easily constructed
by analogy, as the problem is entirely symmetric.

It is clear that the constructed systems S1 and S2 are deterministic—the clo-
sure operation is deterministic and we apply to a unique maximal set for each
action in each particular source state.

Lemma 6 The rules for transitions of S1 ensures that if the originating state
belongs to statesS1

then the target state will also belong to statesS1
.

An entirely symmetric lemma can be made for S2.

Proof 5 (Lemma 6) First we need to argue that the initial state startS1
∈ statesS1

.
Firstly startT1

∈ statesT1
which satisfies the first part of the requirement for states

in statesS1
. Now we need to show that (actT2

\actT1
)–closure(startS, startT2

) ⊆
{(s, t2) | (s, (t1, t2)) ∈ R}. The state from which the closure is calculated namely,
({(startS, startT2

)}, startT1
), is part of statesS1

because (startS1
, (startT1

, startT2
)) ∈

R. All the transitions that are taken in the calculation of the closure are on ac-
tions not involving T1 and are taken simultaneously by S and T2, which ensures
that all pairs of states Σ′

1 that are reached will still fulfill the requirement for being
in statesS1

.
The rest of the proof consists of four cases, one for each rule. We need to

argue for transitions generated by each of the four rules that the target state
will be in statesS1

, given that the source state is. Transitions generated by rule
(C.13) ensure this because the states that are in Σ′

1 have taken one transition
that is on a non shared action of T1. This transition is taken simultaneously by
T1 and S. Finally the closure also preserves the property, by the same argument
as before. The argument for rule (C.14) is similar, the only difference being
that the first transition is on a shared action and is taken by S, T1 and T2.
Rule (C.15) and (C.16) are different. Here the argument is that ∅ is a subset of
{(s, t2) | (s, (t1, t2)) ∈ R}.

We want to show that 1◦ S1 ≤m T1, 2◦ S2 ≤m T2 and 3◦ S1 ⊗ S2 ≤m S.

1◦ Show that

R1 = {((Σ1, t1), t1) |Σ1 ∈ statesS1
and t1 ∈ statesT1

} (C.17)

is a modal refinement of T1 by S1.

Proofs 113

Consider an arbitrary pair of states ((Σ1, t1), t1) ∈ R1 and a transition
t1

a−−→2

T1t′1. We want to show that there exists a state (Σ′
1, t

′
1) and a transition

such that (Σ1, t1)
a−−→2

S1(Σ′
1, t

′
1) and ((Σ′

1, t
′
1), t

′
1) ∈ R1

1.1◦ If Σ1 = ∅ then take Σ′
1 to be ∅ and the corresponding transition exists

due to rule (C.16) or rule (C.15). In the case of rule (C.15) the
premise that ∀(s, t2) ∈ Σ1 is trivially true.

1.2◦ Let a be an action of T1 that is not shared with T2, or similarly
a ∈ actS1

\ actS2
. We want to apply rule (C.13) and want to show that

the premises are fulfilled. The first two premises are fulfilled by the case
that we are looking at. The third premise is fulfilled by the following ar-
gument. Because t′1 is making a step we have that (t1, t2)

a−−→2

T1·T2(t′1, t2).
By the definition of statesS1

and R1 we have that (s, (t1, t2)) ∈ R for
every pair (s, t1) ∈ Σ1. Because R is a modal refinement of T by S
we have that s a−−→2

Ss′ and (s′, (t′1, t2)) ∈ R for every pair (s, t1) ∈ Σ1.
The third premise will trivially hold and we can even conclude that
Σ′

1 will be nonempty. Now we can apply rule (C.13) and we can con-
clude that indeed (Σ1, t1)

a−−→3

S1(((actT2
\actT1

)–closure(Σ′
1), t

′
1). From

this we can conclude that a similar must transition exists because the
two transition relations are identical. Finally we can conclude that
(((actT2

\actT1
)–closure(Σ′

1), t
′
1) ∈ R1 because the generated transitions

stay within statesS1
and t′1 ∈ statesT1

.

1.3◦ Let a be an action of T1 that is shared with T2, or similarly a ∈
actS1

∩ actS2
. We want to apply rule (C.14) and (C.15), in two dif-

ferent sub cases, and want to show that the premises are fulfilled. The
first two premises of both rules are fulfilled by the case that we are
looking at. The third premise of rule (C.14) and (C.15) are each oth-
ers opposites, such that the one is true when the other is false and
vise versa. Looking at the case where ∃(s, t2) ∈ Σ1.s

a−−→2

S, which is
exactly the third premise of rule (C.14), then we can conclude that
the last premise for rule (C.14) is true by the following argument.
Because S is consistent we know that there is a transition s a−−→3

S.
Because R is a modal refinement of T by S and we can conclude
that the only way that this transition can exist is if a similar tran-
sition t2

a−−→3

T2t′2 exists such that (t1, t2)
a−−→3

T1·T2. The fourth premise
of rule (C.14) is trivially true, but we can now conclude that Σ′

1 is
nonempty. Now we can apply rule (C.14) and we can conclude that
indeed (Σ1, t1)

a−−→3

S1(((actT2
\actT1

)–closure(Σ′
1), t

′
1). From this we can

conclude that a similar must transition exists because the two tran-
sition relations are identical. Finally we can conclude that (((actT2

\
actT1

)–closure(Σ′
1), t

′
1) ∈ R1 because the generated transitions stay within

statesS1
and t′1 ∈ statesT1

.

114 Paper C: Modal I/O Automata for Interface and Product Line...

Now turning to the other sub case where ∀(s, t2)∈Σ1 s 6 a−−→2

S. In this
case there are no must transitions in S requiring the behavior but S1

will have the behavior because T1 requires it. From this we can conclude
that (∅, t1) a−−→3

S1(∅, t′1) and that a similar must transition exists because
the two transition relations are identical. Finally we can conclude that
(((actT2

\actT1
)–closure(∅), t′1) ∈ R1 because the generated transitions

stay within statesS1
and t′1 ∈ statesT1

.

This finishes one direction of the proof. Lets now consider a may transition
(Σ1, t1)

a−−→3

S1(Σ′
1, t

′
1). We need to show that a transition t1

a−−→3

T1t′1 exists
such that ((Σ′

1, t
′
1) ∈ R1)

1.4◦ This transition could have been generated by one of the four rules
(C.13)-(C.16). In two of the cases we can directly conclude that a
transition t1

a−−→3

T1t′1 exists. In the other two cases we can conclude that
this transition exists because the rules require a similar must transition
and T1 is syntacticly consistent. Now it follows directly from Lemma
6 that (Σ′

1, t
′
1) ∈ R1

2◦ The proof that S2 ≤m T2 is entirely symmetric to the proof that S1 ≤m T1.

3◦ Show that S1 ⊗ S2 ≤m S. We do that by arguing that

R2 = {(((Σ1, t1), (Σ2, t2)), s) |

((actT1
\actT2

)–closure(s, t1) ⊆ Σ2 and

((actT2
\actT1

)–closure(s, t2) ⊆ Σ1 and

Π1(Σ1) is observationally consistent wrt actT2
\actT1

and

Π1(Σ2) is observationally consistent wrt actT1
\actT2

} (C.18)

is a modal refinement of S by S1 ⊗ S2. First we should argue that

((startS1
, startS2

), startS) ∈ R2 . (C.19)

Obviously

(actT2
\actT1

)–closure(startS, startT2
) ⊆ Σ0

1 and (C.20)
(actT1

\actT2
)–closure(startS, startT1

) ⊆ Σ0
2 (C.21)

(actually equalities hold). Observational consistency of projections of Σ0
1

and Σ0
2 follows from consistency of S, T1, T2 and Lemma 5.

We shall discuss that the may transition relation preserves the refinement.

Take any (((Σ1, t1), (Σ2, t2)), s) ∈ R2 and a transition step

((Σ1, t1), (Σ2, t2))
a−−→3

S1⊗S2((Σ′
1, t

′
1), (Σ

′
2, t

′
2)) (C.22)

Proofs 115

We want to find a state s′ such that s a−−→3

Ss′ and ((Σ′
1, t

′
1), (Σ

′
2, t

′
2)), s

′) ∈ R2.

Note that due to the way R2 is constructed we know that neither Σ1 nor Σ2

are empty. The transition step of the composition must then be created by
both components taking a shared action (and both following rule (C.14)) or
by one component taking a non-shared action, by rule (C.13), and the other
not changing state.

Observe that rule (C.16), can never give rise to such a transition as it would
require Σ1 or Σ2 to be empty, which we have just ruled out.

3.1◦ Let a ∈ actS1
∩ actS2

. We want to first argue that both components
take steps generated by rule (C.14) and not rule (C.15). The latter
would require that either t1 or t2 enjoys a must transition ti

a−−→2

Tit′i.
If both transitions existed, they would imply that also s a−−→2

Ss′ (since
(s, (t1, t2)) ∈ R, S is deterministic), which would contradict the joint
premises of the rules. So only one of the two must transitions can
exist. But then the other component is taking a transition generated
by rule (C.14) implying that s a−−→2

Ss′, contradicting premises of rule
(C.15) (for both components). In other words rule (C.15) could not
have been used, so for some sets Σ′′

1, Σ′′
2:

(Σ1, t1)
a−−→3

S1((actT2
\actT1

)–closure(Σ′′
1), t

′
1) (C.23)

(Σ2, t2)
a−−→3

S2((actT1
\actT2

)–closure(Σ′′
2), t

′
2) (C.24)

From that we derive that rule (C.14) must have been used to create both
of these transitions, which implies that there exists (s1, p2) ∈ Σ1 such
that s1

a−−→2

Ss′1 for some state s′1. Since Π1(Σ1) is an observationally
consistent set with respect to actT2

\ actT1
then there exists a state s′

such that s a−−→3

Ss′ and (s′1, s
′) is an observationally consistent pair of

states. Since S is deterministic the same argument can be used for all
elements in Π1(Σ

′′
1)

3, which with help of Lemmas 4 and 5 leads us to
a conclusion that the first component of (actT2

\actT1
)–closure(Σ′′

1) is
observationally consistent wrt (actT2

\actT1
).

Since rule (C.14), or more precisely its counterpart for S2, must have
been used to construct transition (C.24) we can also conclude that
t2

a−−→3

T2t′2. So by premises of rule (C.14) instantiated for transition
(C.23) we conclude that (s′, t′2) ∈ Σ′′

1 and hence is in the closure.

Symmetric arguments can be used to argue that the first component of
the closure of Σ′′

2 is observationally consistent wrt actT1
\ actT2

, and

3In the nondeterministic case we would probably have to extend the definition of obser-
vational consistency with a universal quantifier, instead of the existential, which it is using
now.

116 Paper C: Modal I/O Automata for Interface and Product Line...

that (s′, t′1) ∈ Σ′′
2 and hence also in its closure, which finishes the proof

of this case.

3.2◦ Let a ∈ actS1
\ actS2

. Then we know that:

(Σ1, t1)
a−−→3

S1(Σ′
1, t

′
1) and Σ′

2 = Σ2 and t′2 = t2 . (C.25)

It easy to conclude that the step of T1 has been generated by rule (C.13)
and not rule (C.16) (we have already argued against this case above:
Σ1 6= ∅).

The fact that (Σ1, t1) is able to make an a step by rule (C.13) implies
that some state of s paired with some state of T2 in Σ1 requires such
a step. By observational consistency of Π1(Σ1) we have that necessar-
ily s a−−→3

Ss′ for some s′. Moreover (s′, t2) ∈ Σ′
1 (by rule (C.13)) and

(s′, t′1) ∈ Σ2 since (s′, t′1) ∈ (actT1
\actT2

)–closure(s, t1) = Σ2. Since Σ2

does not change, there is no need to argue for its consistency. Consis-
tency of Π1(Σ

′
1) follows from the fact that a transition is taken, which

cannot move outside the consistent set (a hidden must transition).

3.3◦ The case when s takes a transition over a non-shared action of S2 is
entirely symmetric.

Observe that implicitly (by analyzing all interaction possibilities) we have
ruled out a possibility of a deadlock between S1 and S2.

Let us now turn towards the must transition relations. Assume that for
some action a and state s′ we have that s a−−→2

Ss′.

3.4◦ Let a ∈ actT1
∩ actT2

. Since (s, (t1, t2)) ∈ R and S is syntactically
consistent, we get that (t1, t2)

a−−→3

T1·T2(t′1, t
′
2) for some t′1, t

′
2 and fur-

ther that t1
a−−→3

T1t′1 and t2
a−−→3

T2t′2. But these imply by rule (C.14) that
(Σ1, t1)

a−−→3

S1(Σ′
1, t

′
1), where (actT2

\actT1
)–closure(s′, t′2) ⊆ Σ′

1 and sim-
ilarly (Σ2, t2)

a−−→3

S2(Σ′
2, t

′
2), where (actT1

\actT2
)–closure(s′, t′1) ⊆ Σ′

2.

We have chosen that the must transition relations of both S1 and S2

are identical with their respective may transition relations, so we can
conclude that ((Σ1, t1), (Σ2, t2))

a−−→2

S1⊗S2((Σ′
1, t

′
1), (Σ

′
2, t

′
2)).

Observational consistency of the first components of Σ′
1 and Σ′

2 can be
argued as in earlier cases (existence of a single must transition of s
guarantees that none of s transitions labeled in a and sourced in states
of Σi can leave outside the set of consistent states).

3.5◦ Let a ∈ actT1
\ actT2

. Since (s, (t1, t2)) ∈ R and S is syntactically
consistent, we get that (t1, t2)

a−−→3

T1·T2(t′1, t2) and further that t1
a−−→3

T1t′1.
But this implies by rule (C.13) that (Σ1, t1)

a−−→3

S1(Σ′
1, t

′
1), where (actT2

\

Proofs 117

actT1
)–closure(s′, t2) ⊆ Σ′

1. Also (actT1
\ actT2

)–closure(s′, t′1) ⊆ Σ2

since the transition performed by this pair is within the original closure
(actT1

\actT2
)–closure(s, t1), which was a subset of Σ2.

As we have chosen that must transition relation of S1 is identical with
its may transition relation, we can conclude that:

((Σ1, t1), (Σ2, t2))
a−−→2

S1⊗S2((Σ′
1, t

′
1), (Σ2, t2)) . (C.26)

Finally Σ′
1 is observationally consistent as s only takes a hidden tran-

sition here (with respect to the set of ignored actions), which finishes
the proof for this case.

3.6◦ The case where S2 takes an independent step is symmetric.�

Observe that the above theorem can be used to generate decompositions of
simulations and bisumulations (which are special cases of modal refinement).

Proof 6 (Thm. 6) Show that

R3 = {((i1, i2), (t1, t2)) ∈ statesI1·I2 × statesT1·T2
| i1 ≤m t1 ∧ i2 ≤m t2} (C.27)

is a modal refinement of T1 · T2 by I1 · I2.
1◦ Consider (i1, i2)

a−−→3
(i′1, i

′
2). We have to consider four cases: 1.1◦ a ∈

extI1·I2, i1
a−−→3

i′1 and i2 = i′2. As i1 ≤m t1 there must exist a t′1 such that t1
a−−→3

t′1
and i′1 ≤m t′1, so ((i′1, i2), (t

′
1, t2)) ∈ R3. By definition of the composition operator

(·) we get that (t1, t2)
a−−→3

(t′1, t2): the only possibility for it could not hold is
when (t′1, t2) has been pruned in T1 · T2, so there exists a sequence of internally
controllable must transitions leading from (t′1, t2) to an error state (t′′1, t

′′
2) where

t′′k
a!−−→3

t′′′k and t′′3−k 6
a?−−→3

, where k ∈ 1, 2. But then a corresponding sequence
would exist in I1 · I2, meaning that (i1, i2)

a−−→3
(i′1, i2) was not possible to begin

with (also pruned). Finally it is easy to see ((s′1, s
′
2), (t

′
1, t

′
2)) ∈ R3.

1.2◦ a ∈ extI1·I2, i2
a−−→3

i′2 and i1 = i′1 is symmetric.
1.3◦ a ∈ intI1·I2, i1

a!−−→3
i′1 and i2

a?−−→3
i′2. Then by i1 ≤m t1 and i2 ≤m

t2 we conclude that there exists t′1, t
′
2 such that t1

a!−−→3
t′1 and t2

a?−−→3
t′2 and

i′1 ≤m t′1 and i′2 ≤m t′2. By definition of the composition operator (·) we get
that (t1, t2)

a−−→3
(t′1, t

′
2): the only possibility for it could not hold is when (t′1, t

′
2)

has been pruned in T1 · T2, so there exists a sequence of internally controllable
must transitions leading from (t′1, t

′
2) to an error state (t′′1, t

′′
2) where t′′k

a!−−→3
t′′′k

and t′′3−k 6
a?−−→3

, where k ∈ 1, 2. But then a corresponding sequence would exist
in I1 · I2, meaning that (i1, i2) a−−→3

(i′1, i
′
2) was not possible to begin with. Finally

it is easy to see ((s′1, s
′
2), (t

′
1, t

′
2)) ∈ R3.

1.4◦ a ∈ intI1·I2, i2
a!−−→3

i′2 and i1
a?−−→3

i′1. The argument follows as in 1.3◦.

2◦ Consider (t1, t2)
a−−→2

(t′1, t
′
2). We have four subcases again out of which 2

are interesting.

118 Paper C: Modal I/O Automata for Interface and Product Line...

2.1◦ a ∈ extT1·T2
and t1

a−−→2
t′1 and t2 = t′2. Then by i1 ≤m t1 there exist i′1

such that i1
a−−→2

i′1 and i′1 ≤m t′1. By similar argument as above (i1, i2)
a−−→2

(i′1, i2)
(because if (i′1, i2) was pruned then so was (i1, i2), for which we assumed that it
was not) and (i′1, i

′
2), (t

′
1, t

′
2) ∈ R3.

2.2◦ a ∈ extT1·T2
and t2

a−−→2
t′2 and t1 = t′1. Argument as above.

2.3◦ a ∈ intT1·T2
and t1

a!−−→2
t′1 and t2

a?−−→2
t′2. Then by i1 ≤m t1 and i2 ≤m

t2 there exist i′1 and i′2 such that i1
a−−→2

i′1 and i2
a−−→2

i′2 and i′1 ≤m t′1 and
i′2 ≤m t′2. By a similar argument involving the definition of (·) as above we
get (i1, i2)

a−−→2
(i′1, i

′
2) (as if (i′1, i

′
2) then so would (i1, i2) which was assumed not

to be pruned). So ((i′1, i
′
2), (t

′
1, t

′
2)) ∈ R3, which finishes the proof.�

Paper D

On Modal Refinement and
Consistency

Kim G. Larsen, Ulrik Nyman
Department of Computer Science,
Aalborg University, Denmark

Andrzej Wąsowski
Computational Logic and Algorithms Group,
IT University of Copenhagen, Denmark

Abstract

Almost 20 years after the original conception, we revisit several fundamental
question about modal transition systems. First, we demonstrate the incomplete-
ness of the standard modal refinement using a counterexample due to Hüttel.
Deciding any refinement, complete with respect to the standard notions of im-
plementation, is shown to be computationally hard (co-NP hard). Second, we
consider four forms of consistency (existence of implementations) for modal spec-
ifications. We characterize each operationally, giving algorithms for deciding, and
for synthesizing implementations, together with their complexities.

Keywords: Modal Transition Systems, Modal Refinement, Consistency, Opera-
tional Characterization, Synthesizing Implementations

119

120 Paper D: On Modal Refinement and Consistency

1 Background and Overview

Modal transition systems (MTSs) are a generalization of labeled transition sys-
tems (LTSs). Similarly to LTSs modal transition systems use labeled transitions
between states to model behaviors. Unlike LTSs, they distinguish allowed and re-
quired behaviors (over- and under-approximations), which makes them a suitable
semantic model for abstraction in program analysis and verification.

MTSs, originally introduced by Larsen and Thomsen almost 20 years ago
[LT88], have since been applied in program analysis [HJS01, Sch01], model check-
ing [GHJ01, BLS93], verification [?, Bru97], equation solving [LX90], interface
theories [LNW07a] (Paper C), software product lines [LNW07a, FUB06] and
model merging [UC04, BCU06]. Foundational work on modal transition systems
included extensions to modal hybrid systems [CD97], timed modal specifications
[Lar89, ČGL93, LSW96] and variants of disjunctive MTSs [LX90, FH06, SF07].
Surprisingly though, several fundamental questions about the theory of MTSs
have never been addressed.

Refinement relations for modal transition systems are defined contravariantly.
If S refines T then all allowed behaviors of S need to be allowed in T , while all
required behaviors of T need also be required by S. An implementation is an
MTS that has been completely specified, i.e. all its allowed behavior is also re-
quired, leaving no further choice for refinement. One fundamental issue for a
modal refinement is to see whether it characterizes the inclusion of implementa-
tion sets thoroughly: can one for an MTS S refining an MTS T imply that all
implementations of S are also implementations of T ? And vice-versa?

Standard modal refinement is sound, but not complete in this sense. Meaning
that here exist MTSs for which implementation inclusion holds, but which do not
refine each other. We show that deciding any sound and complete refinement,
preserving the set of implementations of standard modal refinement or weak
modal refinement is co-NP hard. We conjecture the same for may-weak modal
refinement [LNW07a] (Paper C) and branching refinement [FUB06].

Modal transition systems of [LT88] are syntactically consistent, meaning that
any required transition must also be allowed. This effectively disallows reasoning
about inconsistencies, which is necessary for proper treatment of logical connec-
tives in the context of modal transition systems (for example one would like to
be able to express a modal transition system expressing a conjunction of two
other MTSs that represent contradictory specifications). On the other hand, in
[LNW07a] (Paper C), we have observed that other, more behavioral, notions of
consistency might be useful. We have shown that systems that are observation-
ally consistent with respect to some set of hidden actions, can be decomposed
using parallel decomposition. We used this observation to build a product line
theory in which modal transition systems play the role of behavioral variability
models.

We believe that consistency should be decoupled from the basic definition of

Modal Transition Systems 121

a modal transition system. In our opinion understanding a notion of consistency
requires relating it to a notion of satisfiability, as typically done in logics. For
example: a propositional formula is consistent if there exists a truth assignment
on which the formula evaluates to true. In our context, modal transition sys-
tems play the role of formulæ, truth assignments are concrete implementations,
and a refinement preorder is our satisfaction relation. Consequently, instead of
proposing ad hoc criteria for consistency, we define consistency of a specification
semantically as existence of a concrete implementation refining it.

Altogether we discuss four modal refinements and their induced consistencies.
For each of these we define consistency semantically and find a computable cri-
terion (a consistency relation) for deciding it. Then we study the complexity of
consistency and the criterion. The results are summarized in Table D.1.

Our choice of refinements and consistencies for this study is driven by existing
work. We choose one known consistency (syntactic consistency) that have not
been characterized using a refinement, and three known refinements (strong, may-
weak and weak modal refinement) for which the related notions of consistency
had never been formulated. However, we believe that consistency is not only of
theoretical interest. Inconsistencies in specifications typically indicate modeling
errors and thus procedures for detecting them find use in tools.

The contents of this paper are: the definition of modal transition systems
and their refinement (Section 2), complexity analysis of completeness of this
refinement (Section 3), a discussion of consistency notions induced by four modal
refinements (Sections 4–7), a summary and a list of open problems (Section 8).

2 Modal Transition Systems

We introduce the basics following Larsen and Thomsen [LT88]. Assume a global
set of actions act and write act τ for act∪{τ}, where τ is a distinct internal action,
such that τ /∈ act. A modal transition system is a triple S = (statesS,−→

S, 99KS),
where statesS is a set of states, also known as specifications [LT88] or processes.
Then −→S ⊆ statesS × act τ × statesS is a must-transition relation representing
required transitions, and 99KS ⊆ statesS × act τ × statesS is a may-transition
relation representing allowed transitions.

In general the sets of states and transitions may be infinite, but we restrict
ourselves to finite state systems with finite sets of actions in this paper. For

Table D.1: Summary of consistency-related results.
Modal refinement Consistency Lower bound Upper bound Section

syntactic syntactic consistency [LT88] linear time linear time 4

strong [LT88] strong consistency NP-hard exponential time 5

weak [HL89] weak consistency NP-hard exponential time 6

may-weak [LNW07a] may-weak consistency NP-hard exponential time 7

122 Paper D: On Modal Refinement and Consistency

simplicity we write s a−→Ss′ iff (s, a, s′) ∈ −→S, and s a99KSs′ iff (s, a, s′) ∈ 99KS.
Larsen and Thomsen originally designed modal transition systems to be syn-

tactically consistent meaning that all required transitions are also allowed: −→S ⊆

99KS. Already in [Lar89] Larsen lifts this restriction, with the argument that any
sufficiently expressive specification language needs to be able to specify inconsis-
tent specifications. This means that our transition systems are very much like
mixed transition systems of Dams [Dam96]. In Section 3 we follow the syntactic
consistency requirement, while we relax it in later sections, generalizing the no-
tion of consistency to strong and weak behavioral preorders. Regardless whether
the consistency assumption is in place or not, we always separate the two transi-
tion relations explicitly to avoid confusion. A solid arrow represents just a must
transition, without the possible related may transition. We draw both arrows
when talking about a syntactically consistent must transition.

A modal transition system I is an implementation when the two transition
relations coincide, −→I = 99KI . We use capital I to denote implementations and
always state explicitly whenever a modal transition system is an implementation.

The following is the standard notion of strong refinement for modal transition
systems introduced in [LT88] and generally accepted ever since:

Definition 1 (Modal Refinement) For a pair of modal transition systems S
and T a binary relation R ⊆ statesS × statesT is a modal refinement between
states of S and T iff for all (s, t) ∈ R and all actions a it holds that:

for all t′ ∈ statesT such that t a−→T t′

there exists an s′ ∈ statesS such that s a−→Ss′ and (s′, t′) ∈ R,

for all s′ ∈ statesS such that s a99KSs′

there exists a t′ ∈ statesT such that t a99KT t′ and (s′, t′) ∈ R.

We say that a state s ∈ statesS refines a state t ∈ statesT , written s ≤m t, iff
there exists a modal refinement containing (s, t).

If −→T = ∅ then this refinement collapses to regular simulation [HM85, Lar87],
while it coincides with bisimulation equivalence [Par81, Mil83] if S and T are
implementations.

3 Non-thoroughness of Modal Refinement

Already in the eighties there have been rumors of modal refinement being incom-
plete. However we were unable to find a published account of this fact, so we
decided to include it here. We shall now define what we mean by completeness,
proceeding to a counterexample witnessing the incompleteness of modal refine-
ment. After this brief introduction we move to the first contribution of the paper:
a discussion of the complexity class of a hypothetical complete refinement. For

Non-thoroughness of Modal Refinement 123

S
s a b

T
t a b

b

a

Figure D.1: JS, sK ⊆ JT, tK and s 6≤m t

a state s ∈ statesS let JS, sK denote the set of all its implementations such that
JS, sK = {(I, i) | i ≤m s and −→I = 99KI}. Modal refinement is known to be
sound, with respect to implementation inclusion: for s ∈ statesS ∧ t ∈ statesT , if
s ≤m t then also JS, sK ⊆ JT, tK, which follows directly from transitivity of ≤m.
However ≤m is not complete in this sense: there exist specifications S and T ,
with states s, t, such that JS, sK ⊆ JT, tK but s 6≤m t. This property of modal
refinement is sometimes known as non-thoroughness [GJ02]. Figure D.1 presents
a counterexample originating in the thesis of Hüttel [Hüt88, p. 32], also found in
the thesis of Xinxin [Xin92, p. 87] and in [SF07], albeit disguised in the context
of disjunctive modal transition systems [LX90]1. It contains two specifications S,
T . It is a simple exercise to see that JS, sK = JT, tK, while s 6≤m t.

3.1 A Thorough Refinement is Co-NP Hard

Despite the non-thoroughness (incompleteness) of modal refinement its useful-
ness has never been questioned. This is probably because modal refinement is a
natural generalization of both simulation and bisimulation and because it can be
established efficiently (in time polynomial in the size of the transition systems).
By showing that any complete refinement preserving precisely the same set of
implementations as ≤m cannot be decided in polynomial time (unless P=NP),
we give yet another argument in favor of ≤m.

We show co-NP hardness by reducing 3-Dnf-Tautology to checking a
sound and complete modal refinement in the above sense. Consider a propo-
sitional formula ϕ over n variables x1, . . . , xn. It is clear that ϕ is a tautology
iff true ⇒ ϕ is a tautology. We will show how to construct, in polynomial time,
a modal transition systems Tϕ (representing a tautology over x1 . . . xn) and Sϕ
(representing ϕ), so that true ⇒ ϕ is a tautology iff JTϕ, trueK ⊆ JSϕ, ϕK, for
selected initial states true and ϕ of Tϕ and Sϕ respectively. For simplicity we will
assume that all clauses of ϕ are satisfiable. Satisfiability of a clause consisting
of three conjunctions can be decided in constant time. Unsatisfiable clauses can
thus be removed from ϕ in polynomial time, before we construct Tϕ and Sϕ. We
choose the following states and actions for Sϕ:

statesSϕ
= {ϕ, c1, . . . , cm, 0} {a, x1, . . . , xn} ⊆ act , (D.1)

1We thank Michael Huth, Harald Fecher, Heiko Schmidt and one of the anynonymous re-
viewers for helping to track down its origins.

124 Paper D: On Modal Refinement and Consistency

(a) xi 0
xi

x1

x2

xn

...

(b) ¬xi 0
x1

xi−1

xi+1

xn

...

...

(c)

ϕ

c1

c2

cm−1

cm

a

a

a

a

...

(d)

true t
0

a
a

x1

x2

xn−1

xn

...

Figure D.2: Representing (a) a positive literal, (b) a negative literal, (c) a 3-DNF
formula ϕ = c1 ∨ · · · ∨ cm and (d) a tautology over variables x1 . . . xn.

ϕ
0

x1 ∧ ¬x2 ∧ ¬x3

¬x1∧x2∧x3

x1 ∧ ¬x2 ∧ x3

a

a

a

x1

x1

x2

x2

x3

x3

x1

x1

x3

x3

Figure D.3: Reduction for ϕ = (x1∧¬x2∧x3)∨ (¬x1∧x2∧x3)∨ (x1∧¬x2∧¬x3).

where ci are clauses of ϕ, while 0 and a are fresh names.
First we explain how a single literal can be represented as a state with at most

n + 1 outgoing transitions. For a positive literal xi we introduce a state xi with
a required transition xi

xi−→0 and allowed transitions xi xk99K0 for all k = 1 . . n.
For a negative literal ¬xi we allow no outgoing must transitions and create may
transitions (¬xi)

xk99K0 for all k 6= i. Positive assignments are represented by must
transitions, and negative assignments are represented by lack of may transitions.
Assignments with no effect on satisfaction of the formula are modeled by may
transitions with no corresponding must transitions. See Figure D.2ab.

Now generalize this to conjunctive clauses of a 3-DNF formula. A clause
l1∧l2∧l3 is translated into a state labeled l1∧l2∧l3 with the following transitions:

1◦ (l1 ∧ l2 ∧ l3) xi−→Sϕ0 iff lk = xi for some k = 1 . . 3.

2◦ (l1 ∧ l2 ∧ l3)
xi99KSϕ0 iff lk 6= ¬xi for all k = 1 . . 3.

Since we only consider satisfiable clauses, modal transition systems created this
way are syntactically consistent (all required transitions are allowed). A satisfying
truth assignment to l1 ∧ l2 ∧ l3 can be extracted from any implementation I
refining the state with the same label—just set xi to true iff I xi−→ and set xi to
false otherwise. Similarly we can construct an implementation refining l1 ∧ l2 ∧ l3
given any satisfying assignment to this clause.
A 3-DNF formula ϕ = c1 ∨ . . . ∨ cm is represented using a state labeled ϕ and
may transitions to its clauses: ϕ a99KSϕci for i = 1 . .m. No must transitions

Syntactic Consistency and Syntactic Refinement 125

are generated. See Figure D.2c and D.3. States labeled ci represent processes
resulting from translation of the individual clauses as presented above.

Observe that each satisfying assignment to formula ϕ has a corresponding
deterministic implementation of Sϕ. Also each implementation of Sϕ embeds at
most one satisfying assignment to ϕ extracted using the same rules as discussed
for clauses (one per each nondeterministic choice in the initial state of the im-
plementation). Clearly Sϕ can be constructed in time polynomial in the size of
ϕ.

We now consider construction of Tϕ. First let statesTϕ
= {true, tϕ, 0}. We

also create the following transitions: true a−→Tϕtϕ, true a99KTϕtϕ, and tϕ xi99KTϕ0 for all
variables xi of ϕ (See Fig. D.2d). Clearly Tϕ can be constructed in time at most
polynomial in size of ϕ.

The following lemma states the correctness of our reduction.

Lemma 1 A 3-DNF formula ϕ with all satisfiable clauses is a tautology iff
JTϕ, trueK ⊆ JSϕ, ϕK.

Proof 1 We first consider the direction right to left, i.e. assume that JTϕ, trueK
⊆ JSϕ, ϕK and take any truth assignment ̺ to variables xi of ϕ. We construct a
deterministic implementation I̺ in the following way: statesI̺ = {t, ̺,0}, where
there are two transition from t to ̺: t a−→̺∧ t a99K̺ and for all xi such that ̺(xi) =
true: ̺ xi−→0 ∧ ̺ xi99K0. Due to the construction of our reduction this means that
̺ satisfies ϕ. Since for any assignment ̺ we can conclude that ϕ holds, ϕ is a
tautology.

Now consider the claim of the lemma from left to right. We address its con-
trapositive. Assume that there exists an implementation I and its state t such
that t ≤m true, but t 6≤m ϕ. We want to show that ϕ is not a tautology. Observe
that since t 6≤m ϕ there must exist a state s ∈ statesI such that t a−→s and for
all clause states ci of Sϕ it is the case that s 6≤m ci. But this means that the
assignment represented by s (present xi-transitions give rise to xi = true, absent
to xi = false) falsifies ϕ meaning that ϕ is not a tautology.�

Theorem 1 The problem of deciding JT, tK ⊆ JS, sK for states t and s of arbitrary
modal transition systems T and S respectively is co-NP hard.

Co-NP hardness follows from the above reduction and co-NP hardness of 3-

DNF-Tautology. The same reduction can be used to show that the thorough
refinement induced by weak modal refinement (Section 6) is also co-NP hard to
decide. We omit that proof as the argument is rather similar to the above.

4 Syntactic Consistency and Syntactic Refinement

From now on we relax the syntactic consistency requirement presented in Sec-
tion 2, and allow reasoning about systems for which −→ 6⊆ 99K. We will introduce

126 Paper D: On Modal Refinement and Consistency

a syntactic refinement ⊆m with its induced notion of consistency and prove that
it is (almost) precisely characterized by the syntactic consistency. These results
are very simple, but we include them for three reasons. First, we cannot avoid
discussing the most well known notion of consistency for modal transition systems
(a notion that had never been characterized using a refinement relation). Second,
we can show a refinement inducing this consistency (a refinement that had never
been explicitly linked to any consistency notion). Third, we want to present all
ingredients of a consistency study using a simple example: a refinement, its in-
duced consistency, operational characterization in form of a consistency relation,
and a coincidence proof. Later sections will follow exactly the same pattern.

Definition 2 (Syntactic Refinement) For two modal transition systems S and
T a syntactic refinement R is a partial injective function on statesS into statesT
such that for all pairs (s, t), t = R(s), and all actions a it holds that

for all t′ ∈ statesT such that t a−→T t′

there exists an s′ ∈ statesS such that s a−→Ss′ and t′ = R(s′),

for all s′ ∈ statesS such that s a99KSs′

there exists a t′ ∈ statesT such that t a99KT t′ and t′ = R(s′).

A state s is said to be a syntactic refinement of a state t, written s ⊆m t, if there
exists a syntactic refinement function R such that t = R(s).

Intuitively this refinement establishes that the may-transition graph of S is a
subgraph of the may-transition graph of T and that the must-transition graph of
T is a subgraph of the must-transition graph of S.

Definition 3 (Syntactic Consistency) A state s ∈ statesS is syntactically
consistent iff there exists an implementation I and its state sI such that sI ⊆m s.

We claim that this notion of semantic consistency (almost) coincides with the
one presented in Section 2. For the sake of uniformity let us reformulate that
definition using an explicit notion of consistency relation:

Definition 4 (Syntactic Consistency Relation) Given a modal transition sys-
tem S, a binary relation S ⊆ statesS × statesS is a syntactic consistency relation
on states of S iff for each state s if (s, s) ∈ S and each action a ∈ act it holds
that whenever s a−→s′ for some s′ ∈ statesS then also s a99Ks′ and (s′, s′) ∈ S.

For a syntactic consistency relation S and a state s ∈ statesS such that (s, s) ∈
S, we synthesize an implementation IS with a state sI such that sI ⊆m s. Take
states of IS to be consistent states of S: statesIS = {p ∈ statesS | (p, p) ∈ S} and
sI = s. The transition relation of IS is the must transition relation of S projected
on states of IS : −→IS = 99KIS = −→S ∩ (statesIS × act τ × statesIS).

Strong Modal Refinement and Strong Consistency 127

Theorem 2 (Soundness) If there exists a syntactic consistency relation con-
taining a state s of S then s is a syntactically consistent state in the sense of
Definition 3. Moreover the implementation IS constructed above is one of its
refinements: sI ≤m s.

It turns out that syntactic consistency relations characterize syntactic con-
sistency in the sense of Definition 3 in a complete manner. Given a syntactic
implementation I of a modal transition system S (I ⊆m S) we can construct a
syntactic consistency relation in the following way:

SI = {(q, q) ∈ statesS | exists p ∈ statesI ∧ p ⊆m q} (D.2)

Theorem 3 (Completeness) Let s be a state of a modal transition system S
and sI be a state of an implementation I such that sI ⊆m s. Then there exists a
syntactic consistency relation for S containing (s, s), and SI is one of such.

Since establishing consistency of models is a useful feature in modeling tools,
we remark that the cost of deciding existence of syntactic implementations (via
consistency relations) for a state s ∈ statesS is at most (and at least) linear in the
size of S. The algorithm corresponds to a traversal of the must-transition graph
starting in s, and checking the consistency requirement in each state.

Syntactic consistency relations characterize syntactic consistency in the sense
of [LT88] almost precisely. In fact the two notions coincide if all states of S are
reachable from s via must transitions. Otherwise Definitions 3 and 4 allow incon-
sistencies in unreachable parts, which has not been taken into account in [LT88].

5 Strong Modal Refinement and Strong Consis-

tency

In Section 2 we have recalled the notion of (strong) modal refinement. Now we
introduce its induced notion of consistency and characterize it operationally.

Definition 5 (Strong Consistency) A state s of a modal transition system S
is strongly consistent iff there exists an implementation I and its state sI such
that sI ≤m s.

In order to give an operational characterization of strong consistency we need
to lift the transition relations to sets of states. For sets σ, σ′ ⊆ statesS we write:

σ a−→
⌊S⌋σ′ iff ∃s∈σ. ∃s′∈σ′. s a−→Ss′ , (D.3)

σ a99K
⌊S⌋σ′ iff ∀s∈σ. ∃s′∈σ′. s a99KSs′ . (D.4)

128 Paper D: On Modal Refinement and Consistency

Definition 6 (Strong Consistency Relation) Given a modal transition sys-
tem S, a relation B ⊆ P(statesS) is a strong consistency relation on statesS iff
for all actions a ∈ act and all σ ∈ B the following condition is satisfied:

whenever s a−→Ss′ for some s∈σ and some s′∈statesS
then also σ a−→

⌊S⌋σ′ and σ a99K
⌊S⌋σ′ for some σ′∈B containing s′.

Elements of B are called consistency classes. B is a strong consistency relation
for a state s ∈ statesS iff it contains a consistency class σs such that s ∈ σs.

Given a consistency relation B for a state s ∈ statesS we can synthesize an
implementation IB with a state sI ∈ statesIB , such that sI ≤m s. Take the
consistency classes of B, to be the states of IB: statesIB = B and sI be the class
σs containing s. Both transition relations of IB equal the intersection of must
and may transition relations of S lifted to consistency classes of B:

σ a−→IBσ′ and σ a99KIBσ′ iff σ a−→
⌊S⌋σ′ and σ a99K

⌊S⌋σ′ . (D.5)

Theorem 4 (Soundness) If there exists a consistency relation B for a modal
transition system S then S is strongly consistent in the sense of Definition 5.
Moreover IB constructed as above is one of its refinements: sI ≤m S.

Strong consistency relations characterize strong consistency in a sound and
complete manner. Given a state sI of an implementation I refining a state s ∈
statesS (sI ≤m s) we can construct a consistency relation BI for S following (D.6):

BI = {σp ⊆ statesS | p ∈ statesI and σp 6= ∅ and ∀q ∈ σp. p ≤m q} (D.6)

Observe that the σp sets above are not necessarily maximal.

Theorem 5 (Completeness) Let s ∈ statesS and let I be an implementation,
let sI ∈ statesI and sI ≤m s. Then there exists a consistency relation for the
state s. Also relation BI defined above is one of such relations.

Definition 6 can be interpreted operationally giving a simple exponential fix-
point algorithm: start with a singleton class containing s and apply the rule
generating classes until a fixpoint is reached.

We demonstrate that the problem of deciding strong consistency is in fact
NP-hard using a reduction from 3-Cnf-Sat. Let ϕ = c1 ∧ . . . ∧ cm be a 3-CNF
formula over variables x1, . . . , xn. Construct a modal transition system Sϕ such
that its state labeled cm is consistent iff ϕ is satisfiable. The states of Sϕ are
literals of ϕ, a 0 state, a 1 state (a state allowing any behavior: 1 xi99KSϕ1 for all
i = 1 . . n and 1 a99KSϕ1), plus a polynomial number of auxiliary states. We shall
use an action per each variable xi and one auxiliary action a.

Literals in ϕ are translated to states using the principle shown in Figure D.2ab.
A disjunction of three literals l1∨l2∨l3 is represented by a state labeled (l1∨l2∨l3)

Weak Refinement and Weak Consistency 129

(a)

c3

x1
∨ ¬x2

∨ ¬x3

x1

¬x2

¬x3

1

a a a

a
a

a

a

(b)

c3

x1
∨ ¬x2

∨ ¬x3

1

x1

¬x2

¬x3

c2

¬x1
∨ x2

∨ x3

¬x1

x2

x3
c1

x1
∨ ¬x2

∨ x3

Figure D.4: Representing (a) a disjunctive clause and (b) a translation for ϕ.

such that (l1 ∨ l2 ∨ l3) a−→Sϕ1 and (l1 ∨ l2 ∨ l3)
a99KSϕlk for all k = 1 . . 3. Now each

clause ci is represented by a state labeled ci followed by a sequence of exactly imay
a-transitions leading to the state representing the disjunction. For regularity we
assume that there is a special true clause c0, that we translate to 1. Figure D.4a
shows the result of translating a clause c3 = x1 ∨ ¬x2 ∨ ¬x3. Recall that states
labeled with literals are actually results of translation of Figure D.2ab.

Now the top-level conjunction is translated inductively. First representations
of c1, . . . , cm are created as above, then they are conjoined using must transitions.
The ith clause is conjoined by a must transition from ci to ci−1: ci a−→Sϕci−1. Note
that we add at most a quadratic number of auxiliary states this way (and a
similar number of transitions). After conjoining cm we obtain a representation
of the whole formula. Figure D.4b presents a complete translation for a formula
ϕ = (x1 ∨¬x2 ∨x3)∧ (¬x1 ∨x2 ∨x3)∧ (x1 ∨¬x2 ∨¬x3). All unlabeled transitions
should actually be labeled by a (removed to decrease clutter).

It is not hard to see that if the cm state has an implementation then it ac-
tually has a state that satisfies the requirements of all the states representing
disjunctions, and thus it induces a satisfiable assignment to ϕ.

6 Weak Refinement and Weak Consistency

We shall now discuss what is considered a classic form of a weak modal refinement
(obtained by transforming modal refinement in the same way as bisimulation is
transformed in order to obtain its weak form; to the best of our knowledge first
published by Hüttel and Larsen in [HL89]). The definition uses a notion of weak
transition relations that we introduce first. We shall write:

s a−→∗
Ss′ iff s (τ−→S)∗ a−→S (τ−→S)∗ s′ (D.7)

s a99K∗
Ss′ iff s (τ99KS)∗ a99KS (τ99KS)∗ s

′ , (D.8)

where R∗ denotes zero or more transitive applications of a binary relation R.
Finally we write s â−−→∗

Ss′ whenever s a−−→∗
Ss′ and a 6= τ , or whenever s (τ

−→S)∗ s′

and a = τ . Similarly for the may transition relation.

130 Paper D: On Modal Refinement and Consistency

Definition 7 (Weak Modal Refinement) Let S, T be modal transition sys-
tems. A binary relation R ⊆ statesS × statesT is a weak modal refinement iff for
each pair (s, t) ∈ R and each action a ∈ act τ it holds that:

for all t′ ∈ statesT such that t a−→T t′

there exists s′ ∈ statesS such that s â−→∗
Ss′ and (s′, t′) ∈ R,

for all s′ ∈ statesS such that s a99KSs′

there exists t′ ∈ statesT such that t â
99K∗

T t′ and (s′, t′) ∈ R.

We say that a state s ∈ statesS weakly refines a state t ∈ statesT , written s ≤∗
m t

iff there exists a weak modal refinement containing (s, t).

Definition 8 (Weak Consistency) A state s of a modal transition system S
is weakly consistent iff there exists an implementation I and its state sI such that
sI ≤∗

m s.

We characterize weak consistency using consistency relations as before. In
order to do this we need to lift weak transition relations 99K∗ and −→∗ to sets of
states. For two sets of states σ, σ′ ⊆ statesS write:

σ â−→∗
⌊S⌋σ′ iff ∃s∈σ. ∃s′∈σ′. s â−→∗

Ss′ , (D.9)

σ â99K∗
⌊S⌋σ′ iff ∀s∈σ. ∃s′∈σ′. s â99K∗

Ss′ . (D.10)

Definition 9 (Weak Consistency Relation) Let S be a modal transition sys-
tem. A relation O ⊆ P(statesS) is a weak consistency relation on statesS iff for
any set σ ∈ O, for any state s ∈ σ, and for any action a ∈ act τ it holds that:

whenever s a−→Ss′ for some s′ ∈ statesS
then also σ â−→∗

⌊S⌋σ′ and σ â99K∗
⌊S⌋σ′ for some σ′ ∈ O containing s′.

O is a weak consistency relation for a state s ∈ statesS iff it contains a consistency
class σs such that starts ∈ σs.

As before, we claim that weak consistency relations (Definition 9) soundly
characterize weak consistency (Definition 8): for a state s ∈ statesS with a known
weak consistency relation O, one can construct a weak implementation IO con-
taining a state sI such that sI ≤∗

m s. Take states of IO to be consistency classes
of O (statesIO = O), and sI be a class σs containing s. The transition relations of
IO are the intersection of the weak transition relations of S lifted to consistency
classes of O. For all actions a ∈ act τ :

σ a−→IOσ′ and σ a99KIOσ′ iff σ â−→∗
⌊S⌋σ′ and σ â99K∗

⌊S⌋σ′ . (D.11)

Theorem 6 (Soundness) Let S be a modal transition system, s ∈ statesS, and
O be a weak consistency relation for s. Then s is weakly consistent and sI ∈
statesIO is one of its implementations: sI ≤∗

m s.

May-weak Modal Refinement and Its Consistency 131

T

0

τ
τ

τ
τ

a

a

b
b

Figure D.5: All implementations of T have τ -transitions.

Consistency relations characterize weak consistency precisely. Assume that a
state s ∈ statesS is refined by a state sI of an implementation I (I ≤∗

m S). Then
one can use this implementation to construct the consistency relation OI :

OI = {σp ⊆ statesS | p ∈ statesI and σp 6= ∅ and ∀q ∈ σp.p ≤
∗
m q} (D.12)

Theorem 7 (Completeness) Let S be a modal transition system, I be an im-
plementation, and let sI ≤∗

m s for some sI ∈ statesI and s ∈ statesS. Then there
exist weak consistency relations for s, and OI is one of them.

Definition 9 can be interpreted operationally giving rise to an exponential
algorithm for constructing a consistency relation and deciding weak consistency.
Weak consistency collapses to strong consistency for systems without transitions
labeled with τ . Consequently the problem of deciding it is at least NP-hard, by
reduction from 3-Cnf-Sat presented in Section 5.

We conclude this section with a comment on synthesis of a weak implemen-
tation IO from a consistency relation O. The implementation synthesized by the
algorithm presented above will contain internal transitions, if the specification
contained them. In fact this is not always necessary—there definitely exist spec-
ifications with internal transitions that can be realized without hidden behavior.
However, hidden transitions are unavoidable for some specifications. Figure D.5
shows such a specification (in fact even a syntactically consistent one).

7 May-weak Modal Refinement and Its Consis-

tency

In [LNW07a] (Paper C) we have proposed another weakening of modal refine-
ment, generalizing alternating simulation [AHKV98] for two players as used in
interface automata [AH01]. We call it may-weak here, as it preserves strong
behavior on must transitions, only allowing weak matching on may transitions.
It has been demonstrated that may-weak modal refinement is a sound basis for
assume/guarantee reasoning: it preserves absence of deadlocks on guaranteed
behaviors (details in [LNW07a] (Paper C)).

Before we can define the may-weak refinement, let us define the may-weak
transition relation as used in this refinement. We shall write

s a99K⊳
Ss′ iff s(τ99KS)∗s′′ a99KSs′ (D.13)

132 Paper D: On Modal Refinement and Consistency

Similarly as before we write s â99K⊳
Ss′ meaning s a99K⊳

Ss′ if a ∈ act and s(τ99KS)∗s′

if a = τ . We use the regular (strong) must-transition relation lifted to sets of
states as in Section 5. We also lift our new may-weak transition relation:

σ â99K⊳
⌊S⌋σ′ iff ∀s ∈ σ.∃s′ ∈ σ′. s â99K⊳

Ss′ . (D.14)

Let us now define may-weak modal refinement [LNW07a] (Paper C) using may-
weak transitions:

Definition 10 (May-weak Modal Refinement) A binary relation R ⊆
statesS× statesT is a may-weak refinement between states of two modal transition
systems S and T iff for each pair of states (s, t) ∈ R it holds that:

for all a ∈ act and for all t′ ∈ statesT such that t a−→T t′

there exists s′ ∈ statesS such that s a−→Ss′ and (s′, t′) ∈ R,

for all a ∈ act τ and for all s′ ∈ statesS s
a99KSs′

there exists t′ ∈ statesT ′ such that t â99K⊳
T t′ and (s′, t′) ∈ R.

A state s ∈ statesS may-weakly refines a state t ∈ statesT , written s ≤⊳
m t iff there

exists a may-weak modal refinement containing (s, t).

Definition 11 (May-weak Consistency) A state s of a modal transition sys-
tem S is may-weak consistent iff there exists an implementation I and its state
sI such that sI ≤⊳

m s.

Definition 12 (May-weak Consistency Relation) Let S be a modal transi-
tion system. A relation U ⊆ P(statesS) is a may-weak consistency relation on
statesS iff for any set of states σ ∈ U , for any state s ∈ σ, and for any action
a ∈ act the following holds:

whenever s a−→Ss′ for some s′ ∈ statesS
then also σ a−→

⌊S⌋σ′ and σ a99K⊳
⌊S⌋σ′ for some σ′ ∈ U containing s′.

U is a may-weak consistency relation for a state s ∈ statesS iff it contains a
consistency class σs ∈ U such that s ∈ σs.

Given a consistency relation U for a state s of a modal transition system S,
we can synthesize an implementation IU with a state sI refining s. The states of
IU are the consistency classes of U : statesIU = U and sI is the consistency class
containing s. Transition relations of IU equal intersection of must and may-weak
transition relations of S lifted to consistency classes in U (for a 6= τ):

σ a−→IUσ′ and σ a99KIUσ′ iff σ a−→
⌊S⌋σ′ and σ a99K⊳

⌊S⌋σ′ , (D.15)

Conclusion and Open Problems 133

Theorem 8 (Soundness) Let s ∈ statesS. If U is a may-weak consistency
relation for s then s is may-weakly consistent and sI ∈ statesIU constructed as
above is one of its implementations: sI ≤⊳

m s.

For the completeness of characterization consider an implementation I, a state
sI ∈ statesI such that sI ≤⊳

m s, where s ∈ statesS. We construct a consistency
relation UI for s in the following way:

UI = {σp ⊆ statesS | p ∈ statesI and σp 6= ∅ and ∀q ∈ σp. p ≤
⊳
m q} . (D.16)

Theorem 9 (Completeness) Let S be a modal transition system, s ∈ statesS
and let I be an implementation such that sI ≤⊳

m s for some sI ∈ statesI . Then
there exist a may-weak consistency relation for s, and UI is one such relation.

Existence of a may-weak consistency relation for a given state s can be decided
in exponential time, using an algorithm that is easy to extract from Definition 12.
As previously this problem is also NP-hard, as may-weak consistency collapses
to strong consistency for specifications without τ transitions.

A remarkable property of may-weak modal refinement, which we have not re-
alized when writing [LNW07a] (Paper C), is that a may-weak consistent system
always has implementations that contain no hidden actions (IU above is actu-
ally constructed without introducing internal transitions). This is because this
refinement captures a kind of (observation) determinism of required behaviors
in specifications. We find this property appealing for applications again: it de-
scribes a class of specifications which allow implementations that are predictable
(provided that they are deterministic). As predictability is an important prop-
erty of software systems, the above decision procedure is likely to prove useful in
practice.

8 Conclusion and Open Problems

We have addressed several basic questions in the theory of modal transition sys-
tems. We have shown that deciding any refinement that captures, in a precise
way, the same set of concrete implementations as the standard modal refinement
(or weak modal refinement) is co-NP hard. This lower bound is not tight. An
upper bound of EXPTIME is easily established by casting the problem as check-
ing satisfiability of implication between two characteristic formulas, in the modal
µ-calculus. Finding a tight bound remains an open problem that we shall ad-
dress shortly. We also hope to study hardness of thorough refinements induced
by may-weak modal refinement and branching modal refinement [FUB06].

Furthermore we have contributed to the understanding of the relation be-
tween refinements and consistencies studying notions of consistency for modal

134 Paper D: On Modal Refinement and Consistency

transition systems induced by four different refinement relations: syntactic con-
sistency [LT88] (induced by a graph inclusion refinement), strong consistency
(induced by a regular modal refinement [LT88]), weak consistency (induced by
weak modal refinement [HL89]) and may-weak consistency (induced by may-weak
modal refinement [LNW07a] (Paper C)). For each of these we have given a sound
and complete operational characterization. The upper bound on establishing the
last three of these consistencies is exponential, and they are NP-hard. Syntactic
consistency can be established in linear time.

There is a range of open problems related to these results. First, it is an
interesting question whether there exists a useful alternative to modal refinement
that completely characterizes its own (as opposed to the currently accepted) set of
implementations and that can be decided in polynomial time. The main challenge
here is to argue that the set of implementations considered is interesting from a
practical point of view. Alternatively, as suggested to us by Michael Huth, one
can try to characterize broad classes of modal transition systems for which the
currently used refinement is complete.

Finding a uniform formulation for four consistency studies as presented in
this paper was a rather challenging but rewarding task. Given that they can be
described so similarly one could try to take this analogy further and design a
more abstract meta-consistency theory, parameterized only by a refinement.

Furthermore it is interesting to study the relation between consistency and
parallel decomposition. We have done some preliminary work on that topic
in [LNW07a] (Paper C), though in a rather restricted setting. We intend to
generalize observational consistency of [LNW07a] (Paper C), and to understand
its semantics building on the results of the present paper; ultimately employing
it in a larger study of decomposition.

9 Appendix

9.1 Variations of Reduction Proof from Section 3

Weak Modal Refinement ≤∗
m

We use the same construction as in Section 3. Just the correctness lemma is stat-
ing for a different notion of implementation, namely using weak modal refinement
≤∗

m:

JS, sK≤∗
m

= {(I, i) | i ≤∗
m s and −→I = 99K

I} .

Lemma 2 A 3-DNF formula ϕ with all satisfiable clauses is a tautology iff
JTϕ, trueK≤∗

m

⊆ JSϕ, ϕK≤∗
m

.

Appendix 135

Proof 2 The proof in the right-to-left direction is the same as for the strong

refinement. For any assignment ̺ construct a strong implementation I̺ that

refines Tϕ. From this conclude that I̺ ≤m Sϕ and consequently that ̺ satisfies ϕ.

The same argument can be used because weak modal refinement is indeed weaker

than regular (strong) modal refinement, so inclusion of all weak implementations

entails inclusion of all strong implementations. Details in the main body of this

paper.

Now consider the claim of our present lemma from left to right. We address

its contrapositive. Assume that there exists an implementation I and its state t

such that t ≤∗
m true, but t 6≤∗

m ϕ. We want to show that ϕ is not a tautology.

First note that t a−−→∗ since, t ≤∗
m true. For the same reason all transitions

leaving t are labeled by a. In this circumstances since t 6≤∗
m ϕ there must exist a

state s ∈ statesI such that t a−→∗s and for all clause states ci of Sϕ it is the case

that s 6≤∗
m ci. Normally the refinement can also be violated by (I, t) not having

some transitions required by Sϕ but this cannot happen here as ϕ has no must

transitions leaving.

We shall use s to construct an assignment ̺ such that ̺ 6|= ϕ. For each of the

ci states representing clauses there are only two ways to violate the refinement:

1◦ Either ci x−→ and s 6 x−−→∗,

2◦ Or s x−−→∗ and ci 6
x
99K

This is so simple, as both systems do not have any further observable behavior

after the x transitions considered, and because Sϕ has no hidden transitions.

But remember that if ci x−→ then in our reduction this means that ϕ has a

clause, in which x occurs as a positive literal. Similarly if ci 6
x
99K for some ci then

it means that ϕ has a clause that contains x in a negative literal. Now consider

an assignment ̺ such that

̺(x) =

0 iff s 6 x−−→∗

1 iff s x−−→∗.
(D.17)

It is not hard to see that since s violates refinement with every clause state such

an assignment will falsify each clause of ϕ. So ϕ is not a tautology. �

136 Paper D: On Modal Refinement and Consistency

9.2 Proofs for Section 4

Proof 3 (Theorem 2) We prove the theorem by arguing that sIS ⊆m s. We

show that the total identity function Id on states of IS is a syntactic refinement of

S by IS containing (sIS , s). Observe that Id is an injective function from statesIS
into statesS. Let us check that Id fulfills the two requirements of Definition 2.

Take a state p ∈ statesIS and a state q ∈ statesS such that q = Id(p).

1◦ Let q a−→Sq′ for some q′ ∈ statesS. We need to find a state p′ ∈ statesIS such

that p a−→ISp′ and q′ = Id(p′). It is easy to see, involving Definition 4, that

p′ = q′ fulfills these conditions.

2◦ Let p a
99KISp′ for some p′ ∈ statesIS . We want to find a state q′ ∈ statesS

such that q a
99KSq′ and q′ = Id(p′). Obviously take q′ = p′. Since IS is an

implementation we get that p a−→ISp′. But this means that q a−→Sq′ as the for-

mer is just a projection of the latter. Now since (q, q) ∈ S, by Definition 4,

we obtain that q a
99KSq′.

Since Id(sIS) = s (by construction of IS), we conclude that indeed sIS ⊆m s. �

Proof 4 (Theorem 3) We show that SI is indeed a syntactic consistency rela-

tion in the sense of Definition 4 and that it contains (s, s). We begin with an

observation that (s, s) ∈ SI , because sI ⊆m s. Now consider an arbitrary pair

(q, q) ∈ SI and a state q′ ∈ statesS such that q a−→Sq′. We want to show that

also q a
99KSq′ and (q′, q′) ∈ SI . Since (q, q) ∈ SI there exists a p ∈ statesI such

that p ⊆m q. This in turn, together with q a−→Sq′, implies that there exists a state

p′ ∈ statesI such that p a−→Ip′ and p′ ⊆m q′ (so (q′, q′) ∈ SI). But p a−→Ip′ is the

same as p a
99KIp′. Now by p ⊆m q also q a

99KSq′′ for some q′′ ∈ statesS. It is essen-

tial to observe that q′′ = q′ because both result from applying the same refinement

function to p′. So q a
99KSq′, which finishes the proof.�

9.3 Proofs for Section 5

Proof 5 (Theorem 4) We show that sI ∈ statesIB indeed refines s ∈ statesS,

by arguing that the following relation R is a modal refinement relation of s by sI :

R = {(σ, q) ∈ statesIB × statesS | q ∈ σ} (D.18)

Appendix 137

We consider an arbitrary pair (σ, q) ∈ R and prove that both requirements of Def-

inition 1 are fulfilled.

1◦ Take q′ ∈ statesS and an action a such that q a−→Sq′. We need to find a

σ′ ∈ statesIB such that σ a−→IBσ′ and (σ′, q′) ∈ R. This follows right away

from Definition 6. Since σ is a consistency class in B and q ∈ σ, there

exists a σ′ ∈ B = statesIB such that q′ ∈ σ′, so (σ′, q′) ∈ R. Also σ a−→
⌊S⌋
σ′

and σ a
99K

⌊S⌋
σ′ imply that σ a−→IBσ′.

2◦ Consider σ′ ∈ statesIB and an action a such that σ a
99KIBσ′. We need to find

an q′ ∈ statesS such that q a
99KSq′ and (σ′, q′) ∈ R. Since σ a

99KIBσ′, then by

construction of IB also σ a−→
⌊S⌋
σ′ and σ a

99K
⌊S⌋
σ′. Since q ∈ σ the latter, namely

σ a
99K

⌊S⌋
σ′, implies that there exists a q′ ∈ σ′ such that q a

99KSq′.

Clearly (sI , s) ∈ R, as sI is the consistency class containing s.�

Proof 6 (Theorem 5) We prove the theorem by showing that BI is indeed a

behavioral consistency relation for s in the sense of Definition 6.

Let us first observe that because sI ≤m s, the relation BI is nonempty—it at

least contains a consistency class containing s.

Now take an arbitrary set σp ∈ BI , an arbitrary action a and consider the

requirement of Definition 6: Assume that q a−→Sq′ for some q ∈ σp and some

q′ ∈ statesS. We need to find a σp′ ∈ BI such that q′ ∈ σp′ and σp
a−→
⌊S⌋
σp′ and

σp
a
99K

⌊S⌋
σp′. Since p ≤m q, then by definition of modal refinement it must be that

there exists a p′ such that p a−→Ip′ and p′ ≤m q′. Now let σp′ be the following set:

σp′ = {q′} ∪ {q′′ | ∃q ∈ σp. q
a
99KIq′′ and p′ ≤m q′′} (D.19)

Due to (D.6) we know that there exists at least one such q′′ for each q ∈ σp. This

means that σp
a
99K

⌊S⌋
σp′. Also since q ∈ σp and q′ ∈ σp′ (by construction) we get

that σp
a−→
⌊S⌋
σp′. �

Let us sketch briefly why our reduction from 3-Cnf-Sat to strong consistency
checking (Definition 5) is actually correct, or more precisely let us argue that: ϕ
is satisfiable iff the state cm in Sϕ is strongly consistent (has an implementation).

138 Paper D: On Modal Refinement and Consistency

Assume first that cm has a strong implementation. Then it is essential to
observe that there will be a path of a transitions in this implementation such
that the states on that path will be refining all vertically aligned states of Sϕ
(using the convention of Figure D.4b). The one but last state on that a-labeled
path will be a state that refines all states representing clauses. Let us call this
state p. Now because all of the must transition leading to 1 in Sϕ it has to be
that p a−→Ip′ for some p′ ∈ statesS. Since I is an implementation then also p a99KIp′,
and now by the refinement we get that p′ must refine at least on of the literal
states in each of the clauses, giving rise to a satisfiable assignment to ϕ. Note
that due to the way in which literal states are constructed, it is impossible that
p′ refines contradictory literal states.

The argument in the opposite direction is rather simple: for a given satisfiable
assignment to ϕ it is easy to construct a deterministic implementation of Sϕ. It
would have a simple path of m + 1 transitions labeled with a leading to a state
p such that p xi99K0 for all xi that are assigned true in the satisfying assignment.

9.4 Proofs for Section 6

The following lemma has already been known in the eighties for regular transition
systems (it is mentioned by Milner in 2 for weak bisimulation equivalence). It is
simple to verify that it also holds for weak modal refinement.

Lemma 3 Consider two states (s,t) such that s ≤∗
m t.

for all t′ ∈ statesT such that t â−→∗
T t′

exists s′ ∈ statesS such that s â−→∗
Ss′ and (s′, t′) ∈ R,

for all s′ ∈ statesS such that s â99K∗
Ss′

exists t′ ∈ statesT such that t â99K∗
T t′ and (s′, t′) ∈ R.

Proof 7 (Theorem 6) The proof proceeds by arguing that sI ∈ statesIO is in-

deed a refinement of s. This fact is witnessed by the following refinement relation:

R = {(σ, q) ∈ statesIO × statesS | q ∈ σ} . (D.20)

To check whether R fulfills Definition 7 consider an arbitrary pair (σ, q) ∈ R.

1◦ Let q a−→Sq′ for some a ∈ act τ and q′ ∈ statesS. We need to find a σ′ ∈ statesIO
such that σ â−→∗

IOσ′ and (σ′, q′) ∈ R.

Since O is a consistency relation in the sense of Definition 9 there must

exist a consistency class σ′ such that σ â−→∗
⌊S⌋
σ′ and σ â

99K∗
⌊S⌋
σ′ and q′ ∈ σ′.

2Citation in appendix (not included in article references) milner:1989,p. 151

Appendix 139

The latter means that (σ′, q′) ∈ R, while the two former imply that σ a−→IOσ′,

so also σ â−→∗
IOσ′.

2◦ Let σ a
99KIOσ′ for some a ∈ act τ and σ′ ∈ statesIO . We want to find a q′ ∈

statesS such that q â
99K∗

Sq′ and (σ′, q′) ∈ R.

Since we know that σ a
99KIOσ′ then also σ â−→∗

⌊S⌋
σ′ and σ â

99K∗
⌊S⌋
σ′. By defini-

tion σ â
99K∗

⌊S⌋
σ′ implies q â

99K∗
Sq′ for some q′ ∈ σ′. Consequently (σ′, q′) ∈ R.

Finally recall that sI = σs ∈ O, where s ∈ σs. Consequently (sI , s) ∈ R, allowing

us to conclude that indeed sI ≤∗
m s.�

Proof 8 (Theorem 7) First observe that there exists at least one σsI ∈ OI

because sI ≤∗
m s (and it contains s, so OI indeed can be a weak consistency

relation for s).

Then take an arbitrary σp ∈ OI , a state q ∈ σp, and an action a ∈ act τ such

that q a−→Sq′ for some q′ ∈ statesS. We need to find a σp′ ∈ OI , such that q′ ∈ σp′

and σp
â−→∗

⌊S⌋
σp′, and σp

â
99K∗

⌊S⌋
σp′.

Since p ≤∗
m q and q a−→Sq′ we get that p â−−→∗

Ip′ and p′ ≤∗
m q′ for some p′ ∈ statesI .

Since p â−→∗
Ip′ then also p â

99K∗
Ip′ and then, by Lemma 3, for each state q ∈ σp there

exists a state q′′ ∈ statesS such that q â
99K∗

Sq′′ and p′ ≤∗
m q′′. Let us now construct

σp′ to be:

σp′ = {q′} ∪ {q′′ ∈ statesS | ∃q ∈ σp. q
â
99K∗

Sq′′ and p′ ≤∗
m q′′} (D.21)

First, σp′ ∈ OI as p′ refines all members of σp′. Second, as q′ ∈ σp′, σp
a−→
⌊S⌋
σi′,

which is witnessed by q a−→Sq′, which is stronger than σp
â−→∗

⌊S⌋
σp′. Finally since

all q′′’s in σp have weak a-successors in σp′, get that σp
â
99K∗

⌊S⌋
σp′, by definition of

the weak lifted transition relation.�

140 Paper D: On Modal Refinement and Consistency

9.5 Proofs for Section 7

Proof 9 (Theorem 8) We prove the theorem by arguing that the following re-

lation R indeed is a may-weak modal refinement of s by sI .

R = {(σ, q) ∈ statesIU × statesS | q ∈ σ} (D.22)

We consider an arbitrary pair (σ, q) ∈ R and check that both requirements of

Definition 10 are fulfilled.

1◦ Take q′ ∈ statesS and an action a ∈ act such that q a−→Sq′. We need to find

a σ′ ∈ statesIU such that σ a−→IUσ′ and (σ′, q′) ∈ R.

Since q a−→Sq′ the definition of may-weak consistency relation (Definition 12)

gives us that σ a−→
⌊S⌋
σ′ and σ a

99K⊳
⌊S⌋
σ′ for some σ′ ∈ U such that q′ ∈ σ′.

Which exactly gives us σ a−→IUσ′ and σ′ ∈ U gives us (σ′, q′) ∈ R.

2◦ Consider σ′ ∈ statesIU and an action a ∈ act τ such that σ a
99KIUσ′. We need

to find a state q′ ∈ statesS such that q â
99K⊳

Sq′ and (σ′, q′) ∈ R.

Since σ a
99KIUσ′ then by construction of IU also σ a−→

⌊S⌋
σ′ and σ â

99K⊳
Sσ′. Since

q ∈ σ, the latter, namely σ â
99K⊳

Sσ′, implies that there exists q′ ∈ σ′ such that

q â
99K⊳

Sq′ and (σ′, q′) ∈ R.

Finally recall that sI ∈ U and s ∈ sI , which allows us to conclude that indeed

sI ≤⊳
m s as witnessed by R.�

Proof 10 (of Theorem 9) We prove the theorem by showing that UI is indeed

a consistency relation in the sense of Definition 12.

Let us begin with a simple observation that because sI ≤⊳
m starts the relation

UI is non-empty: it at least contains the set σs = {s}. Now take an arbitrary

set σp ∈ UI and an arbitrary action a ∈ act and consider the requirement of

Definition 12. Assume that q a−→Sq′ for some q ∈ σp and some q′ ∈ statesS. We

need to find a σp′ ∈ UI such that q′ ∈ σp′ and σ a−→
⌊S⌋
σp′ and σ a

99K⊳
⌊S⌋
σp′.

Appendix 141

Since p ≤⊳
m q then by Definition 10 and our assumption (q a−→Sq′) it must be

that there exists a p′ ∈ statesI such that p a−→IUp′ and p′ ≤⊳
m q′. Now let σp′ be the

following set:

σp′ = {q′} ∪ {q′′ ∈ statesS | ∃q ∈ σp. q
a
99K⊳q

′′ and p′ ≤⊳
m q′′} (D.23)

Due to (D.16) we know that there exists at least one such q′′ for each q ∈ σp,

which means that σp
a
99K⊳

⌊S⌋
σp′. Also since q ∈ σp and q′ ∈ σp′ (by construction)

we get that σp
a−→
⌊S⌋
σp′.�

142 Paper D: On Modal Refinement and Consistency

Paper E

Complexity of Decision Problems
for Mixed and Modal Specifications

Adam Antonik, Michael Huth
Department of Computing,
Imperial College London, United Kingdom

Kim G. Larsen, Ulrik Nyman
Department of Computer Science,
Aalborg University, Denmark

Andrzej Wąsowski
Computational Logic and Algorithms Group,
IT University of Copenhagen, Denmark

Abstract1

We consider decision problems for modal and mixed transition systems used as
specifications: the common implementation problem (whether a set of speci-
fications has a common implementation), the consistency problem (whether a
single specification has an implementation), and the thorough refinement prob-
lem (whether all implementations of one specification are also implementations
of another one). Common implementation and thorough refinement are shown to
be PSPACE-hard for modal, and so also for mixed, specifications. Consistency is
PSPACE-hard for mixed, while trivial for modal specifications. We also supply
upper bounds suggesting strong links between these problems.
Keywords: Modal Transition Systems, Common Implementation, Thorough
Refinement, Consistency, Modal Specifications, Mixed Specifications

1Partially supported by the UK EPSRC projects Efficient Specification Pattern Library for
Model Validation (EP/D50595X/1) and Complete and Efficient Checks for Branching-Time
Abstractions (EP/E028985/1)

143

144 Paper E: Complexity of Decision Problems for Mixed and Modal...

1 Introduction

Bisimulation equivalence [Mil89, Par81] is widely accepted as a correctness crite-
rion for realizations of abstract specifications. Bisimulation is, however, a rather
strong relation that severely, and often unnecessarily, limits the choices of de-
signers in how specifications should be realized. At the same time, the main
alternative, bisimulation’s sister preorder simulation [Mil89], is often too weak
to use in this context as it only limits faulty behaviours, without enforcing any
correct ones.

In order to address these shortcomings, Larsen and Thomsen [LT88] have
proposed modal transition systems and the accompanying modal refinement, in
this paper referred to simply as refinement. Modal transition systems feature
required and allowed transitions able to simultaneously describe an under- and
over-approximation of behavior within a single specification. Modal refinement
generalizes both simulation and bisimulation, letting the specifier choose the re-
quired level of strictness in the spectrum between the two. In [Lar89] Larsen
argued that any sufficiently expressive specification language necessarily must ac-
commodate inconsistent specifications, akin to inconsistent logical formulæ, and
thus lifted the consistency requirement. The same type of systems were indepen-
dently reintroduced by Dams as mixed transition systems [Dam96, DGG97].

Here we establish complexities of several decision procedures for this family
of specification languages, addressing several long outstanding open problems:

CI Deciding whether k > 1 modal transition systems have a common imple-
mentation is PSPACE-hard in the sum of the sizes of these k systems.

C Deciding whether a mixed transition system is consistent, i.e. whether it
has an implementation, is PSPACE-hard in the size of that system.

TR Deciding whether one modal transition system thoroughly refines another
modal transition system is PSPACE-hard in the size of these systems.

We show quite strong links between these problems. In particular we effi-
ciently reduce problems of type CI to problems of type C, and problems of type
C to problems of type TR—though mixed, not necessarily modal, transition sys-
tems are the targets of that latter reduction. All three problems C, CI, and TR
are shown to be in EXPTIME.

We begin with discussing the related work in Section 2 and introducing the
basic concepts in Section 3. The hardness results and the aforementioned problem
reductions for common implementation, consistency, and thorough refinement are
the subject of Sections 4, 5, and 6 respectively. A general discussion, including
the provision of upper bounds, is given in Section 7. We conclude in Section 8.

Related Work 145

2 Related Work

Our terminology differs from that used in [LNW07c] (Paper D): what we call
“modal transition systems” and “mixed transition systems” are called respec-
tively “syntactically consistent modal transition systems” and “modal transition
systems” therein.

In [HH04] a superpolynomial algorithm was given for deciding CI for k > 1
modal specifications. The algorithm is exponential in k, but polynomial if k is
fixed. In particular, it computes a common implementation if there is one. These
upper bounds also follow easily from the polynomial algorithm for consistency
checking of a conjunction of disjunctive modal transition systems, as studied
in [LX90].

Larsen et al. [LNW07c] (Paper D) show that TR is coNP-hard, while C is NP-
hard. We strengthen both of these bounds here. They also hint at exponential
upper bounds for both problems, without arguing how these can be achieved. We
elaborate on how to attain these bounds, by giving precise reductions in Section
7.

Hussain and Huth [HH06] present an example of two modal specifications that
have a common implementation but no greatest common implementation.

Fischbein et al. [FUB06] use modal specifications for behavioral conformance
checking of products with specifications of product families. They propose a new
thorough refinement whose implementations are defined through a refinement no-
tion that generalizes branching bisimulation. The thorough refinement obtained
in this manner is finer than weak refinement, and argued to be more suitable for
conformance checking. In the light of the present work it is very likely that this
refinement can be shown to be PSPACE-hard in the size of the specifications.

3 Background

Let us begin with defining the basic objects of interest in our study [Lar89,
Dam96, CGL94]:

Definition 1 For an action alphabet Σ, a mixed transition system M is a triple
(S,R2, R⋄), where S is a set of states and R2, R⋄ ⊆ S×Σ×S are must- and may-
transitions relations respectively. A modal transition system is a mixed transition
system satisfying R2 ⊆ R⋄; all its must-transitions are also may-transitions. A
pointed mixed (respectively modal) transition system (M, s) is a mixed (modal)
transition system M with a designated initial state s ∈ S. The size |M | of a
mixed (modal) transition system M is defined as |S |+ | |R2 ∪R⋄. All transition
systems considered here are finite, i.e. Σ and S are always finite sets.

Throughout this paper we refer to pointed modal (mixed) transition systems
as modal (mixed) specifications. Throughout figures, solid arrows denote R2-
transitions, dashed arrows denote R⋄-transitions. Arrows without labels have

146 Paper E: Complexity of Decision Problems for Mixed and Modal...

s0

s1 s2 s3

s4
M :

t0

t1 t2

t3
N :

Figure E.1: Specifications (M, s0), (N, t0) with I(M, s0) = I(N, t0) (so I(M, s0)
⊆ I(N, t0)), but not (N, t0)≺(M, s0)

an implicit ⋆-label, where ⋆ ∈ Σ is an action with context-dependent meaning.
Two examples of modal specifications are depicted in Fig. E.1, while a mixed
specification that is not a modal specification can be seen in Fig. E.5.

Modal refinement [Lar89, Dam96, CGL94] is a refinement relationship for
mixed specifications that allows verifying that one such specification is more ab-
stract than another. It generalizes bisimulation [Par81] to underspecified models:

Definition 2 A mixed specifications (N, t0) = ((SN , R
2

N , R
⋄
N), t0) refines another

mixed specification (M, s0)=((SM , R
2

M , R
⋄
M), s0) over the same alphabet, written

(M, s0)≺(N, t0), iff there is a relation Q ⊆ SM × SN containing (s0, t0) and
whenever (s, t) ∈ Q then

1◦ for all (s, a, s′) ∈ R2

M there exists some (t, a, t′) ∈ R2

N with (s′, t′) ∈ Q.

2◦ for all (t, a, t′) ∈ R⋄
N there exists some (s, a, s′) ∈ R⋄

M with (s′, t′) ∈ Q.

Deciding whether one finite-state mixed specification refines another one is in P.
Labeled transition systems over an alphabet Σ are pairs (S,R) where S is a
set of states and R ⊆ S × Σ × S is a transition relation. We identify labeled
transition systems (S,R) with modal transition systems (S,R,R). The set of
implementations I(M, s) of a mixed specification (M, s) are all pointed labeled
transition systems (T, t) refining (M, s). Note that I(M, s) may be empty in
general, but is guaranteed to be non-empty if M is a modal transition system.

Example. (Due to Harald Fecher) Figure E.1 shows modal specifications (M, s0)
and (N, t0) over alphabet {⋆}. Relation Q = {(s0, t0), (s1, t1), (s2, t2), (s3, t2),
(s4, t3)} witnesses that (N, t0) refines (M, s0), but (M, s0) does not refine (N, t0).

As in [LNW07c] (Paper D) we define the thorough refinement (M, s)≺th(N, t)
to be the predicate I(N, t) ⊆ I(M, s). Transitivity of refinement ensures that re-
finement soundly characterizes thorough refinement: (M, s)≺(N, t) implies
(M, s)≺th(N, t). But the converse does not hold: completeness of refinement
for thorough refinement is known to be false [Hüt88, Xin92, SF07]; Figure E.1
provides a counterexample.

Common Implementation 147

We shall now formally define the problems that we study, and briefly discuss
their significance.

Common implementation (CI): given k > 1 mixed specifications (Mi, si), is the set
⋂k
i=1 I(Mi, si) non-empty? For example, (M1, s1) could be our system model and

all other (Mi, si) could be definitions of faulty behavior (respectively features).
Common implementations are then possible implementations of our model that
can exhibit all k − 1 faults (features).
Consistency (C): Is I(M, s) non-empty for a mixed specification (M, s)? Speci-
fication formalisms need the ability to express inconsistencies so that conflicts in
systems or their design are detectable. Equally, inconsistent specifications may
well result from the composition of consistent specifications.
Thorough refinement (TR): Does a mixed specification (N, t) thoroughly refine
a mixed specification (M, s), i.e., do we have I(N, t) ⊆ I(M, s)? As refinement
is only sound but not complete for thorough refinement, the question arises of
whether thorough refinement has an efficient, e.g. co-inductive, definition that
can be integrated in refinement tools.

We assume that specifications are finite-state, given their abstract nature. But
implementations may (have to) be infinite-state as we otherwise cannot express
important features, e.g. unbounded ranges of data types. For the three decision
problems studied in this paper, it turns out that they won’t change if we restrict
implementations to finite-state ones. For example, a mixed specification (M, s)
is consistent in the infinite sense iff its characteristic modal mu-calculus formula
Ψ(M,s) [Hut05a] is satisfiable. Appealing to the small model theorem for that logic,
Ψ(M,s) is satisfiable iff it is satisfiable over finite-state implementations. We can
reason in a similar manner about common implementation, through the formula
∧

i Ψ(Mi,si). Finally, (M, s)≺th(N, t) is false iff Ψ(N,t) ∧¬Ψ(M,s) is satisfiable. This
justifies that we consider only finite-state specifications and implementations.

Throughout this paper we work with Karp reductions, many-one reductions
computable by deterministic Turing machines in polynomial time. This choice is
justified since we reduce problems that are PSPACE-complete.

4 Common Implementation

We show that the CI problem is PSPACE-hard for modal specifications, which
then automatically renders the same hardness result for mixed specifications.

Theorem 1 Let {(Mi, si) | 1 ≤ i ≤ k} with k > 1 be a finite family of modal
specifications over the same action alphabet Σ. Deciding emptiness of the set
⋂k
i=1 I(Mi, si) is PSPACE-hard in

∑k
i=1 |Mi |.

We argue for this by reduction from the Generalized Geography game [GJ79,
JL91].

148 Paper E: Complexity of Decision Problems for Mixed and Modal...

Definition 3 A rooted, directed graph is a structure G = (V,E, v0), where V is
a finite set of vertices, E ⊆ V × V is a set of edges and v0 ∈ V is the root. For
an edge e = (u, v) ∈ E we write tgt e for v and src e for u, and we define
Follow(e) := {f ∈ E | tgt e = src f} and Init := {e ∈ E | src e = v0}.

For G = (V,E, v0) the two-player Generalized Geography game on G is played
according to the following rules:

“The two players alternate choosing a new edge from E. The first edge
chosen (by player 1) must have its source at v0 and each subsequently
chosen edge must have its source at the vertex that was the target
of the previous edge and must not have been previously chosen in
the game. The first player unable to choose such a new edge loses.”
[GJ79, p. 254]

The generalized geography problem (GenGeo) is whether given a rooted directed
graph G does there exist a winning strategy for player 1 in the Generalized Ge-
ography game played on G? GenGeo is PSPACE-complete [GJ79].

Proof 1 (of Theorem 1) We reduce GenGeo to checking CI of k modal spec-
ifications {(Mi, si)}, where both k and each |Mi | are at most polynomial in the
size of G. The reduction should be such that a common implementation of all
(Mi, si), if it exists, will explicitly give the winning strategy for Player 1.

We will create a set of modal specifications for each kind of conditions imposed
by the game. All specifications will share an alphabet Σ = E ∪ {⋆}, where ⋆ is a
fresh name such that ⋆ /∈ E. Choosing an edge in the game corresponds to taking
a transition in these specifications.

Let us begin with modal specifications (P1, s1) and (P2, s2) presented in Fig-
ure E.2, which ensure that Player 1 can always continue – a necessary condition
for obtaining a winning strategy. Transitions with labels X ⊆ Σ denote sets of
transitions, one for each e ∈ X. We keep track of whose turn it is in the game
by distinguishing Player 1 states from Player 2 states, labeling states with Player
numbers for the sake of clarity. Observe that both P1 and P2 oscillate between
Player 1 and Player 2 decisions. Each Player 2 move is modeled directly by a
single transition, while a Player 1 move is modeled by exactly two transitions;
a ⋆-transition followed by a regular edge transition. As will be seen later, dis-
junctive choices will only occur in Player 1 mode, so ⋆-transitions used to encode
disjunctions are there only for Player 1 states. Specification P1 limits choices of
Player 1 to a disjunction of all legal actions, while P2 enforces that at least one
of these choices is indeed taken.

Let us continue with the remaining GenGeo game rules. We can enforce
that an edge e is played at most once using a modal specification (Me, se) shown
in the left part of Figure E.3. This specification models a flag that disallows any
further e-transitions once e has been used. Similarly, for each edge e create a

Common Implementation 149

1

1

1
2

s1

(P1, s1) :

en

e0

E

...
1 1 2E

E

s2

(P2, s2) :

Figure E.2: Modal specifications (P1, s1) and (P2, s2) together ensuring that
Player 1 can always continue playing. Assume E = {e0, . . . en}

se e

Σ \ {e} Σ \ {e}Me :

te
e fn

f0

ΣΣ \ {e} ...

Ne :

Figure E.3: Specifications Me, Ne instantiated for each e ∈ E and {f0, . . . , fn} =
Follow(e)

modal specification (Ne, te), as shown in the right part of Figure E.3, to constrain
the moves following an e move to edges directly following it. Ne has a ⋆-labeled
loop on its middle state to account for both Player 1 and Player 2 moves. Recall
that if e was played by Player 2, then in our encoding it will be first followed by
a ⋆ before Player 1 plays any subsequent edge. The requirement that Player 1
should choose one of the transitions leaving the root as the first move is enforced
by (P0, s0) as shown in the left part of Figure E.4.

We are left with the last and the most complex game rule, namely that when-
ever Player 1 makes a choice then Player 2 has to be able to respond with any so
far unused edge f following that choice. Our implementation, which directly rep-
resents the strategy, should thus have all transitions representing possible choices
in such a state. We model this by creating a specification (Mef , sef) for every pair
of edges e and f such that f ∈ Follow(e)\{e}. The idea is that each modal tran-
sition system Mef enforces an f transition after an e transition has been chosen
by Player 1, unless f has already been used (either by Player 1 or Player 2), or
e has been used by Player 2. See the right part of Figure E.4.

The answer to GenGeo(V,E, v0) is yes iff the answer to CI is yes for

⋃

i=0..2

{(Pi, si)}

 ∪
⋃

e∈E

{(Me, se), (Ne, te)} ∪
⋃

f∈Follow(e)\{e}

{(Mef , sef)}

 . (E.1)

The size of each of these O(|E|2) specifications is O(|E|).�

Corollary 2 The common implementation problem for k > 1 mixed specifica-
tions is PSPACE-hard in the size of these specifications.

Proof 2 This follows from Theorem 1 and the fact that the set of mixed specifi-
cations is a superset of the set of modal specifications.�

150 Paper E: Complexity of Decision Problems for Mixed and Modal...

s0

en

e0

Σ...

(P0, s0) :

1

1 2

2

e f

Σ\{⋆, e, f}

Σ\{⋆, e, f}
{e, f}

f

Σ

sef
(Mef , sef):

Figure E.4: Specifications (P0, s0) and (Mef , sef) assuming that Init =
{e0, . . . , en}

s1

c2 s2

c3 s3

ck sk

(M1, s1)

(M2, s2)

(M3, s3)

...
...

...
· · ·

· ·
·

(Mk, sk)

Figure E.5: Conjunction of k mixed specifications into one mixed specification

5 Consistency

Let us now show that consistency of a single mixed specification is PSPACE-
hard in its size. We achieve this by appealing to Theorem 1, and reducing CI for
several modal specifications to the C for a single mixed specification.

Theorem 3 Consistency of a mixed specification is PSPACE-hard.

Proof 3 By Theorem 1, it suffices to show how k > 1 mixed specifications (Mi, si)
can be conjoined into one mixed specification (M, ck) with |M | being polynomial in
∑

i |Mi | such that (M, ck) has an implementation iff all (Mi, si) have a common
implementation.

Figure E.5 illustrates the construction, which originates in [LNW07c] (Pa-
per D), by showing a conjunction of states s1, s2, s3 up to sk. In order to conjoin
two states s1 and s2, two new ⋆-transitions are added from a fresh state c2 to
each of s1, s2. One of the ⋆-transitions is a may ⋆-transition and the other is a
must ⋆-transition. Only two states can be conjoined directly in this way, but the
process can be iterated as many times as needed, as seen in the figure, by adding
a corresponding number of ⋆-transitions to the newly conjoined systems. Observe
that the resulting specification is properly mixed (not modal). Its size is linear in
∑

i |Mi | and quadratic in k, which itself is O(
∑

i |Mi |).
If the specifications that are being conjoined have a common implementation,

then the new specification will also have an implementation which is the same
implementation prefixed with a sequence of k − 1 ⋆-transitions. Conversely if

Thorough Refinement 151

the new mixed specification has an implementation, then this implementation will
contain at least a sequence of k − 1 ⋆-transitions, followed by an implementation
that must individually satisfy all the systems that have been conjoined.

6 Thorough Refinement

We show PSPACE-hardness of TR for mixed specifications by appeal to Theo-
rem 3 and a reduction of consistency checks to thorough refinement checks.

Theorem 4 Thorough refinement of mixed specifications is PSPACE-hard in the
size of these specifications.

Proof 4 By Theorem 3 deciding C for a mixed specification is PSPACE-hard.
Therefore it suffices to reduce C to TR. Let (M, s) be a mixed specification over
Σ. Consider a modal specification (N, t) over Σ ∪ {⋆} with N = ({t}, {}, {}),
which only has a single state and no transitions. From (M, s) construct the mixed
specification (M ′, s′) over Σ ∪ {⋆} by prefixing s with a new state s′ and a single
transition (s′, ⋆, s) ∈ R⋄

M ′\R2

M ′. Then (M ′, s′) is a mixed specification that has
(N, t) as an implementation, where Q = {(s′, t)} is the witnessing refinement
relation. We show that (M, s) is consistent iff not (N, t)≺th(M

′, s′).

1◦ If (M, s) is consistent, then it has an implementation (L, l), from which
we get an implementation (L′, l′) of (M ′, s′) by creating a new state l′ with
a transition (l′, ⋆, l). But then (M ′, s′) has an implementation that is not
allowed by (N, t) and so I(M ′, s′) 6⊆ I(N, t).

2◦ Conversely, if I(M ′, s′) 6⊆ I(N, t) then there exists an implementation (L, l′)
of (M ′, s′), which is not an implementation of (N, t) – and so (L, l′) has a
transition (l′, ⋆, l). Moreover (L, l) refines (M, s) since (L, l′) refines (M ′, s′)
and s is the unique successor of s′ in M ′. Thus (M, s) is consistent.

Remark: Observe that the first argument above would also work for refinement
instead of thorough refinement. However we would not be able to get the second
implication for refinement, due to its incompleteness.�

Let us now strengthen Theorem 4 to the subclass of modal specifications, by
a polynomial reduction from the PSPACE-complete decision problem QUANTI-

FIED 3SAT [GJ79, pp. 171-2] of computing the truth value of closed quantified
Boolean formulæ in 3CNF. These formulæ are of the form Qx1 . . . Qxn. χ, where
each Q is ∃ or ∀ and χ is a propositional formula over x1, . . . , xn in 3CNF. We
refer to them as QCNF formulæ in here. We can assume without loss of gen-
erality that our formulæ do not contain any clauses with duplicate literals, nor
vacuously true clauses. We use ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x) as a running example.

152 Paper E: Complexity of Decision Problems for Mixed and Modal...

(∀xϕ′, V)
1 0

x

(ϕ′, V ∪ {x}) (ϕ′, V)

(∃xϕ′, V) 1 0

x

(ϕ′, V ∪ {x})

x

(ϕ′, V)

or

(χ′, V) V

Figure E.6: Semantics of QCNF as
a non-deterministic rewrite system

x

y y

{x, y} ∅

1 0

01

Figure E.7: Valuation tree witness-
ing the truth of ∀x∃y (¬x∨y)∧(¬y∨
x)

We present the semantics of QCNF formulæ in a style that will facilitate
our proof. Each formula ϕ can be rewritten into a set of valuation trees. The
non-deterministic rewrite system for this is depicted in Figure E.6. Universal
quantification rewrites into branching, existential quantification into a choice,
and the 3CNF kernel χ into the set of variables selected to be true on the path
from the tree root to that kernel node. The terminals of this rewrite system for
term (ϕ, ∅) are valuation trees of ϕ. One such valuation tree for the formula
∀x∃y (¬x∨ y)∧ (¬y ∨ x) can be seen in Figure E.7. Each leaf of a valuation tree
T contains all those xi that are true in the respective model for the propositional
kernel formula χ. We define T |= ϕ to mean that all models of leaves of T satisfy
the kernel χ of ϕ. Finally, ϕ is defined to be true iff there is a valuation tree T
for ϕ such that T |= ϕ. For example, T |= ϕ for the valuation tree T in Fig. E.7,
as the CNF kernel (¬x∨ y)∧ (¬y ∨ x) is true in both models {x, y} (x and y are
true) and ∅ (x and y are false). Thus, ϕ is true.

In Figure E.8 we present a second non-deterministic rewrite system whose ter-
minals are potential valuation trees. In this new system there is no path context,
existential quantification has two more rewrite rules, and the CNF kernel may
rewrite into any subset of its variables. The terminals of this rewrite system are
potential valuation trees of ϕ. By construction, every valuation tree is a potential
valuation tree. A potential valuation tree that is not a valuation tree is called a
flawed valuation tree. Figure E.9 shows a valuation tree for our running example
with three kinds of flaws: the leftmost y node has no successor, the rightmost y
node has two successors, and the leaf set {x, y} is inconsistent with the 0 label
for x on its path.

Our reduction constructs for any ϕ of QCNF two modal specifications (Nϕ, tϕ)
and (Mϕ, sϕ) such that

I(Nϕ, tϕ) ⊆ I(Mϕ, sϕ) iff ϕ is false. (E.2)

The intuition behind the construction is that (Nϕ, tϕ) models potential valuation
trees and (Mϕ, sϕ) models flawed, and only flawed, valuation trees of ϕ.

Thorough Refinement 153

∀xϕ′
x

ϕ′

1 0

ϕ′

∃xϕ′ x

∃xϕ′
x

ϕ′

w where w ∈ {0, 1}

∃xϕ′ ∀xϕ′

χ any subset of variables of χ

Figure E.8: Non-deterministic
rewrite system for QCNF deriving
potential valuation trees

x

y y

{x, y} ∅

1 0

01

Figure E.9: Flawed valuation tree
for formula ∀x∃y (¬x∨ y)∧ (¬y ∨x)

More precisely, these modal specifications are such that any valuation tree T
with T |= ϕ can be transformed into an implementation of (Nϕ, tϕ) that is not
an implementation of (Mϕ, sϕ) and, conversely, that any element of I(Nϕ, tϕ) \
I(Mϕ, sϕ) can be transformed into such a valuation tree T with T |= ϕ.
Both models are defined over the following alphabet

Σϕ = {⋆} ∪ {vxi, v¬xi | 1 ≤ i ≤ n} (E.3)

where x1, . . . , xn is the set of variables of ϕ.2 Specification (Nϕ, tϕ) is defined by
structural induction on ϕ according to the rules presented in Figure E.11.

The initial state tϕ has a must ⋆-transition to the continuation of the compila-
tion of Nϕ. Each quantifier Qxi gets translated into a diamond shaped model of
⋆-transitions, where the upper half consists of must and may transitions for quan-
tifiers ∀ and ∃ (respectively). The corners of diamonds have “spikes”, transitions
labeled with a “truth value” vxi

or v¬xi
, for quantifier variable xi, to a dead-end

state. After all quantifiers have been compiled in this manner, conjunction is
compiled as a fork of two must ⋆-transitions, disjunction as a fork of two may
⋆-transitions, and literals compiled as spikes of truth values. See the result of
this compilation for our running example in Figure E.12.

Refinement, as defined for modal specifications, does not guarantee that a
fork of may ⋆-transitions (present in the compilation of ∃xi and ∨) will imple-
ment at least one of these may ⋆-transitions. Also, an implementation may be
inconsistent as to its choice of truth values vxi

or v¬xi
. Each path through a

2A stronger, albeit more complicated, reduction is possible to TR of specifications over a
singleton alphabet. We show the simpler variant here for the sake of clarity.

154 Paper E: Complexity of Decision Problems for Mixed and Modal...

sϕ

C∃xi

1≤i≤n

C∨ Cxi

1≤i≤n

C¬xi

1≤i≤n

Figure E.10: Structure of modal specification (Mϕ, sϕ): ⋆-transitions lead from
sϕ to components that detect possible flaws in potential valuation trees of ϕ

ϕ
tϕ

[ϕ]

[∀xϕ′]
vx v¬x

[ϕ′]

[∃xϕ′]
vx v¬x

[ϕ′]

[ϕ1 ∧ ϕ2]
[ϕ1] [ϕ2]

[ϕ1 ∨ ϕ2]
[ϕ1] [ϕ2]

[xi] vxi

[¬xi] v¬xi

Figure E.11: Deterministic rules rewriting a
QCNF formula ϕ into a specification (Nϕ, tϕ)

vx v¬x

∀x

vy v¬y

∃y

∧

∨

v¬yvxvyv¬x

Figure E.12: Modal spec-
ification (Nϕ, tϕ) for ϕ =
∀x∃y (¬x∨ y)∧ (¬y ∨ x)

sequence of diamonds corresponds to a choice of such truth values, recorded in
the respective spike transition. When such a path reaches the compilation of
a propositional literal, that literal may well be inconsistent with the spike for
that literal encountered en route. In total, these are then the static criteria for
corresponding to a flawed valuation tree, and hence drive the construction of
specification (Mϕ, sϕ), whose architecture is depicted in Fig. E.10. Initial state
sϕ has may ⋆-transitions to modal specifications, components that each encode a
potential flaw for a valuation tree. For each variable xi of ϕ we have a component

• C∃xi
, whose Mϕ-implementations have no “witness” for ∃xi, i.e., no may

transitions on the top of the diamond encoding the quantifier

• Cxi
, whose Mϕ-implementations have a path on which there is some vxi

spike but where, on that same path, a v¬xi
-transition occurs subsequently

• C¬xi
, whose Mϕ-implementations have a path on which there is some v¬xi

spike but where, on that same path, a vxi
-transition occurs subsequently.

Discussion 155

sϕ

C∃xi

C∨

vx

v¬x

Cx

v¬x

vx

C¬x

vy

v¬y

Cy

v¬y

vy

C¬y

Figure E.13: Modal specification (Mϕ, sϕ) for ϕ = ∀x∃y (¬x ∨ y)∧ (¬y ∨ x). All
incoming and outgoing transitions of all loop states are labeled with Σϕ (omitted
for clarity)

Finally there is a component C∨ whose Mϕ-implementations all have a path of
3n ⋆-transitions to a dead-end state, and so no such implementation can encode
all disjunctions of ϕ correctly.

Based on the constructions we can present the following theorem.

Theorem 5 Thorough refinement between modal specifications is PSPACE-hard
in the size of these specifications.

Since the modal transition systems Nϕ and Mϕ can be constructed in poly-
nomial time in the size of ϕ, it suffices to show that (E.3) holds.

Note that, by construction, (({sϕ}, ∅, ∅), sϕ) is an implementation of (Mϕ, sϕ)
but not of (Nϕ, tϕ). So the result also applies to strict thorough refinement.

Corollary 6 Strict thorough refinement, whether I(N, t) ⊂ I(M, s), is PSPACE-
hard in |M | and |N | for modal and thus also for mixed specifications.

7 Discussion

First, we relate our results to the complexity of related problems. Second, we
discuss and derive our upper bounds.

In [GJ03] efficient translations are given between various classes of 3-valued
models such that these translations preserve and reflect the respective refinement
notions. These classes of models are all consistent and one of them subsumes

156 Paper E: Complexity of Decision Problems for Mixed and Modal...

modal transition systems. Therefore our complexity results for common refine-
ment and thorough refinement for modal transition systems transfer to these
model classes if we define our three concepts in the same manner for each respec-
tive notion of refinement. In particular, our complexity results apply to partial
Kripke structures and Kripke modal transition systems.

It is likely that our results extend to “weak” refinement notions that generalize
weak bisimulation. This, however, requires a further study. Such refinement
notions were systematically studied in [LNW07c] (Paper D).

The “conjunction” gadget used in reducing the common implementation prob-
lem for modal transition systems to consistency of a mixed transition system
(Section 5) is able to identify states uniquely based on the may/must pattern of
transitions encountered en route from the initial state. Nominals, used in hybrid
logic [FdR06], are a well known mechanism for identifying states uniquely. One
can show NP-hardness of the common implementation problem for two modal
transition systems already if such systems are enriched with nominals [Ant07].

If specifications are “closed under negation” in that ¬(M, s) has the comple-
ment of I(M, s) as set of implementations, then thorough refinement reduces to
common implementation: (M, s)≺th(N, t) is false iff (M, s) and ¬(N, t) have a
common implementation. From the results in [Hut05a] it follows easily that modal
transition systems do not have such a negation. Support of negation for speci-
fications should require more structure than that found in mixed transition sys-
tems. Another open problem is whether non-empty languages I(M, s) accepted
by mixed specifications (M, s) can also be accepted by modal specifications; in
other words—if a mixed specification is consistent, is it refinement-equivalent to
a modal specification?

Generalized model checking [BG00] considers judgments GMC(M, s, ϕ) which
are fossacstrue iff there is an implementation of (M, s) that satisfies ϕ. For
pointed modal specifications (M, s) and Hennessy-Milner formulae ϕ this is
PSPACE-complete in the size of ϕ [BG00, GJ03]. For each such ϕ there are
1 ≤ m <∞ pointed modal specifications (Mi, si) such that GMC(M, s, ϕ) is false
iff I(M, s) ⊆

⋃m
i=1 I(Mi, si) [Hut05a]. Intuitively, the union on the right-hand side

is the set of implementations that satisfy ¬ϕ. In general, m > 1 so there seems
to be no natural and direct reduction of generalized model checking to thorough
refinement. For ϕ in CTL, GMC(M, s, ϕ) is EXPTIME-complete [BG00, GJ03]
but 1 < m or m = ∞ may hold.

We finally discuss what upper bounds we can provide for the decision problems
presented in this paper. Mixed and modal specifications (M, s) have character-
istic formulæ Ψ(M,s) [Hut05a] in the modal µ-calculus such that pointed labeled
transition systems (L, l) are implementations of (M, s) iff (L, l) satisfies Ψ(M,s).
The common implementation and consistency problem reduce to satisfiability
checks of

∧

i Ψ(Mi,si) and Ψ(M,s), respectively. The thorough refinement problem
of whether (M, s)≺th(N, t) reduces to a validity check of ¬Ψ(N,t) ∨ Ψ(M,s).

Validity checking of such vectorized modal µ-calculus formulæ is in EXPTIME

Conclusion 157

(an unpublished popular wisdom, for which we give a formal argument here). One
way in which this membership in EXPTIME can be seen is by translating the
problem into alternating tree automata. It is well known that formulæ Ψ(M,s)

can be efficiently translated [Wil01] into alternating tree automata A(M,s) (with
parity acceptance condition) that accept exactly those pointed labeled transition
systems that satisfy Ψ(M,s). Since non-emptiness, intersection, and complemen-
tation of languages is in EXPTIME for alternating tree automata, we get our
EXPTIME upper bounds if these automata have size polynomial in |M |. Since
the size of Ψ(M,s) may be exponential in |M | we require a direct translation from
(M, s) into a version of A(M,s). The formulæ Ψ(M,s) can be written as a system of
recursive equations [Lar89] Xs = bodys for each state s of M . We can therefore
construct all A(M,s) in a compositional manner: whenever Xs refers in its bodys to
some Xt, then A(M,s) has a transition to the initial state of A(M,t) at that point.
This A(M,s) generates the same language as the one constructed from Ψ(M,s), by
appeal to the existence of memoryless winning strategies in parity games. The
system of equations is polynomial in |M |, and so the compositional version of
A(M,s) is polynomial in the size of that system of equations. We summarize:

Theorem 7 The common implementation, consistency and thorough refinement
problems are all in EXPTIME for modal and mixed specifications.

8 Conclusion

We studied modal and mixed specifications and their fundamental decision prob-
lems: consistency (a form of realizability), common implementations (a conjunc-
tive form of consistency), and thorough refinement (a form of implication) of
specifications. We established that all these decision problems are in EXPTIME
and PSPACE-hard for mixed as well as for modal specifications – keeping in mind
that all modal specifications are consistent by construction. These results showed
that some of these decision problems are at least as hard as others studied here.
This raises the question of whether they in fact have the same complexity.

Table E.1: Tabular summary of the results provided in this paper

Modal specifications Mixed specifications

Common implementation PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

Consistency trivial PSPACE-hard, EXPTIME

Thorough refinement PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

158 Paper E: Complexity of Decision Problems for Mixed and Modal...

Acknowledgments.

Harald Fecher made us aware of the counterexample for incompleteness of re-
finement used in this paper. This then led to the rediscovery of a history of
such counterexamples. Nir Piterman helped in improving the presentation of
the proof for Theorem 5. We thank Igor Walukiewicz, Wolfgang Thomas and
Dietmar Berwanger for independently confirming that validity of vectorized µ-
calculus formulæ is in EXPTIME. The referees’ comments helped with improving
the presentation of this paper.

9 Appendix

9.1 Common Implementation

Let us sketch an argument that the reduction presented in the proof of Theorem 1
is correct. The claim is:

There exists a winning strategy for Player 1 in GenGeo with graph
G = (V,E, v0) iff there exists a common implementation for

⋃

i=0..2

{(Pi, si)}

 ∪
⋃

e∈E

{(Me, se), (Ne, te)} ∪
⋃

f∈Follow(e)\{e}

{(Mef , sef)}

 (E.1)

(⇒) Consider the implication from former to latter first. Assume we have a
winning strategy for Player 1 in the game. We shall construct a common imple-
mentation for the specifications mentioned in (E.1). A winning strategy in the
generalized geography game can be represented as a game tree, in which each
node represents choices by one of the players. Odd nodes on any path from the
root to leaves represent moves of Player 1 as suggested by the strategy, while
even nodes represent choices of Player 2. Arcs in the tree are labeled with edges
from E according to the rules of the game:

1◦ For any path in the tree from the root to a leaf, any arc label occurs at
most once on that path.

2◦ For any non-root node n if e labels the unique arc incoming into n and f
labels any of the outgoing arcs then src f = tgt e.

3◦ Arcs outgoing from the root note are labelled only by edges from Init.

Since this is a strategy for Player 1 we have that there is at most one arc
outgoing from every Player 1 node. Also, for every Player 2 node n with e
labeling the unique arc incoming in n, and for every edge f outgoing from tgt e
in G, we have an arc outgoing from n and labeled by f , unless f has already been

Appendix 159

2

1

T

e
1

1

2

e

[T]

1 1

2

T1 Tn
. . .

. . .
e1 en

1 1

2

[T1] [Tn]
. . .

. . .
e1 en

2

Figure E.14: Rewriting system translating winning strategies for Player 1 into a
common implementation

used on the path from root to n. We have all these arcs from Player 2 nodes
since the game tree represents a winning strategy for Player 1, so all legal game
moves of Player 2 have to be present. For the same reason, there is always an arc
outgoing from every Player 1 node.

Since the graph G is finite and with every move edges are removed from it, the
strategy tree is finite. It is also deterministic. We would like to prove that this tree
is actually the common implementation that we are searching for (or basically
it is isomorphic to a common implementation). Unfortunately this cannot be
claimed directly, because of the introduction of intermediate ⋆-transitions in the
reduction. Instead we transform the strategy tree into a modal transition system
S as follows.

For each Player 2 node in the tree create a state in the modal transition
system. For each Player 1 node n create two states in the modal transition
system, n and n′, and a single ⋆-transition between the two: n ⋆−→n′. It is then
not hard to specify all the refinement relations that, together, witness the fact
that P is a common implementation of all specifications in (E.1).

The following lemma is instrumental in the proof of the other direction:

Lemma 1 Let {(Ml, sl) | 1 ≤ l ≤ k}, with k > 1, be a finite family of deter-
ministic (finite-state) modal specifications over the same action alphabet Σ. If
all (Ml, sl) have a common implementation, then they also have a deterministic
common implementation.

Proof 5 (of Lemma 1) (sketch) Determinize the common implementation I.
The states in the determinized system will be subsets of states of I. Then argue
that for all i in each such set and for each l there exists such s′l, a state of Ml,
so that (Ml, s

′
l)≺(DetI , i). This can be done by induction on the size of the I

set, following the determinization rules. Then construct the refinement between
Det(I,i) and (Ml, sl) by lifting the original refinement to sets of states.�

Lemma 1 can also be shown by noting that the witnessing common imple-
mentation computed by the algorithm in [HH04, HH06] is deterministic under
the assumptions of this lemma.

160 Paper E: Complexity of Decision Problems for Mixed and Modal...

(⇐) Given a common refinement (I, i) of specifications in (E.1) we will show
how this implementation gives rise to a winning strategy for Player 1 in the
Generalized Geography game. Without loss of generality, appealing to Lemma 1,
we can assume that (I, i) is deterministic.

We begin the game in the initial state of I, with a Player 1 move. There are
two simple principles to observe given a current state i:

R1. Player 1’s turn: follow one of the outgoing transitions from the current
state to a new state i′: i ⋆−→ e−→i′. Play edge e in the game.

R2. Player 2’s turn: let Player 2 choose an edge e and then move the imple-
mentation from the current state i to a new state i′: i e−→i′.

Observe that rule R1 above advances the current implementation from a
Player 1 state to a Player 2 state, while rule R2 advances the current imple-
mentation from a Player 2 state to a Player 1 state. These two sets of states
must necessarily be disjoint as caused by (P2, s2)≺(I, i). In any Player 1 state
there is a required ⋆-transition, while such a transition is not allowed in any
Player 2 state.

It is easy to prove that, because of the determinism of all systems involved,
each sequence of game moves made according to the above rules R1 or R2 moves
both the implementation and all specifications of (E.1) deterministically. In
other words, it is not possible for I to fulfill requirements of must-transitions of
various systems by following a different implementation transition in the same
step.

There are several claims that need to be made in order to argue that the above
strategy is winning for Player 1. We only discuss the third one in somewhat
greater detail

Claim 1. All moves in rule R1 are legal according to the game rules – by ap-
pealing to the refinement of all (P0, s0), (Mete), (Nete) and (Mefsef).

Claim 2. In rule R1 there is always at least one sequence ⋆−→ e−→ to follow, i.e.
the strategy is winning for Player 1. This is argued by observing that any
Player 1 state in I must refine initial states of P1 and P2.

Claim 3. All Player 2 moves in rule R2 can actually be followed by the imple-
mentation.

The last claim holds because (Me,fse,f)≺(I, i) for all f ∈ Follow(e) \ {e}).
Proof by contradiction: Assume that this is not the case. Then there exists a trace
of moves σ = ⋆e1f1 . . . ⋆ en so that i σ−→∗i′ and an edge fn ∈ Follow(en) such that
fn /∈ σ and i′ 6 fn−−→. But then executing σ in sef deterministically leads to a state
s′ which must be refined by i′ – due to the determinism of I and (Mef). Since fn is
a required transition in that state, we have a contradiction with (Mef , sef)≺(I, i).
�

Appendix 161

9.2 Thorough refinement between modal specifications

Proof 6 (of Theorem 5) Since the modal transition systems Nϕ and Mϕ can
be constructed in polynomial time in the size of ϕ of QCNF, it suffices to show
that I(Nϕ, tϕ) ⊆ I(Mϕ, sϕ) is equivalent to ϕ being false.

1◦ Let I(Nϕ, tϕ) ⊆ I(Mϕ, sϕ). Proof by contradiction: assume that ϕ is true.

Then there is a valuation tree T such that T |= ϕ. We convert T into an im-
plementation of (Nϕ, tϕ) that is not an implementation of (Mϕ, sϕ), securing
the desired contradiction. Valuation tree T is being converted into a modal
specification (D, d). Fig. E.15 shows the inductive definition of (D, d), not-
ing that the only source of may transitions stems from the compilation of
the propositional CNF kernel. From (D, d) we construct an implementation
(E, e) of (Nϕ, tϕ). The implementation (E, e) equals (D, d) except that all
instances of [χ] in (D, d) are implemented as follows. Each such instance
stems from a leaf V of valuation tree T . Since T |= ϕ we know that for each
clause Cj of χ we can pick one literal lj that is true according to model V .
Implement the may vlj -transition and remove all other may transitions for
clause Cj.

The labeled transition system (E, e) is an implementation of (Nϕ, tϕ) since
the initial quantifier segment of (E, e) and its CNF kernel are matched (up
to refinement steps) in the corresponding segments of (E, e).

We argue that (E, e) is not an implementation of (Mϕ, sϕ) by considering
the possible implementations of the latter modal specification. Let (L, l) be
an implementation of (Mϕ, sϕ). If (L, l) satisfies

Ψstop =
∧

α∈Σ

[α]ff (E.4)

then it can’t be bisimilar to (E, e) since the latter has successor states. So
we can subsequently assume that (L, l) does not satisfy Ψstop. Then there is
some transition (l, ⋆, l′) such that (L, l′) is bisimilar to one of the compo-
nents of (Mϕ, sϕ). Let e′ be the unique successor state of e in E. It remains
to show that (E, e′) is not bisimilar to (L, l′). We do this by showing that
there is some formula of Hennessy-Milner logic that is satisfied by (L, l′)
but not by (E, e′). Below we write 〈⋆〉k for the k-fold nesting of 〈⋆〉. We
need a case analysis over which components (L, l′) implements.

• Let (L, l′) be an implementation of component C∃xi
. Then (L, l′) sat-

isfies
Ψ∃xi

= 〈〉 ⋆3i Ψstop (E.5)

but (E, e′) does not since it has a “witness” for that existential choice.
In fact, all maximal paths in E from e′ have length 3n+ 3.

162 Paper E: Complexity of Decision Problems for Mixed and Modal...

1 0
x

V T1 V T2

vx v¬x

V T1 V T2

x

V T ′

0

v¬x

V T ′

x

V T ′

1

vx

V T ′ V [χ]

Figure E.15: Deterministic rewrite system that transforms any valuation tree T
for ϕ = Qx1 . . . Qxn.χ into a modal specification (D, d) – with the addition of a
topmost must ⋆-transition from d to the topmost state of the rewritten valuation
tree. Valuation trees V T ′, V T1, and V T2 all have CNF kernel χ. All leaves V are
rewritten to an identical modal specification, namely [χ] as defined in Fig. E.11.
The information encoded in V sets is lost during this rewriting – it will be later
on recovered in transforming (D, d) into an implementation (E, e) of (Nϕ, tϕ)

• Let (L, l′) be an implementation of component C∨. Then (L, l′) satisfies

Ψ∨ = 〈〉 ⋆3n+1 Ψstop (E.6)

but (E, e′) does not since, as already mentioned, all maximal paths in
E from e′ have length 3n+ 3.

• Let (L, l′) be an implementation of component Cxi
. Then (L, l′) satis-

fies
Ψxi

= 〈〉 ⋆3i−1
(

〈vxi
〉tt ∧ 〈〉 ⋆3(n−i)+1 〈v¬xi

〉true
)

(E.7)

but (E, e′) does not. This is so since each path in E from e′ meets
the implementation of the CNF kernel χ and that implementation is
consistent with all truth values encountered en route, by construction.

• Let (L, l′) be an implementation of component C¬xi
. Then (L, l′) sat-

isfies
Ψ¬xi

= 〈〉 ⋆3i−1
(

〈v¬xi
〉tt ∧ 〈〉 ⋆3(n−i)+1 〈vxi

〉tt
)

(E.8)

but (E, e′) does not, for the same reasons cited in the previous item.

2◦ Now let ϕ be false. Proof by contradiction: assume that we have I(Nϕ, tϕ) 6⊆
I(Mϕ, sϕ). Then there is an implementation (K, k) of (Nϕ, tϕ) that is not

Appendix 163

an implementation of (Mϕ, sϕ). Without loss of generality, we may assume
that (K, k) is a labeled transition tree. The nature of (Nϕ, tϕ) then implies
that (K, k) is a finite labeled transition tree.

We make further inferences about (K, k). The modal specification (Mϕ, tϕ)
is constructed in such a manner that any pointed labeled transition system
(L, l) that satisfies any of the aforementioned formulæ Ψstop, Ψ∃,i, Ψ∨, Ψxi

or Ψ¬xi
implements (Mϕ, tϕ). So by assumption, (K, k) does not satisfy

any of these formulæ. Combining this with the fact that (K, k) implements
(Nϕ, tϕ) we infer that

• each maximal path from k in K has length 3n+ 4

• the representations of valuations of variables xi are consistent along
all paths.

We use this knowledge to convert this labeled transition tree (K, k) into a
valuation tree T such that T |= ϕ, arriving at the desired contradiction.
This transformation should be the “inverse” of that which mapped T into
(E, e) in the previous proof item. In doing this we need to consider two as-
pects. First, (K, k) may have two (or more, as discussed in the next aspect)
existential choices for ∃xi. Second, as (K, k) is characterized only up to
bisimulation we may have duplicated paths. Both concerns are addressed by
pruning paths, and pruning such paths will maintain that all aforementioned
formulæ are still false in the pruned models. This pruning will ensure that
we have two choices for ∀xi and one choice for ∃xi, resulting in the labeled
transition tree (K ′, k). Each path in this pruned K ′ reaches a “monomial”
implementation of the CNF kernel χ. We replace this implementation, in
situ, with the set of variables that occur in this “monomial”. Having done
this, we reverse the top three transformations in Fig. E.15 to obtain a po-
tential valuation tree T for ϕ. This T is not flawed since (K ′, k) is not an
implementation of (Mϕ, tϕ). This is the desired contradiction to ϕ being
false. �

164 Paper E: Complexity of Decision Problems for Mixed and Modal...

Bibliography

[AdAdS+06] B. Thomas Adler, Luca de Alfaro, Leandro Dias da Silva, Marco
Faella, Axel Legay, Vishwanath Raman, and Pritam Roy. Ticc: A
tool for interface compatibility and composition. In Thomas Ball
and Robert B. Jones, editors, CAV, volume 4144 of Lecture Notes
in Computer Science, pages 59–62. Springer, 2006.

[AG94] Robert Allen and David Garlan. Formalizing architectural connec-
tion. In ICSE ’94: Proceedings of the 16th international confer-
ence on Software engineering, pages 71–80, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[AH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations of Soft-
ware Engineering (FSE), pages 109–120, Vienna, Austria, Septem-
ber 2001. ACM Press.

[AH04] Luca de Alfaro and Thomas A. Henzinger. Interface-based design.
In In Engineering Theories of Software Intensive Systems, Markto-
berdorf Summer School. Kluwer Academic Publishers, 2004.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe
Vardi. Alternating refinement relations. In Davide Sangiorgi and
Robert de Simone, editors, Proceedings of the Ninth International
Conference on Concurrency Theory (CONCUR’98), volume 1466 of
LNCS, pages 163–178. Springer, 1998.

[AHL+08] Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and
Andrzej Wąsowski. Complexity of decision problems for mixed and
modal specifications. In Foundations of Software Science and Com-
putational Structures, FoSSaCS 2008, Proceedings, volume 4962 of
Lecture Notes in Computer Science, pages 112–126. Springer, 2008.
Paper E in this thesis.

[AHS02] L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga. Timed in-
terfaces. In A. Sangiovanni-Vincentelli and J. Sifakis, editors, EM-

165

166 Bibliography

SOFT 02: 2nd Intl. Workshop on Embedded Software, LNCS, pages
108–122. Springer, 2002.

[Ant07] Adam Antonik. MPhil/PhD transfer report, January 2007. Imperial
College London, United Kingdom.

[App98] Andrew A. Appel. Modern Compiler Implementation in C. Cam-
bridge University Press, 1998.

[Bat05] Don S. Batory. Feature models, grammars, and propositional for-
mulas. In J. Henk Obbink and Klaus Pohl, editors, SPLC, volume
3714 of Lecture Notes in Computer Science, pages 7–20. Springer,
2005.

[BCH05] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web
service interfaces. In WWW ’05: Proceedings of the 14th interna-
tional conference on World Wide Web, pages 148–159, New York,
NY, USA, 2005. ACM.

[BCU06] Greg Brunet, Marsha Chechik, and Sebastián Uchitel. Properties of
behavioural model merging. In Misra et al. [MNS06], pages 98–114.

[BČVZ05] Luboš Brim, Ivana Černá, Pavlína Vařeková, and Barbora Zim-
merova. Component-interaction automata as a verification-oriented
component-based system specification. In SAVCBS ’05: Proceed-
ings of the 2005 conference on Specification and verification of
component-based systems, page 4, New York, NY, USA, 2005. ACM.

[Ber00] Gérard Berry. The foundations of Esterel. In G. Plotkin, C. Stir-
ling, and M. Tofte, editors, Proof, Language and Interaction. Essays
in Honour of Robin Milner, pages 425–454. The MIT Press, Cam-
bridge, MA, 2000.

[BFK+99] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk
Muthig, Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud.
Pulse: a methodology to develop software product lines. In SSR
’99: Proceedings of the 1999 symposium on Software reusability,
pages 122–131, New York, NY, USA, 1999. ACM.

[BG00] Glenn Bruns and Patrice Godefroid. Generalized model checking:
Reasoning about partial state spaces. In Catuscia Palamidessi, edi-
tor, CONCUR, volume 1877 of Lecture Notes in Computer Science,
pages 168–182. Springer, 2000.

[BHLP06] Stan Bühne, Günter Halmans, Kim Lauenroth, and Klaus Pohl.
Scenario-based application requirements engineering. In Timo

Bibliography 167

Käkölä and Juan C. Dueñas, editors, Software Product Lines, pages
161–194. Springer, 2006.

[BL90] Gérard Boudol and Kim Guldstrand Larsen. Graphical versus log-
ical specifications. In André Arnold, editor, CAAP, volume 431 of
Lecture Notes in Computer Science, pages 57–71. Springer, 1990.

[BL92] Gérard Boudol and Kim Guldstrand Larsen. Graphical versus logi-
cal specifications. Theor. Comput. Sci., 106(1):3–20, 1992.

[BLS93] Anders Børjesson, Kim Guldstrand Larsen, and Arne Skou. Gener-
ality in design and compositional verification using tav. In FORTE
’92 Proceedings, pages 449–464, Amsterdam, The Netherlands, The
Netherlands, 1993. North-Holland Publishing Co.

[BLS95] Anders Børjesson, Kim Guldstrand Larsen, and Arne Skou. Gen-
erality in design and compositional verification using tav. Formal
Methods in System Design, 6(3):239–258, 1995.

[Bos99] J. Bosch. Product-line architectures in industry: a case study. Soft-
ware Engineering, 1999. Proceedings of the 1999 International Con-
ference on, pages 544–554, 1999.

[Bru97] Glenn Bruns. An industrial application of modal process logic. Sci.
Comput. Program., 29(1-2):3–22, 1997.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, 35(8):677–691,
August 1986.

[CA05] Krzysztof Czarnecki and Michał Antkiewicz. Mapping features to
models: A template approach based on superimposed variants. In
R. Glück and M. Lowry, editors, Generative Programming and Com-
ponent Engineering (GPCE), volume 3676 of LNCS, pages 422–437.
Springer, 2005.

[CD97] C. Weise and D. Lenzkes. Weak refinement for modal hybrid sys-
tems. In O. Maler, editor, Hybrid and Real-Time Systems, pages
316–330, Grenoble, France, 1997. Springer Verlag, LNCS 1201.

[CdAHS03] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. I. A.
Stoelinga. Resource interfaces. In R. Alur and I. Lee, editors,
EMSOFT 03: 3rd Intl. Workshop on Embedded Software, LNCS.
Springer, 2003.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley, 2000.

168 Bibliography

[Cer05] Maura Cerioli, editor. Fundamental Approaches to Software Engi-
neering, 8th International Conference, FASE 2005, Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume
3442 of Lecture Notes in Computer Science. Springer, 2005.

[CFN03] Cyril Carrez, Alessandro Fantechi, and Elie Najm. Behavioural con-
tracts for a sound composition of components. In Hartmut König,
Monika Heiner, and Adam Wolisz, editors, FORTE 2003 Proceed-
ings, volume 2767 of LNCS, pages 111–126. Springer-Verlag, Berlin,
Germany, September 2003.

[CFN05] Cyril Carrez, Alessandro Fantechi, and Elie Najm. Assembling com-
ponents with behavioural contracts. Annales des Télécommunica-
tions, 60(7-8):989–1022, 2005.

[ČGL93] Kārlis Čerāns, Jens Chr. Godskesen, and Kim Guldstrand Larsen.
Timed modal specification - theory and tools. In CAV ’93: Pro-
ceedings of the 5th International Conference on Computer Aided
Verification, pages 253–267, London, UK, 1993. Springer-Verlag.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstraction. ACM Trans. Program. Lang. Syst.,
16(5):1512–1542, 1994.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. For-
malizing cardinality-based feature models and their specialization.
Software Process: Improvement and Practice, 10(1):7–29, 2005.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. The MIT Press, 2nd
edition, 2001.

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2001.

[CV07] Luís Caires and Vasco Thudichum Vasconcelos, editors. CONCUR
2007 - Concurrency Theory, 18th International Conference, CON-
CUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, vol-
ume 4703 of Lecture Notes in Computer Science. Springer, 2007.

[ČVZ06] Ivana Černá, Pavlína Vařeková, and Barbora Zimmerová. Com-
ponent substitutability via equivalencies of component-interaction
automata. In FACS’06, pages 115–130, September 2006. To be
published in ENTCS.

Bibliography 169

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and
logics: There and back again. Software Product Line Conference,
2007. SPLC 2007. 11th International, pages 23–34, 10-14 Sept.
2007.

[CWD+06] Zhenbang Chen, Ji Wang, Wei Dong, Zhichang Qi, and W. L. Yeung.
An interface theory based approach to verification of web services.
In COMPSAC ’06: Proceedings of the 30th Annual International
Computer Software and Applications Conference (COMPSAC’06),
pages 139–144, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[dAdSF+05] Luca de Alfaro, Leandro Dias da Silva, Marco Faella, Axel Legay,
Pritam Roy, and Maria Sorea. Sociable interfaces. In Bernhard
Gramlich, editor, FroCos, volume 3717 of Lecture Notes in Com-
puter Science, pages 81–105. Springer, 2005.

[Dam96] Dennis Dams. Abstract Interpretation and Partition Refinement for
Model Checking. PhD thesis, Eindhoven University of Technology,
July 1996.

[DFFU07] Nicolás D’Ippolito, Dario Fishbein, Howard Foster, and Sebastian
Uchitel. Mtsa: Eclipse support for modal transition systems con-
struction, analysis and elaboration. In eclipse ’07: Proceedings of
the 2007 OOPSLA workshop on eclipse technology eXchange, pages
6–10, New York, NY, USA, 2007. ACM.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract inter-
pretation of reactive systems. ACM Trans. Program. Lang. Syst.,
19(2):253–291, 1997.

[DGT96] Olivier Danvy, Robert Glück, and Peter Thiemann, editors. Par-
tial Evaluation, volume 1110 of LNCS, Dagstuhl Castle, Germany,
February 1996. Springer.

[EG98] Sandro Etalle and Maurizo Gabbrieli. Partial evaluation of con-
current constraint languages. ACM Computing Surveys, 30(3es),
September 1998.

[EMCGP99] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[FdR06] Massimo Franceschet and Maarten de Rijke. Model checking hybrid
logics (with an application to semistructured data). J. Applied Logic,
4(3):279–304, 2006.

170 Bibliography

[FG07] Alessandro Fantechi and Stefania Gnesi. A behavioural model for
product families. In ESEC-FSE ’07: Proceedings of the the 6th
joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software en-
gineering, pages 521–524, New York, NY, USA, 2007. ACM.

[FH06] Harald Fecher and Michael Huth. Ranked predicate abstraction
for branching time: Complete incremental, and precise. In ATVA,
volume 4218 of Lecture Notes in Computer Science, pages 322–336.
Springer, 2006.

[FUB06] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A foun-
dation for behavioural conformance in software product line archi-
tectures. In ROSATEA ’06 Proceedings, pages 39–48, New York,
NY, USA, 2006. ACM Press.

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan.
Abstraction-based model checking using modal transition systems.
Lecture Notes in Computer Science, 2154:426+, 2001.

[GHW85] J. V. Guttag, J. J. Horning, and J. M. Wing. The larch family of
specification languages. IEEE Softw., 2(5):24–36, 1985.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GJ02] Patrice Godefroid and Radha Jagadeesan. Automatic abstraction
using generalized model checking. In Ed Brinksma and Kim Guld-
strand Larsen, editors, CAV, volume 2404 of Lecture Notes in Com-
puter Science, pages 137–150. Springer, 2002.

[GJ03] Patrice Godefroid and Radha Jagadeesan. On the expressive-
ness of 3-valued models. In Lenore D. Zuck, Paul C. Attie,
Agostino Cortesi, and Supratik Mukhopadhyay, editors, VMCAI,
volume 2575 of Lecture Notes in Computer Science, pages 206–222.
Springer, 2003.

[Gom01] Hassan Gomaa. Design Software Product Lines with UML. Addison-
Wesley, 2001.

[Har87] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231–274, 1987.

[HH04] Altaf Hussain and Michael Huth. On model checking multiple hy-
brid views. Technical report, Department of Computer Science,
University of Cyprus, 2004. TR-2004-6.

Bibliography 171

[HH06] Altaf Hussain and Michael Huth. Automata games for multiple-
model checking. Electr. Notes Theor. Comput. Sci., 155:401–421,
2006.

[HJS01] Michael Huth, Radha Jagadeesan, and David Schmidt. Modal tran-
sition systems: A foundation for three-valued program analysis. Lec-
ture Notes in Computer Science, 2028, 2001.

[HKY96] Haruo Hosoya, Naoki Kobayashi, and Akinori Yonezawa. Partial
evaluation scheme for concurrent languages and its correctness. In
L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-
Par’96, volume 1123 of LNCS, pages 625–632. Springer, 1996.

[HL89] Hans Hüttel and Kim Guldstrand Larsen. The use of static con-
structs in a modal process logic. In LFCS: The 1st International
Symposium on Logical Foundations of Computer Science, 1989.

[HM85] Matthew Henessy and Robin Milner. Algebraic laws for nondeter-
minism and concurrency. Journal of ACM, pages 137–161, 1985.

[HM06] Thomas A. Henzinger and Slobodan Matic. An interface algebra for
real-time components. In IEEE Real Time Technology and Appli-
cations Symposium, pages 253–266. IEEE Computer Society, 2006.

[HMT99] John Hatcliff, Torben Æ. Mogensen, and Peter Thiemann, editors.
Partial Evaluation: Practice and Theory. International Summer
School, volume 1706 of LNCS. Springer, 1999.

[HMU01] John E. Hopcroft, Rejeev Motwani, and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages and Computation. Addison-
Wesley, 2nd edition, 2001.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International
Series in Computer Science. Prentice Hall, 1985.

[HRS05] Holger Hermanns, Jakob Rehof, and Marielle I. A. Stoelinga, ed-
itors. Workshop Procedings FIT 2005: Foundations of Interface
Technologies, ENTCS. Elsevier Science Publishers, 2005.

[Hüt88] Hans Hüttel. Operational and denotational properties of modal pro-
cess logic. Master’s thesis, Computer Science Department. Aalborg
University, 1988.

[Hut02] Michael Huth. Model checking modal transition systems using
kripke structures. In Agostino Cortesi, editor, VMCAI, volume 2294
of Lecture Notes in Computer Science, pages 302–316. Springer,
2002.

172 Bibliography

[Hut05a] Michael Huth. Labelled transition systems as a Stone space. Logical
Methods in Computer Science, 1(1):1–28, January 2005.

[Hut05b] Michael Huth. Refinement is complete for implementations. Formal
Asp. Comput., 17(2):113–137, 2005.

[IAR] IAR visualSTATE®. www.iar.com/Products/VS.

[IK01] Atsushi Igarashi and Naoki Kobayashi. A generic type system for
the pi-calculus. In POPL 2001. ACM Press, 2001.

[ILO] Ilog CPLEX. www.ilog.com/products/cplex.

[JB02] Michel Jaring and Jan Bosch. Representing variability in software
product lines: A case study. In SPLC 2: Proceedings of the Second
International Conference on Software Product Lines, pages 15–36,
London, UK, 2002. Springer-Verlag.

[JB04] Michel Jaring and Jan Bosch. Architecting product diversification -
formalizing variability dependencies in software product family engi-
neering. In QSIC ’04: Proceedings of the Quality Software, Fourth
International Conference, pages 154–161, Washington, DC, USA,
2004. IEEE Computer Society.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Eval-
uation and Automatic Program Generation. Prentice Hall, 1993.

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. On the complexity
of equation solving in process algebra. In Samson Abramsky and
T. S. E. Maibaum, editors, TAPSOFT, Vol.1, volume 493 of Lecture
Notes in Computer Science, pages 381–396. Springer, 1991.

[JP01] Bart Jacobs and Erik Poll. A logic for the java modeling language
jml. In FASE ’01: Proceedings of the 4th International Conference
on Fundamental Approaches to Software Engineering, pages 284–
299, London, UK, 2001. Springer-Verlag.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, November 1990.

[KE03] Chethana Kuloor and Armin Eberlein. Aspect-oriented require-
ments engineering for software product lines. In ECBS, pages 98–
107. IEEE Computer Society, 2003.

Bibliography 173

[Lar86] Kim G. Larsen. Context Dependent Bisimulation Between Processes.
PhD thesis, Edinburgh University, 1986.

[Lar87] Kim G. Larsen. A context dependent equivalence between processes.
Theoretical Computer Science, 49:184–215, 1987.

[Lar89] Kim Guldstrand Larsen. Modal specifications. In Joseph Sifakis,
editor, Automatic Verification Methods for Finite State Systems,
volume 407 of Lecture Notes in Computer Science, pages 232–246.
Springer, 1989.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary
design of jml: a behavioral interface specification language for java.
SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[Lea96] Gary T. Leavens. An overview of Larch/C++: Behavioral specifica-
tions for C++ modules. In Haim Kilov and William Harvey, editors,
Specification of Behavioral Semantics in Object-Oriented Informa-
tion Modeling, pages 121–142. Kluwer Academic Publishers, Boston,
1996.

[Lev95] N. G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[LLW05] Kim Guldstrand Larsen, Ulrik Larsen, and Andrzej Wąsowski.
Color-blind specifications for transformations of reactive syn-
chronous programs. In Cerioli [Cer05], pages 160–174.

[LM92] Kim G. Larsen and Robin Milner. A compositional protocol veri-
fication using relativized bisimulation. Inf. Comput., 99(1):80–108,
1992.

[LMN05] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online test-
ing of real-time systems using uppaal. In Formal Approaches to
Testing of Software (FATES), Linz, Austria. September 21, 2004,
volume 1644 of LNCS. Springer, 2005.

[LNAH+01] J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann,
K. Kristoffersen, and K. G. Larsen. Verification of large state/event
systems using compositionality and dependency analysis. Formal
Methods in System Design, 18(1):5–23, 2001.

[LNW05] Kim G. Larsen, Ulrik Nyman, and Andrzej Wąsowski. Interface
input/output automata: Splitting assumptions from guarantees. In
Hermanns et al. [HRS05].

174 Bibliography

[LNW06a] Kim G. Larsen, Ulrik Nyman, and Andrzej Wąsowski. An inter-
face theory for input/output automata. Technical Report RS-06-11,
BRICS, June 2006.

[LNW06b] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wąsowski. In-
terface input/output automata. In Misra et al. [MNS06], pages
82–97. Paper B in this thesis.

[LNW07a] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wąsowski.
Modal i/o automata for interface and product line theories. In
Nicola [Nic07], pages 64–79. Paper C in this thesis.

[LNW07b] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wąsowski.
Modeling software product lines using color-blind transition sys-
tems. STTT, 9(5-6):471–487, 2007. Paper A in this thesis.

[LNW07c] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wąsowski.
On modal refinement and consistency. In Caires and Vasconcelos
[CV07], pages 105–119. Paper D in this thesis.

[LSW95] Kim Guldstrand Larsen, Bernhard Steffen, and Carsten Weise. A
constraint oriented proof methodology based on modal transition
systems. In Ed Brinksma, Rance Cleaveland, Kim Guldstrand
Larsen, Tiziana Margaria, and Bernhard Steffen, editors, TACAS,
volume 1019 of Lecture Notes in Computer Science, pages 17–40.
Springer, 1995.

[LSW96] K. G. Larsen, B. Steffen, and C. Weise. Fischer’s protocol revisited:
a simple proof using modal constraints. Lecture Notes in Computer
Science, 1066:604–615, 1996.

[LT88] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic.
In LICS, pages 203–210. IEEE Computer Society, IEEE Computer
Society, 1988.

[LW94] Barbara Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. ACM Trans. Program. Lang. Syst., 16(6):1811–1841,
1994.

[LX90] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using
modal transition systems. In Fifth Annual IEEE Symposium on
Logics in Computer Science (LICS), 4–7 June 1990, Philadelphia,
PA, USA, pages 108–117, 1990.

[LX04] E. A. Lee and Y. Xiong. A behavioral type system and its appli-
cation in Ptolemy II. Formal Aspects of Computing Journal, 2004.

Bibliography 175

Special issue on Semantic Foundations of Engineering Design Lan-
guages.

[Lyn88] Nancy Lynch. I/O automata: A model for discrete event systems.
In Annual Conference on Information Sciences and Systems, pages
29–38, Princeton University, Princeton, N.J., 1988.

[LZZ05] Edward A. Lee, Haiyang Zheng, and Ye Zhou. Causality interfaces
and compositional causality analysis. In Hermanns et al. [HRS05].

[Mai03] Patrick Maier. Compositional circular assume-guarantee rules can-
not be sound and complete. In A.D. Gordon, editor, Foundations of
Software Science and Computational Structures: 6th International
Conference, FOSSACS 2003, volume 2620 of LNCS, pages 343–357.
Springer, 2003.

[Mey92] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theoretical
Computer Science, 25, 1983.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall,
1989.

[MNS06] Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors. FM
2006: Formal Methods, 14th International Symposium on Formal
Methods, Hamilton, Canada, August 21-27, 2006, Proceedings, vol-
ume 4085 of Lecture Notes in Computer Science. Springer, 2006.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, 1997.

[Mur95] Masaki Murakami. Partial evaluation of reactive communciating
processes using temporal logic formulas. In Workshop on Algebraic
and Object-Oriented Approaches to Software Science, 1995.

[Nic07] Rocco De Nicola, editor. Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007, Held as
Part of the Joint European Conferences on Theory and Practics of
Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007,
Proceedings, volume 4421 of Lecture Notes in Computer Science.
Springer, 2007.

[Obj99] Object Management Group. OMG Unified Modelling Language
specification, 1999. www.omg.org.

176 Bibliography

[Par76] David L. Parnas. On the design and development of program fam-
ilies. IEEE Transactions on Software Engineering, Vol. SE-2(No.
1):1–9, March 1976.

[Par81] D. Park. Concurrency and automata on infinite sequences. In Pro-
ceedings of 5th GI Conference, volume 104 of LNCS, 1981.

[PBvdL05] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line
Engineering—Foundations, Principles, and Techniques. Springer,
jul 2005.

[PV02] F. Plasil and S. Visnovsky. Behavior protocols for software compo-
nents. Software Engineering, IEEE Transactions on, 28(11):1056–
1076, Nov 2002.

[RR02] Sriram K. Rajamani and Jakob Rehof. Conformance checking for
models of asynchronous message passing software. In Ed Brinksma
and Kim Guldstrand Larsen, editors, 14th International Confer-
ence on Computer Aided Verification (CAV), volume 2404 of LNCS,
pages 166–179, Copenhagen, Denmark, July 2002. Springer.

[Sch01] David A. Schmidt. From trace sets to modal transition systems
by stepwise abstract interpretation. In Masami Hagiya, Yoshiki
Kinoshita, and John Power, editors, Proceedings Workshop on
Structure-Preserving Relations, Amagasaki, Japan. entcs, 2001. To
appear.

[Sch06a] Heiko Schmidt. Comparing disjunctive modal transition systems
with an one-selecting variant. In NWPT’06 – The 18th Nordic
Workshop on Programming Theory (NWPT’06) Reykjavík, Iceland,
18-20 October, 2006, Reykjavík, Iceland, October 2006. Reykjavík
University.

[Sch06b] Heiko Schmidt. Comparing disjunctive modal transition sys-
tems with their one-selecting variant. Master’s thesis, Christian-
Albrechts-UniversitÃďt zu Kiel, 2006.

[sco] Scope. www.itu.dk/~wasowski/scope.

[SDH00] Kanna Shimizu, David L. Dill, and Alan J. Hu. Monitor-based
formal specification of PCI. In Formal Methods in Computer-Aided
Design, pages 335–353, 2000.

[SF07] Heiko Schmidt and Harald Fecher. Comparing disjunctive modal
transition systems with a one-selecting variant. To appear in the
Journal of Logic and Algebraic Programming, 2007.

Bibliography 177

[Sun] Sun Microsystems. Java card(TM) specification.
java.sun.com/products/javacard/specs.html.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific Journal of Mathematics, 5:285–309, 1955.

[TG06] Jean-Pierre Talpin and Paul Guernic. An algebraic theory for be-
havioral modeling and protocol synthesis in system design. Form.
Methods Syst. Des., 28(2):131–151, 2006.

[Tre96] Jan Tretmans. Test generation with inputs, outputs, and repetitive
quiescence. Software—Concepts and Tools, 17(3):103–120, 1996.

[TWS06] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-
time interfaces for composing real-time systems. In EMSOFT ’06:
Proceedings of the 6th ACM & IEEE International conference on
Embedded software, pages 34–43, New York, NY, USA, 2006. ACM.

[UBC07] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Behaviour
model synthesis from properties and scenarios. In ICSE, pages 34–
43. IEEE Computer Society, 2007.

[UC04] Sebastián Uchitel and Marsha Chechik. Merging partial behavioural
models. In Richard N. Taylor and Matthew B. Dwyer, editors,
SIGSOFT FSE, pages 43–52. ACM, 2004.

[vG90] Rob van Glabbeek. The linear time–branching time spectrum (ex-
tended abstract). In J.C.M. Beaten and J.W. Klop, editors, The-
ories of Concurrency: Unification and Extension (CONCUR), vol-
ume 458 of LNCS, pages 278–297. Springer, 1990.

[Wąs03] Andrzej Wąsowski. On Efficient Program Synthesis from State-
charts. In ACM SIGPLAN Languages, Compilers, and Tools for
Embedded Systems (LCTES), San Diego, USA, June 2003. ACM
Press.

[Wąs04] Andrzej Wąsowski. Automatic generation of program families by
model restrictions. In Software Product Line Conference (SPLC),
volume 3154 of LNCS. Springer, 2004.

[Wąs05] Andrzej Wąsowski. Code Generation and Model Driven Develop-
ment for Constrained Embedded Software. PhD thesis, IT University
of Copenhagen, January 2005.

[Wil01] Thomas Wilke. Alternating tree automata, parity games, and modal
µ-calculus. Bull. Soc. Math. Belg., 8(2), May 2001.

178 Bibliography

[Win87] Jeannette M. Wing. Writing larch interface language specifications.
ACM Trans. Program. Lang. Syst., 9(1):1–24, 1987.

[WT05] Ernesto Wandeler and Lothar Thiele. Real-time interfaces for
interface-based design of real-time systems with fixed priority
scheduling. In EMSOFT ’05: Proceedings of the 5th ACM inter-
national conference on Embedded software, pages 80–89, New York,
NY, USA, 2005. ACM.

[WT06] Ernesto Wandeler and Lothar Thiele. Interface-based design of real-
time systems with hierarchical scheduling. In RTAS ’06: Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, pages 243–252, Washington, DC, USA, 2006.
IEEE Computer Society.

[Xin92] Liu Xinxin. Specification and Decomposition in Concurrency. PhD
thesis, Department of Mathematics and Comnputer Science, Aal-
borg University, April 1992.

[YS97] D. Yellin and R. Strom. Protocol specifications and component
adaptors. ACM Transactions on Programming Languages and Sys-
tems, 19(2):292–333, 1997.

[ZW97] Amy Moormann Zaremski and Jeannette M. Wing. Specifica-
tion matching of software components. ACM Trans. Softw. Eng.
Methodol., 6(4):333–369, 1997.

