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Bayesian Networks

A Bayesian network is a compact model representation for
reasoning under uncertainty.

Entities of the problem domain are represented as random
variables.
A graphical structure describes the dependence relations
between entities.
Conditional probability distributions specify our belief about
the strengths of relations.

Can compute posterior probabilities of unobserved variables
(e.g., hypotheses) given the evidence provided by observed
variables.
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Variables

The variables of a Bayesian network are represented as nodes
in a causal network.

A variable X represents a unique event or hypothesis.

Positive examples: “Cancer”, “Smoking”, “Temperature”.

Negative examples: {“High temperature”, “Low
temperature”}, {“Error occured”, “No error”}.

Each variable has a finite set of mutually exclusive states

(events, propositions, levels) X = {x1, . . . , xn}.

Variables have parents and children.

A variable should pass the clarity test: There must be a state
for each possible value of the variable.

Reykjavik University, April/May 2005, BNs and DGs: Constructing Bayesian Networks 4



Definition of Bayesian Networks

A Bayesian network N = (G ,P) consists of:

A set of variables and a set of directed edges between
variables.

The variables together with the directed edges form a directed
acyclic graph (DAG).

Each variable has a finite set of states.

Attached to each variable X with parents Y1, . . . ,Yn there is
a conditional probability table P(X |Y1, . . . ,Yn).

A Bayesian network is a representation of knowledge for reasoning
under uncertainty.
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Model Specification

A Bayesian network N = (G ,P) consists of a

qualitative part, the graph structure (DAG G = (V ,E )) and a
quantitative part, the conditional probability distributions,
P = {P(child |parents)}.

Reykjavik University, April/May 2005, BNs and DGs: Constructing Bayesian Networks 6



Model Specification

A Bayesian network N = (G ,P) consists of a

qualitative part, the graph structure (DAG G = (V ,E )) and a
quantitative part, the conditional probability distributions,
P = {P(child |parents)}.

Model specification consists of two parts:

First, specify the structure of the network and validate it
(possibly leading to iterative revision).
Second, specify P(X |pa(X )) for each variable X .
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W

P(E ) = (0.99, 0.01),
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W

P(E ) = (0.99, 0.01), P(B) = (0.9, 0.1)
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W

P(E ) = (0.99, 0.01), P(B) = (0.9, 0.1)

E

R n y

n 0.999 0.01

y 0.001 0.99
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W

P(E ) = (0.99, 0.01), P(B) = (0.9, 0.1)

E

R n y

n 0.999 0.01

y 0.001 0.99

A

W n y

n 0.9 0.1

y 0.1 0.9
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W

P(E ) = (0.99, 0.01), P(B) = (0.9, 0.1)

E

R n y

n 0.999 0.01

y 0.001 0.99

A

W n y

n 0.9 0.1

y 0.1 0.9

E = n E = y

A B = n B = y B = n B = y

n 0.99 0.1 0.1 0.01

y 0.01 0.9 0.9 0.99
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W

P(E ) = (0.99, 0.01), P(B) = (0.9, 0.1)

E

R n y

n 0.999 0.01

y 0.001 0.99

A

W n y

n 0.9 0.1

y 0.1 0.9

E = n E = y

A B = n B = y B = n B = y

n 0.99 0.1 0.1 0.01

y 0.01 0.9 0.9 0.99

Now, we have a fully specified Bayesian network.
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Bayesian Network Construction

What do I want a model of and how do I want to use the
model?
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Bayesian Network Construction

What do I want a model of and how do I want to use the
model?

What are the background conditions, context, assumptions
and restrictions, what is in the model, what is NOT in the
model?
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Bayesian Network Construction

What do I want a model of and how do I want to use the
model?

What are the background conditions, context, assumptions
and restrictions, what is in the model, what is NOT in the
model?

Work in a topdown fashion by identifying parts (components,
groups)
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Bayesian Network Construction

What do I want a model of and how do I want to use the
model?

What are the background conditions, context, assumptions
and restrictions, what is in the model, what is NOT in the
model?

Work in a topdown fashion by identifying parts (components,
groups)

Iterate, iterate, iterate
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Bayesian Network Construction

Repeat

Identify possible variables (information, hypothesis,
intermediate).

Identify possible states of variables.

Identify structural relations between variables.

Consider modeling tricks.

Determine conditional probability distributions.

Until satisfied (e.g., model verification).
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The Chain Rule

Let U = {X1, . . . ,Xn} be a universe of variables.
From the joint P(U), we can compute, e.g. P(Xi ), P(Xi |ε),
etc.

Let N = (G ,P) be a Bayesian network over U.
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The Chain Rule

Let U = {X1, . . . ,Xn} be a universe of variables.
From the joint P(U), we can compute, e.g. P(Xi ), P(Xi |ε),
etc.

Let N = (G ,P) be a Bayesian network over U.

For any ordering (X1, X2, . . . ,Xn) (using the fundamental rule
repeatedly),

P(X1, ..,Nn) = P(X1)P(X2 |X1)P(X3 |X1, X2)··P(Xn |X1, ..,Xn−1).
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The Chain Rule

Let U = {X1, . . . ,Xn} be a universe of variables.
From the joint P(U), we can compute, e.g. P(Xi ), P(Xi |ε),
etc.

Let N = (G ,P) be a Bayesian network over U.

For any ordering (X1, X2, . . . ,Xn) (using the fundamental rule
repeatedly),

P(X1, ..,Nn) = P(X1)P(X2 |X1)P(X3 |X1, X2)··P(Xn |X1, ..,Xn−1).

Let (X1, X2, . . . ,Xn) be a topological ordering wrt. N, i.e.,
pa(Xi ) ⊆ {X1, . . . ,Xi−1} ∀i . d-separation yields
Xi ⊥⊥ nd(Xi ) |pa(Xi ), where pa(X ) are the parents of X and
nd(X ) the non-descendants of X .
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The Chain Rule

Let U = {X1, . . . ,Xn} be a universe of variables.
From the joint P(U), we can compute, e.g. P(Xi ), P(Xi |ε),
etc.

Let N = (G ,P) be a Bayesian network over U.

For any ordering (X1, X2, . . . ,Xn) (using the fundamental rule
repeatedly),

P(X1, ..,Nn) = P(X1)P(X2 |X1)P(X3 |X1, X2)··P(Xn |X1, ..,Xn−1).

Let (X1, X2, . . . ,Xn) be a topological ordering wrt. N, i.e.,
pa(Xi ) ⊆ {X1, . . . ,Xi−1} ∀i . d-separation yields
Xi ⊥⊥ nd(Xi ) |pa(Xi ), where pa(X ) are the parents of X and
nd(X ) the non-descendants of X .

The joint probability distribution of U is then

P(U) =
n

∏

i=1

P(Xi |X1, . . . ,Xi−1) =
n

∏

i=1

P(Xi |pa(Xi )).
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Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R |E )

P(W |A) W

From the Chain Rule:

P(B, A, E , R, W ) = P(W |A)P(E )P(B)P(A |B, E )P(R |E )
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Evidence

An instantiation of a variable X is an observation of a the exact
state of X .

Example: Burglary or Earthquake

P(B) B E P(E )

P(A |B, E ) A R P(R = yes |E )

P(W |A) W

P(R = y |E ) =

E

R n y

n 0 0

y 0.001 0.99

Now we have a representation of P(B, A, E , R = y , W ).
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Probabilistic Inference

What do we want to do with Bayesian networks?
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Probabilistic Inference

What do we want to do with Bayesian networks?

We want to update our beliefs in the light of observations
P(X |ε).
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Probabilistic Inference

What do we want to do with Bayesian networks?

We want to update our beliefs in the light of observations
P(X |ε).

The probability of the evidence P(ε).
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Probabilistic Inference

What do we want to do with Bayesian networks?

We want to update our beliefs in the light of observations
P(X |ε).

The probability of the evidence P(ε).

The joint probability P(Xi , . . . ,Xj).
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Probabilistic Inference

What do we want to do with Bayesian networks?

We want to update our beliefs in the light of observations
P(X |ε).

The probability of the evidence P(ε).

The joint probability P(Xi , . . . ,Xj).

What is the configuration of the variables with the highest
probability (max-propagation)?
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Probabilistic Inference

What do we want to do with Bayesian networks?

We want to update our beliefs in the light of observations
P(X |ε).

The probability of the evidence P(ε).

The joint probability P(Xi , . . . ,Xj).

What is the configuration of the variables with the highest
probability (max-propagation)?

What is P(X |ε \ εX ) for X ∈ ε?
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Probabilistic Inference

What do we want to do with Bayesian networks?

We want to update our beliefs in the light of observations
P(X |ε).

The probability of the evidence P(ε).

The joint probability P(Xi , . . . ,Xj).

What is the configuration of the variables with the highest
probability (max-propagation)?

What is P(X |ε \ εX ) for X ∈ ε?

. . .
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Probabilistic Inference

What do we want to do with Bayesian networks?

We want to update our beliefs in the light of observations
P(X |ε).

The probability of the evidence P(ε).

The joint probability P(Xi , . . . ,Xj).

What is the configuration of the variables with the highest
probability (max-propagation)?

What is P(X |ε \ εX ) for X ∈ ε?

. . .

Computations performed in a secondary structure.
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Answering a Query

What is the probability of burglary given a phone call from Dr.
Watson and a radio report on earthquake?
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Answering a Query

What is the probability of burglary given a phone call from Dr.
Watson and a radio report on earthquake?

P(B |ε) =
∑

A,E ,R,W

P(A, B, E , R, W )

Reykjavik University, April/May 2005, BNs and DGs: Constructing Bayesian Networks 35



Answering a Query

What is the probability of burglary given a phone call from Dr.
Watson and a radio report on earthquake?

P(B |ε) =
∑

A,E ,R,W

P(A, B, E , R, W )

=
∑

A,E ,R,W

P(B)P(E )P(A |B, E )P(R = y |E )P(W = y |A)
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Answering a Query

What is the probability of burglary given a phone call from Dr.
Watson and a radio report on earthquake?

P(B |ε) =
∑

A,E ,R,W

P(A, B, E , R, W )

=
∑

A,E ,R,W

P(B)P(E )P(A |B, E )P(R = y |E )P(W = y |A)

= P(B)
∑

E

P(E )
∑

A

P(A |B, E )
∑

R

P(R = y |E )

∑

W

P(W = y |A).
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Answering a Query

What is the probability of burglary given a phone call from Dr.
Watson and a radio report on earthquake?

P(B |ε) =
∑

A,E ,R,W

P(A, B, E , R, W )

=
∑

A,E ,R,W

P(B)P(E )P(A |B, E )P(R = y |E )P(W = y |A)

= P(B)
∑

E

P(E )
∑

A

P(A |B, E )
∑

R

P(R = y |E )

∑

W

P(W = y |A).

In general, probabilistic inference is NP-hard.

HUGIN uses a secondary structure for performing inference.
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Complexity of Inference

Computing P(B |ε) like

P(B |ε) =
∑

A,E ,R,W

P(B)P(E )P(A |B,E )P(R = y |E )P(W = y |A)

involves 160 multiplications, 32 additions, and a table with 32
numbers.
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Complexity of Inference

Computing P(B |ε) like

P(B |ε) =
∑

A,E ,R,W

P(B)P(E )P(A |B,E )P(R = y |E )P(W = y |A)

involves 160 multiplications, 32 additions, and a table with 32
numbers.

P(B |ε) = P(B)
∑

E

P(E )
∑

A

P(A |B,E )
∑

R

P(R = y |E )
∑

W

P(W = y |A).

involves 32 multiplications, 12 additions, and two tables with 4
numbers and one with 8 numbers.
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Complexity of Inference

Computing P(B |ε) like

P(B |ε) =
∑

A,E ,R,W

P(B)P(E )P(A |B,E )P(R = y |E )P(W = y |A)

involves 160 multiplications, 32 additions, and a table with 32
numbers.

P(B |ε) = P(B)
∑

E

P(E )
∑

A

P(A |B,E )
∑

R

P(R = y |E )
∑

W

P(W = y |A).

involves 32 multiplications, 12 additions, and two tables with 4
numbers and one with 8 numbers.

The key to efficient inference lies in finding a good summation
order (also called an elimination order or elimination sequence).
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Outline

1 Bayesian Networks
2 Constructing Bayesian networks

1 Types of variables
2 Undirected relations
3 Measurement error
4 Simple bayes
5 Independence of causal influence
6 Parent divorcing
7 Experts disagreement
8 Structural uncertainty
9 Functional uncertainty
10 Model verification
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Types of Variables

Hypothesis variables: Unobservable variables for which
posterior probabilities are wanted.

Examples: Classification and diagnosis variables
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Types of Variables

Hypothesis variables: Unobservable variables for which
posterior probabilities are wanted.

Examples: Classification and diagnosis variables

Information variables: Variables for which observations are
available, and which can provide information relevant for
hypothesis variables

Examples: Sensor readings, background information, test
results, etc.
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Types of Variables

Hypothesis variables: Unobservable variables for which
posterior probabilities are wanted.

Examples: Classification and diagnosis variables

Information variables: Variables for which observations are
available, and which can provide information relevant for
hypothesis variables

Examples: Sensor readings, background information, test
results, etc.

Mediating variables: Unobservable variables for which
posterior probabilities are not wanted, but which play
important roles for achieving

correct conditional independence and dependence properties
and
efficient inference.
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Mediating Variables

Mediating variables important for achieving correct conditional
independence and dependence properties.

Example: Hormonal state (Ho): Blood test (BT) and urine test
(UT) are not independent given pregnancy state (Pr).

Pr

BT UT

Pr

Ho

BT UT

The model without the variable Ho is wrong, since Ho does not
depend deterministically on Pr, and BT and UT are independent
given Ho.
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Undirected Relations

Let R(A, B, C ) be a relation in numbers such that
R(a, b, c) ∈ {0, 1}. How can R be represented in a BN?
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Undirected Relations

Let R(A, B, C ) be a relation in numbers such that
R(a, b, c) ∈ {0, 1}. How can R be represented in a BN?

A B C

D

Introduce variable D with states “on” and “off”.

Reykjavik University, April/May 2005, BNs and DGs: Constructing Bayesian Networks 48



Undirected Relations

Let R(A, B, C ) be a relation in numbers such that
R(a, b, c) ∈ {0, 1}. How can R be represented in a BN?

A B C

D

Introduce variable D with states “on” and “off”.

Let P(D = on |A, B, C ) = R(A, B, C ) and
P(D = off |A, B, C ) = 1 − R(A, B, C ).
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Undirected Relations

Let R(A, B, C ) be a relation in numbers such that
R(a, b, c) ∈ {0, 1}. How can R be represented in a BN?

A B C

D

Introduce variable D with states “on” and “off”.

Let P(D = on |A, B, C ) = R(A, B, C ) and
P(D = off |A, B, C ) = 1 − R(A, B, C ).

Clamp the state of D to on.
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An Example: Constraints

Assume we have four items, S1, . . . ,S4, where
dom(Si ) = {t1, t2}, such that two items must be of type t1
and two must be of type t2.

This constraint can be encoded in the CPT of a common
child variable, C , with states on and off:

P(C = on |s1, s2, s3, s4) =

{

1 if |{si = t1}| = 2
0 otherwise.

By clamping C to “on”, the constraint gets enforced.
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A Constraints Example

Assume we have 2 pairs of socks, S1, . . . ,S4, where
dom(Si ) = {t1, t2}.

The “2 pairs” constraint can be encoded through the CPT

S1 t1 t2
S2 t1 t2 t1 t2
S3 t1 t2 t1 t2 t1 t2 t1 t2
S4 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

on 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0
off 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1

By clamping to state “on”, the “2 pairs” constraint gets
enforced: The CPT ensures that only configurations involving
exactly 2 socks of type t1 (and 2 of type t2) have non-zero
probability.

Reykjavik University, April/May 2005, BNs and DGs: Constructing Bayesian Networks 52



Measurement Error

Often the true value of an information variable, I , cannot be
obtained due to measurement error.

Measurement error modeled by introducing a new variable,
say OI , representing the observed value of I .

Size of measurement error represented in P(OI | I ).

I turned into mediating variable (i.e., unobservable).

I

OI
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Measurement Error: Example

Assume that socks of type t1 are characterized by color c1 and
pattern p2, and socks of type t2 by color c2 6= c1 and pattern
p2 6= p1.

After several washes:

c1 is mistaken for c2 in 3 out of 10 cases.
c2 is mistaken for c1 in 2 out of 10 cases.
p1 is mistaken for p2 in 2 out of 100 cases.
p2 is always recognized correctly.

Modeled as:

P(OC = c2 |C = c1) = 0.3.
P(OC = c1 |C = c2) = 0.2.
P(OP = p2 |P = p1) = 0.02.
P(OP = p1 |P = p2) = 0.

S

C P

OC OP
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Simple (or Näıve) Bayes

Consider a medical diagnosis situation:

An exhaustive set of mutually exclusive
diseases d1, . . . , dn, represented as states
of a hypothesis variable D.
Assume that symptoms (information
variables) S1, . . . ,Sn are independent
when the disease is known.

D

S1 · · · Sn
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Simple (or Näıve) Bayes

Consider a medical diagnosis situation:

An exhaustive set of mutually exclusive
diseases d1, . . . , dn, represented as states
of a hypothesis variable D.
Assume that symptoms (information
variables) S1, . . . ,Sn are independent
when the disease is known.

However, the conclusion may be misleading: The assumption
that information variables are independent given the
hypothesis need not hold.

D

S1 · · · Sn
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Simple (or Näıve) Bayes

Consider a medical diagnosis situation:

An exhaustive set of mutually exclusive
diseases d1, . . . , dn, represented as states
of a hypothesis variable D.
Assume that symptoms (information
variables) S1, . . . ,Sn are independent
when the disease is known.

However, the conclusion may be misleading: The assumption
that information variables are independent given the
hypothesis need not hold.

Computationally and representationally a very efficient model
that provides good results in many cases.

D

S1 · · · Sn
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Simple Bayes Inference

Let the possible hypotheses (e.g., diseases) be collected into
one hypothesis variable H with prior P(H).

H

I1 · · · In
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Simple Bayes Inference

Let the possible hypotheses (e.g., diseases) be collected into
one hypothesis variable H with prior P(H).

For each information variable I ,
acquire P(I |H) = L(H | I ).

H

I1 · · · In
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Simple Bayes Inference

Let the possible hypotheses (e.g., diseases) be collected into
one hypothesis variable H with prior P(H).

For each information variable I ,
acquire P(I |H) = L(H | I ).

For any set of observations I = {i1, . . . , im} calculate
L(H |I) =

∏

P(ij |H).

H

I1 · · · In
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Simple Bayes Inference

Let the possible hypotheses (e.g., diseases) be collected into
one hypothesis variable H with prior P(H).

For each information variable I ,
acquire P(I |H) = L(H | I ).

For any set of observations I = {i1, . . . , im} calculate
L(H |I) =

∏

P(ij |H).

The posterior P(H |I) = αL(H |I)P(H), where α = P(I)−1,
or expressed via Bayes’ rule:

P(H |I) =
P(I |H)P(H)

P(I)
.

H

I1 · · · In
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Independence of Causal Influence

Exploit knowledge about the internal structure of CPTs to
reduce the complexity of representation and inference.

C1 C2 · · · Cn

E

C1 C2 · · · Cn

E1 E2 · · · En

E

The contribution from Ci to E is assumed to be independent
of the contribution from Cj (i 6= j).

Ci results in E unless it is inhibited by “something”.

The inhibitors are assumed to be independent:

P(Inhibitori , Inhibitorj) = P(Inhibitori )P(Inhibitorj) = qiqj .
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The Noisy-OR Interaction Model

Let X1, X2 be causes of the effect variable Y and let all variable be
Boolean.

Y

X1 X2 off on

off off 1 0
off on 0.2 0.8
on off 0.1 0.9
on on 0.02 0.98

X1 X2

E1 E2

Y

q1 q2

P(Y = on |X1 = on, X2 = on) = 1 − P(Y = off |X1 = on, X2 = on)

= 1 −
2

∏

i=1

qi .
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Example: Noisy OR

Assume that the causal influences of cold and angina on sore

throat can be assumed to be independent. Also, assume that there
is a “background” event that can cause the throat to be sore.

The “background” event causes sore throat with probability
0.05.

Cold causes sore throat with probability 0.4.

Angina causes sore throat with probability 0.7.
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Example: Noisy OR

Assume that the causal influences of cold and angina on sore

throat can be assumed to be independent. Also, assume that there
is a “background” event that can cause the throat to be sore.

The “background” event causes sore throat with probability
0.05.

Cold causes sore throat with probability 0.4.

Angina causes sore throat with probability 0.7.

Then P(sore |cold, angina) can be described as a noisy-OR

function:

For each cause we just need to specify a single number,
namely the inhibitor probability. In the example, we have
inhibitor probabilities 0.95, 0.6, and 0.3, respectively.

The number of parameters needed grows only linearly with the
number of parents.
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Parent Divorcing

Let X1, . . . ,Xn be a set of causes of Y :

X1 X2 · · · Xn

Y

X1 X2 · · · Xn

C

Y

The assumption is that the configurations of (X1, X2) can be
partitioned into sets c1, . . . , cm such that (x1, x2), (x

′

1, x
′

2) ∈ ci :

P(y |x1, x2, x3, . . . , xn) = P(y |x ′

1, x
′

2, x3, . . . , xn).

Divorcing is (representationally) efficient, if |C | < |X1| · |X2|.
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Experts Disagreement

Assume you have a number of experts e1, . . . , em.

All have an opinion about P(Y |X1, . . . ,Xn).

P(Y |X1, . . . ,Xn, ei ) for each i = 1, . . . ,m.

E X2 · · · Xn

Y

Your prior belief in the experts is P(E ) where E has one state
for each expert.
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Structural Uncertainty

Consider a variable Y with certain parents X3 and X4:
uncertain whether A or B is parent.

A B X3 X4

Y

? ?

A B AB

A/B X3 X4

Y

P(A/B |A, B, AB) is deterministic.

P(AB) encodes our belief about whether A or B is parent.
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Functional Uncertainty

Consider a situation where the parent set is known, but the
functional relation is unknown.

E is either E = A ∨ B or E = A ∧ B.

A B M

E

Create node M with two states and and or.

Let M be a model node of P(E |A, B).

P(M) specifies our prior belief in the dependence.
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Model Verification

Very important to get the directions of the links right.

The links and their directions determine the dependence and
independence relations encoded in the DAG.

Wrong dependence and independence relations may lead to
faulty conclusions.

The model structure can be verified by checking the
dependence and independence relations.

Use d-separation to uncover the relations.
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Model Verification: A Simple Example

Assume we have the following three Boolean variables:

A: Two or more PC’s bought within a few days using the same
credit card.

B: Card used almost at the same time at different locations.

C : Fraud.
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Model Verification: A Simple Example

Assume we have the following three Boolean variables:

A: Two or more PC’s bought within a few days using the same
credit card.

B: Card used almost at the same time at different locations.

C : Fraud.

Two possible models:

A C B

A C B

Which model is correct?

Reykjavik University, April/May 2005, BNs and DGs: Constructing Bayesian Networks 72



Fraud: Model 1

A: Two or more PCs
bought on same card

B: Card used at two
loc. at same time

C : Fraud

This model tells us that observing A (or B) does not provide us
with any information about B (or A) when C is unknown.
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Fraud: Model 1

A: Two or more PCs
bought on same card

B: Card used at two
loc. at same time

C : Fraud

This model tells us that observing A (or B) does not provide us
with any information about B (or A) when C is unknown. Wrong!
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Fraud: Model 1

A: Two or more PCs
bought on same card

B: Card used at two
loc. at same time

C : Fraud

This model tells us that observing A (or B) does not provide us
with any information about B (or A) when C is unknown. Wrong!

Observing A (or B) increases our belief in C , which in turn
increases our belief that we might also observe B (or A).
Therefore, this model gives wrong probabilities!
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Fraud: Model 2

C : Fraud

A: Two or more PCs
bought on same card

B: Card used at two
loc. at same time

This model rightfully tells us that

A and B are dependent when we have no hard evidence on C :
Observing A (or B) will increase our belief that we will also
observe B (or A), and

A and B are independent when C is known: If we know we
are considering a fraud case, then observing A (or B) will not
change our belief about whether or not we are going to
observe B (or A).
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Summary

Mediating variables

Simple Bayes model

Constructing Bayesian networks

Undirected relations
Simple bayes
Independence of causal influence
Parent divorcing
Experts disagreement
Structural uncertainty
Functional uncertainty
Model verification

Other issues

Object-oriented Bayesian networks
Dynamic Bayesian networks
Continuous variables
. . .
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