Constructing Bayesian Networks

Uffe Kjærulff (uk@cs.aau.dk)
Group of Machine Intelligence
Department of Computer Science, Aalborg University

Reykjavik University, 27 April, 2005

Outline

(1) Bayesian Networks
(2) Constructing Bayesian networks

Bayesian Networks

- A Bayesian network is a compact model representation for reasoning under uncertainty.
- Entities of the problem domain are represented as random variables.
- A graphical structure describes the dependence relations between entities.
- Conditional probability distributions specify our belief about the strengths of relations.
- Can compute posterior probabilities of unobserved variables (e.g., hypotheses) given the evidence provided by observed variables.

Variables

- The variables of a Bayesian network are represented as nodes in a causal network.
- A variable X represents a unique event or hypothesis.
- Positive examples: "Cancer", "Smoking", "Temperature".
- Negative examples: \{ "High temperature", "Low temperature" \}, \{"Error occured", "No error" \}.
- Each variable has a finite set of mutually exclusive states (events, propositions, levels) $X=\left\{x_{1}, \ldots, x_{n}\right\}$.
- Variables have parents and children.
- A variable should pass the clarity test: There must be a state for each possible value of the variable.

Definition of Bayesian Networks

A Bayesian network $N=(G, \mathcal{P})$ consists of:

- A set of variables and a set of directed edges between variables.
- The variables together with the directed edges form a directed acyclic graph (DAG).
- Each variable has a finite set of states.
- Attached to each variable X with parents Y_{1}, \ldots, Y_{n} there is a conditional probability table $P\left(X \mid Y_{1}, \ldots, Y_{n}\right)$.

A Bayesian network is a representation of knowledge for reasoning under uncertainty.

Model Specification

- A Bayesian network $N=(G, \mathcal{P})$ consists of a
- qualitative part, the graph structure (DAG $G=(V, E)$) and a
- quantitative part, the conditional probability distributions, $\mathcal{P}=\{P($ child \mid parents $)\}$.

Model Specification

- A Bayesian network $N=(G, \mathcal{P})$ consists of a
- qualitative part, the graph structure (DAG $G=(V, E)$) and a
- quantitative part, the conditional probability distributions, $\mathcal{P}=\{P($ child \mid parents $)\}$.
- Model specification consists of two parts:
- First, specify the structure of the network and validate it (possibly leading to iterative revision).
- Second, specify $P(X \mid \mathrm{pa}(X))$ for each variable X.

Burglary or Earthquake

Burglary or Earthquake

Burglary or Earthquake

Burglary or Earthquake

Burglary or Earthquake

Burglary or Earthquake

Burglary or Earthquake

Now, we have a fully specified Bayesian network.

Bayesian Network Construction

- What do I want a model of and how do I want to use the model?

Bayesian Network Construction

- What do I want a model of and how do I want to use the model?
- What are the background conditions, context, assumptions and restrictions, what is in the model, what is NOT in the model?

Bayesian Network Construction

- What do I want a model of and how do I want to use the model?
- What are the background conditions, context, assumptions and restrictions, what is in the model, what is NOT in the model?
- Work in a topdown fashion by identifying parts (components, groups)

Bayesian Network Construction

- What do I want a model of and how do I want to use the model?
- What are the background conditions, context, assumptions and restrictions, what is in the model, what is NOT in the model?
- Work in a topdown fashion by identifying parts (components, groups)
- Iterate, iterate, iterate

Bayesian Network Construction

Repeat

- Identify possible variables (information, hypothesis, intermediate).
- Identify possible states of variables.
- Identify structural relations between variables.
- Consider modeling tricks.
- Determine conditional probability distributions.

Until satisfied (e.g., model verification).

- Let $U=\left\{X_{1}, \ldots, X_{n}\right\}$ be a universe of variables.
- From the joint $P(U)$, we can compute, e.g. $P\left(X_{i}\right), P\left(X_{i} \mid \varepsilon\right)$, etc.
- Let $N=(G, \mathcal{P})$ be a Bayesian network over U.
- Let $U=\left\{X_{1}, \ldots, X_{n}\right\}$ be a universe of variables.
- From the joint $P(U)$, we can compute, e.g. $P\left(X_{i}\right), P\left(X_{i} \mid \varepsilon\right)$, etc.
- Let $N=(G, \mathcal{P})$ be a Bayesian network over U.
- For any ordering $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ (using the fundamental rule repeatedly),
$P\left(X_{1}, . ., N_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \cdot P\left(X_{n} \mid X_{1}, . ., X_{n-1}\right)$.

The Chain Rule

- Let $U=\left\{X_{1}, \ldots, X_{n}\right\}$ be a universe of variables.
- From the joint $P(U)$, we can compute, e.g. $P\left(X_{i}\right), P\left(X_{i} \mid \varepsilon\right)$, etc.
- Let $N=(G, \mathcal{P})$ be a Bayesian network over U.
- For any ordering $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ (using the fundamental rule repeatedly),
$P\left(X_{1}, . ., N_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \cdot \cdot P\left(X_{n} \mid X_{1}, . ., X_{n-1}\right)$.
- Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a topological ordering wrt. N, i.e., $\mathrm{pa}\left(X_{i}\right) \subseteq\left\{X_{1}, \ldots, X_{i-1}\right\} \forall i$. d-separation yields $X_{i} \Perp \operatorname{nd}\left(X_{i}\right) \mid \mathrm{pa}\left(X_{i}\right)$, where $\mathrm{pa}(X)$ are the parents of X and $\operatorname{nd}(X)$ the non-descendants of X.

The Chain Rule

- Let $U=\left\{X_{1}, \ldots, X_{n}\right\}$ be a universe of variables.
- From the joint $P(U)$, we can compute, e.g. $P\left(X_{i}\right), P\left(X_{i} \mid \varepsilon\right)$, etc.
- Let $N=(G, \mathcal{P})$ be a Bayesian network over U.
- For any ordering $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ (using the fundamental rule repeatedly),
$P\left(X_{1}, . ., N_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \cdot P\left(X_{n} \mid X_{1}, . ., X_{n-1}\right)$.
- Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a topological ordering wrt. N, i.e., $\mathrm{pa}\left(X_{i}\right) \subseteq\left\{X_{1}, \ldots, X_{i-1}\right\} \forall i$. d-separation yields $X_{i} \Perp \operatorname{nd}\left(X_{i}\right) \mid \mathrm{pa}\left(X_{i}\right)$, where $\mathrm{pa}(X)$ are the parents of X and $\operatorname{nd}(X)$ the non-descendants of X.
- The joint probability distribution of U is then

$$
P(U)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)
$$

Burglary or Earthquake

From the Chain Rule:

$$
P(B, A, E, R, W)=P(W \mid A) P(E) P(B) P(A \mid B, E) P(R \mid E)
$$

An instantiation of a variable X is an observation of a the exact state of X.

Example: Burglary or Earthquake

Now we have a representation of $P(B, A, E, R=y, W)$.

Probabilistic Inference

- What do we want to do with Bayesian networks?

Probabilistic Inference

- What do we want to do with Bayesian networks?
- We want to update our beliefs in the light of observations $P(X \mid \varepsilon)$.

Probabilistic Inference

- What do we want to do with Bayesian networks?
- We want to update our beliefs in the light of observations $P(X \mid \varepsilon)$.
- The probability of the evidence $P(\varepsilon)$.

Probabilistic Inference

- What do we want to do with Bayesian networks?
- We want to update our beliefs in the light of observations $P(X \mid \varepsilon)$.
- The probability of the evidence $P(\varepsilon)$.
- The joint probability $P\left(X_{i}, \ldots, X_{j}\right)$.

Probabilistic Inference

- What do we want to do with Bayesian networks?
- We want to update our beliefs in the light of observations $P(X \mid \varepsilon)$.
- The probability of the evidence $P(\varepsilon)$.
- The joint probability $P\left(X_{i}, \ldots, X_{j}\right)$.
- What is the configuration of the variables with the highest probability (max-propagation)?

Probabilistic Inference

- What do we want to do with Bayesian networks?
- We want to update our beliefs in the light of observations $P(X \mid \varepsilon)$.
- The probability of the evidence $P(\varepsilon)$.
- The joint probability $P\left(X_{i}, \ldots, X_{j}\right)$.
- What is the configuration of the variables with the highest probability (max-propagation)?
- What is $P\left(X \mid \varepsilon \backslash \varepsilon_{X}\right)$ for $X \in \varepsilon$?

Probabilistic Inference

- What do we want to do with Bayesian networks?
- We want to update our beliefs in the light of observations $P(X \mid \varepsilon)$.
- The probability of the evidence $P(\varepsilon)$.
- The joint probability $P\left(X_{i}, \ldots, X_{j}\right)$.
- What is the configuration of the variables with the highest probability (max-propagation)?
- What is $P\left(X \mid \varepsilon \backslash \varepsilon_{X}\right)$ for $X \in \varepsilon$?
- ...

Probabilistic Inference

- What do we want to do with Bayesian networks?
- We want to update our beliefs in the light of observations $P(X \mid \varepsilon)$.
- The probability of the evidence $P(\varepsilon)$.
- The joint probability $P\left(X_{i}, \ldots, X_{j}\right)$.
- What is the configuration of the variables with the highest probability (max-propagation)?
- What is $P\left(X \mid \varepsilon \backslash \varepsilon_{X}\right)$ for $X \in \varepsilon$?
- ...
- Computations performed in a secondary structure.

Answering a Query

- What is the probability of burglary given a phone call from Dr. Watson and a radio report on earthquake?

Answering a Query

- What is the probability of burglary given a phone call from Dr. Watson and a radio report on earthquake?

$$
P(B \mid \varepsilon)=\sum_{A, E, R, W} P(A, B, E, R, W)
$$

Answering a Query

- What is the probability of burglary given a phone call from Dr. Watson and a radio report on earthquake?

$$
\begin{aligned}
P(B \mid \varepsilon) & =\sum_{A, E, R, W} P(A, B, E, R, W) \\
& =\sum_{A, E, R, W} P(B) P(E) P(A \mid B, E) P(R=\mathrm{y} \mid E) P(W=\mathrm{y} \mid A)
\end{aligned}
$$

Answering a Query

- What is the probability of burglary given a phone call from Dr. Watson and a radio report on earthquake?

$$
\begin{aligned}
P(B \mid \varepsilon)= & \sum_{A, E, R, W} P(A, B, E, R, W) \\
= & \sum_{A, E, R, W} P(B) P(E) P(A \mid B, E) P(R=\mathrm{y} \mid E) P(W=\mathrm{y} \mid A) \\
= & P(B) \sum_{E} P(E) \sum_{A} P(A \mid B, E) \sum_{R} P(R=\mathrm{y} \mid E) \\
& \sum_{W} P(W=\mathrm{y} \mid A)
\end{aligned}
$$

Answering a Query

- What is the probability of burglary given a phone call from Dr. Watson and a radio report on earthquake?

$$
\begin{aligned}
P(B \mid \varepsilon)= & \sum_{A, E, R, W} P(A, B, E, R, W) \\
= & \sum_{A, E, R, W} P(B) P(E) P(A \mid B, E) P(R=\mathrm{y} \mid E) P(W=\mathrm{y} \mid A) \\
= & P(B) \sum_{E} P(E) \sum_{A} P(A \mid B, E) \sum_{R} P(R=\mathrm{y} \mid E) \\
& \sum_{W} P(W=\mathrm{y} \mid A)
\end{aligned}
$$

- In general, probabilistic inference is NP-hard.
- HUGIN uses a secondary structure for performing inference.

Complexity of Inference

Computing $P(B \mid \varepsilon)$ like

$$
P(B \mid \varepsilon)=\sum_{A, E, R, W} P(B) P(E) P(A \mid B, E) P(R=\mathrm{y} \mid E) P(W=\mathrm{y} \mid A)
$$

involves 160 multiplications, 32 additions, and a table with 32 numbers.

Complexity of Inference

Computing $P(B \mid \varepsilon)$ like

$$
P(B \mid \varepsilon)=\sum_{A, E, R, W} P(B) P(E) P(A \mid B, E) P(R=\mathrm{y} \mid E) P(W=\mathrm{y} \mid A)
$$

involves 160 multiplications, 32 additions, and a table with 32 numbers.
$P(B \mid \varepsilon)=P(B) \sum_{E} P(E) \sum_{A} P(A \mid B, E) \sum_{R} P(R=\mathrm{y} \mid E) \sum_{W} P(W=\mathrm{y} \mid A)$.
involves 32 multiplications, 12 additions, and two tables with 4 numbers and one with 8 numbers.

Complexity of Inference

Computing $P(B \mid \varepsilon)$ like

$$
P(B \mid \varepsilon)=\sum_{A, E, R, W} P(B) P(E) P(A \mid B, E) P(R=\mathrm{y} \mid E) P(W=\mathrm{y} \mid A)
$$

involves 160 multiplications, 32 additions, and a table with 32 numbers.
$P(B \mid \varepsilon)=P(B) \sum_{E} P(E) \sum_{A} P(A \mid B, E) \sum_{R} P(R=\mathrm{y} \mid E) \sum_{W} P(W=\mathrm{y} \mid A)$.
involves 32 multiplications, 12 additions, and two tables with 4 numbers and one with 8 numbers.

The key to efficient inference lies in finding a good summation order (also called an elimination order or elimination sequence).

Outline

(1) Bayesian Networks

(2) Constructing Bayesian networks
(1) Types of variables
(2) Undirected relations
(3) Measurement error
(- Simple bayes
(3) Independence of causal influence
(-) Parent divorcing
(0) Experts disagreement
(3) Structural uncertainty
(0) Functional uncertainty
(1) Model verification

- Hypothesis variables: Unobservable variables for which posterior probabilities are wanted.
Examples: Classification and diagnosis variables

Types of Variables

- Hypothesis variables: Unobservable variables for which posterior probabilities are wanted.

Examples: Classification and diagnosis variables

- Information variables: Variables for which observations are available, and which can provide information relevant for hypothesis variables

Examples: Sensor readings, background information, test results, etc.

Types of Variables

- Hypothesis variables: Unobservable variables for which posterior probabilities are wanted.
Examples: Classification and diagnosis variables
- Information variables: Variables for which observations are available, and which can provide information relevant for hypothesis variables
Examples: Sensor readings, background information, test results, etc.
- Mediating variables: Unobservable variables for which posterior probabilities are not wanted, but which play important roles for achieving
- correct conditional independence and dependence properties and
- efficient inference.

Mediating Variables

Mediating variables important for achieving correct conditional independence and dependence properties.

Example: Hormonal state (Ho): Blood test (BT) and urine test (UT) are not independent given pregnancy state (Pr).

The model without the variable Ho is wrong, since Ho does not depend deterministically on Pr , and BT and UT are independent given Ho.

Undirected Relations

Let $R(A, B, C)$ be a relation in numbers such that $R(a, b, c) \in\{0,1\}$. How can R be represented in a BN?

Undirected Relations

Let $R(A, B, C)$ be a relation in numbers such that $R(a, b, c) \in\{0,1\}$. How can R be represented in a BN?

- Introduce variable D with states "on" and "off".

Undirected Relations

Let $R(A, B, C)$ be a relation in numbers such that $R(a, b, c) \in\{0,1\}$. How can R be represented in a BN?

- Introduce variable D with states "on" and "off".
- Let $P(D=$ on $\mid A, B, C)=R(A, B, C)$ and $P(D=$ off $\mid A, B, C)=1-R(A, B, C)$.

Undirected Relations

Let $R(A, B, C)$ be a relation in numbers such that $R(a, b, c) \in\{0,1\}$. How can R be represented in a BN?

- Introduce variable D with states "on" and "off".
- Let $P(D=$ on $\mid A, B, C)=R(A, B, C)$ and $P(D=$ off $\mid A, B, C)=1-R(A, B, C)$.
- Clamp the state of D to on.

An Example: Constraints

- Assume we have four items, S_{1}, \ldots, S_{4}, where $\operatorname{dom}\left(S_{i}\right)=\left\{t_{1}, t_{2}\right\}$, such that two items must be of type t_{1} and two must be of type t_{2}.
- This constraint can be encoded in the CPT of a common child variable, C, with states on and off:

$$
P\left(C=\text { on } \mid s_{1}, s_{2}, s_{3}, s_{4}\right)= \begin{cases}1 & \text { if }\left|\left\{s_{i}=t_{1}\right\}\right|=2 \\ 0 & \text { otherwise }\end{cases}
$$

- By clamping C to "on", the constraint gets enforced.

A Constraints Example

- Assume we have 2 pairs of socks, S_{1}, \ldots, S_{4}, where $\operatorname{dom}\left(S_{i}\right)=\left\{t_{1}, t_{2}\right\}$.
- The "2 pairs" constraint can be encoded through the CPT

S_{1}	t_{1}								t_{2}							
S_{2}	t_{1}				t_{2}				t_{1}				t_{2}			
S_{3}	t_{1}		t_{2}													
S_{4}	t_{1}	t_{2}														
on	0	0	0	1	0	1	1	0	0	1	1	0	1	0	0	0
off	1	1	1	0	1	0	0	1	1	0	0	1	0	1	1	1

- By clamping to state "on", the " 2 pairs" constraint gets enforced: The CPT ensures that only configurations involving exactly 2 socks of type t_{1} (and 2 of type t_{2}) have non-zero probability.

Measurement Error

- Often the true value of an information variable, l, cannot be obtained due to measurement error.
- Measurement error modeled by introducing a new variable, say $O I$, representing the observed value of I.
- Size of measurement error represented in $P(O I \| I)$.
- I turned into mediating variable (i.e., unobservable).

Measurement Error: Example

- Assume that socks of type t_{1} are characterized by color c_{1} and pattern p_{2}, and socks of type t_{2} by color $c_{2} \neq c_{1}$ and pattern $p_{2} \neq p_{1}$.
- After several washes:
- c_{1} is mistaken for c_{2} in 3 out of 10 cases.
- c_{2} is mistaken for c_{1} in 2 out of 10 cases.
- p_{1} is mistaken for p_{2} in 2 out of 100 cases.
- p_{2} is always recognized correctly.
- Modeled as:
- $P\left(O C=c_{2} \mid C=c_{1}\right)=0.3$.
- $P\left(O C=c_{1} \mid C=c_{2}\right)=0.2$.
- $P\left(O P=p_{2} \mid P=p_{1}\right)=0.02$.
- $P\left(O P=p_{1} \mid P=p_{2}\right)=0$.

Simple (or Naïve) Bayes

- Consider a medical diagnosis situation:
- An exhaustive set of mutually exclusive diseases d_{1}, \ldots, d_{n}, represented as states of a hypothesis variable D.
- Assume that symptoms (information variables) S_{1}, \ldots, S_{n} are independent
 when the disease is known.

Simple (or Naïve) Bayes

- Consider a medical diagnosis situation:
- An exhaustive set of mutually exclusive diseases d_{1}, \ldots, d_{n}, represented as states of a hypothesis variable D.
- Assume that symptoms (information variables) S_{1}, \ldots, S_{n} are independent
 when the disease is known.
- However, the conclusion may be misleading: The assumption that information variables are independent given the hypothesis need not hold.

Simple (or Naïve) Bayes

- Consider a medical diagnosis situation:
- An exhaustive set of mutually exclusive diseases d_{1}, \ldots, d_{n}, represented as states of a hypothesis variable D.
- Assume that symptoms (information variables) S_{1}, \ldots, S_{n} are independent
 when the disease is known.
- However, the conclusion may be misleading: The assumption that information variables are independent given the hypothesis need not hold.
- Computationally and representationally a very efficient model that provides good results in many cases.

Simple Bayes Inference

- Let the possible hypotheses (e.g., diseases) be collected into one hypothesis variable H with prior $P(H)$.

Simple Bayes Inference

- Let the possible hypotheses (e.g., diseases) be collected into one hypothesis variable H with prior $P(H)$.
- For each information variable I, acquire $P(I \mid H)=L(H \mid I)$.

Simple Bayes Inference

- Let the possible hypotheses (e.g., diseases) be collected into one hypothesis variable H with prior $P(H)$.
- For each information variable I, acquire $P(I \mid H)=L(H \mid I)$.

- For any set of observations $\mathcal{I}=\left\{i_{1}, \ldots, i_{m}\right\}$ calculate $L(H \mid \mathcal{I})=\prod P\left(i_{j} \mid H\right)$.

Simple Bayes Inference

- Let the possible hypotheses (e.g., diseases) be collected into one hypothesis variable H with prior $P(H)$.
- For each information variable I, acquire $P(I \mid H)=L(H \mid I)$.

- For any set of observations $\mathcal{I}=\left\{i_{1}, \ldots, i_{m}\right\}$ calculate $L(H \mid \mathcal{I})=\prod P\left(i_{j} \mid H\right)$.
- The posterior $P(H \mid \mathcal{I})=\alpha L(H \mid \mathcal{I}) P(H)$, where $\alpha=P(\mathcal{I})^{-1}$, or expressed via Bayes' rule:

$$
P(H \mid \mathcal{I})=\frac{P(\mathcal{I} \mid H) P(H)}{P(\mathcal{I})}
$$

Independence of Causal Influence

- Exploit knowledge about the internal structure of CPTs to reduce the complexity of representation and inference.

- The contribution from C_{i} to E is assumed to be independent of the contribution from $C_{j}(i \neq j)$.
- C_{i} results in E unless it is inhibited by "something".
- The inhibitors are assumed to be independent:

$$
P\left(\text { Inhibitor }_{i}, \operatorname{Inhibitor~}_{j}\right)=P\left(\text { Inhibitor }_{i}\right) P\left(\text { Inhibitor }_{j}\right)=q_{i} q_{j}
$$

Let X_{1}, X_{2} be causes of the effect variable Y and let all variable be Boolean.

		Y	
X_{1}	X_{2}	off	on
off	off	1	0
off	on	0.2	0.8
on	off	0.1	0.9
on	on	0.02	0.98

$$
\begin{aligned}
P\left(Y=\text { on } \mid X_{1}=\text { on, } X_{2}=\text { on }\right) & =1-P\left(Y=\text { off } \mid X_{1}=\text { on, } X_{2}=\text { on }\right) \\
& =1-\prod_{i=1}^{2} q_{i}
\end{aligned}
$$

Example: Noisy OR

Assume that the causal influences of cold and angina on sore throat can be assumed to be independent. Also, assume that there is a "background" event that can cause the throat to be sore.

- The "background" event causes sore throat with probability 0.05 .
- Cold causes sore throat with probability 0.4.
- Angina causes sore throat with probability 0.7 .

Example: Noisy OR

Assume that the causal influences of cold and angina on sore throat can be assumed to be independent. Also, assume that there is a "background" event that can cause the throat to be sore.

- The "background" event causes sore throat with probability 0.05 .
- Cold causes sore throat with probability 0.4.
- Angina causes sore throat with probability 0.7 .

Then P (sore|cold, angina) can be described as a noisy-OR function:

- For each cause we just need to specify a single number, namely the inhibitor probability. In the example, we have inhibitor probabilities $0.95,0.6$, and 0.3 , respectively.
- The number of parameters needed grows only linearly with the number of parents.

Parent Divorcing

- Let X_{1}, \ldots, X_{n} be a set of causes of Y :

- The assumption is that the configurations of $\left(X_{1}, X_{2}\right)$ can be partitioned into sets c_{1}, \ldots, c_{m} such that $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in c_{i}$:

$$
P\left(y \mid x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(y \mid x_{1}^{\prime}, x_{2}^{\prime}, x_{3}, \ldots, x_{n}\right)
$$

- Divorcing is (representationally) efficient, if $|C|<\left|X_{1}\right| \cdot\left|X_{2}\right|$.

Experts Disagreement

- Assume you have a number of experts e_{1}, \ldots, e_{m}.
- All have an opinion about $P\left(Y \mid X_{1}, \ldots, X_{n}\right)$.
- $P\left(Y \mid X_{1}, \ldots, X_{n}, e_{i}\right)$ for each $i=1, \ldots, m$.

- Your prior belief in the experts is $P(E)$ where E has one state for each expert.

Structural Uncertainty

- Consider a variable Y with certain parents X_{3} and X_{4} : uncertain whether A or B is parent.

- $P(A / B \mid A, B, A B)$ is deterministic.
- $P(A B)$ encodes our belief about whether A or B is parent.

Functional Uncertainty

- Consider a situation where the parent set is known, but the functional relation is unknown.
- E is either $E=A \vee B$ or $E=A \wedge B$.

- Create node M with two states and and or.
- Let M be a model node of $P(E \mid A, B)$.
- $P(M)$ specifies our prior belief in the dependence.

Model Verification

- Very important to get the directions of the links right.
- The links and their directions determine the dependence and independence relations encoded in the DAG.
- Wrong dependence and independence relations may lead to faulty conclusions.
- The model structure can be verified by checking the dependence and independence relations.
- Use d-separation to uncover the relations.

Model Verification: A Simple Example

Assume we have the following three Boolean variables:
A: Two or more PC's bought within a few days using the same credit card.
B : Card used almost at the same time at different locations.
C : Fraud.

Model Verification: A Simple Example

Assume we have the following three Boolean variables:
A: Two or more PC's bought within a few days using the same credit card.
B : Card used almost at the same time at different locations.
C : Fraud.

Two possible models:

Which model is correct?

Fraud: Model 1

This model tells us that observing A (or B) does not provide us with any information about B (or A) when C is unknown.

Fraud: Model 1

This model tells us that observing A (or B) does not provide us with any information about B (or A) when C is unknown. Wrong!

Fraud: Model 1

This model tells us that observing A (or B) does not provide us with any information about B (or A) when C is unknown. Wrong!

Observing A (or B) increases our belief in C, which in turn increases our belief that we might also observe B (or A). Therefore, this model gives wrong probabilities!

Fraud: Model 2

This model rightfully tells us that

- A and B are dependent when we have no hard evidence on C : Observing A (or B) will increase our belief that we will also observe B (or A), and
- A and B are independent when C is known: If we know we are considering a fraud case, then observing A (or B) will not change our belief about whether or not we are going to observe B (or A).

Summary

- Mediating variables
- Simple Bayes model
- Constructing Bayesian networks
- Undirected relations
- Simple bayes
- Independence of causal influence
- Parent divorcing
- Experts disagreement
- Structural uncertainty
- Functional uncertainty
- Model verification
- Other issues
- Object-oriented Bayesian networks
- Dynamic Bayesian networks
- Continuous variables
- . .

