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Artificial Intelligence / Machine Intelligence

What is artificial intelligence?
Device or service that

reasons and makes decisions under uncertainty,
extracts knowledge from data/experience, and
solves problems efficiently and adapts to new situations.
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Artificial Intelligence / Machine Intelligence

What is artificial intelligence?
Device or service that

reasons and makes decisions under uncertainty,
extracts knowledge from data/experience, and
solves problems efficiently and adapts to new situations.

Why use artificial intelligence?

Automate tasks.
Automate reasoning and decision making.
Extract knowledge and information from data.
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Expert Systems

The first expert systems were constructed in the late 1960s.

Expert System = Knowledge Base + Inference Engine
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Expert Systems

The first expert systems were constructed in the late 1960s.

Expert System = Knowledge Base + Inference Engine

The first expert systems were constructed as computer models of
the expert, e.g. production rules like:

if condition, then fact

if condition, then action
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Expert Systems

The first expert systems were constructed in the late 1960s.

Expert System = Knowledge Base + Inference Engine

The first expert systems were constructed as computer models of
the expert, e.g. production rules like:

if condition, then fact

if condition, then action

In most systems there is a need for handling uncertainty:

if condition with certainty x , then fact with certainty f (x)

The algebras for combining certainty factors are not
mathematically coherent and can lead to incorrect conclusions.

Reykjavik University, April/May 2005, BNs and DGs: Introduction 8



Normative Expert Systems

Observation


Action


Action


Observation


Model the problem domain, not the expert.

Support the expert, don’t substitute the expert.

Use classical probability calculus and decision theory, not a
non-coherent uncertainty calculus.

Closed-world representation of a given problem domain (i.e.,
the domain model assumes some given background conditions
or context in which the model is valid).
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Motivation for Normative Approach

Some important motivations for using model-based systems:

Procedure-based (extensional) systems are semantically
sloppy, model-based (intensional) systems are not.

Speak the language of causality, use a single knowledge base
to provide simulation, diagnosis, and prognosis.

Both knowledge and data can be used to construct Bayesian
networks.

Adapt to individual settings.

Probabilities make it easy to interface with decision and utility
theory.
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Bayes’ Rule

P(Y |X ) =
P(X |Y )P(Y )

P(X )

Rev. Thomas Bayes (1702–1761), an 18th century minister
from England.

The rule, as generalized by Laplace, is the basic starting point
for inference problems using probability theory as logic.
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Example: Chest Clinic

Chest Clinic

Shortness-of-breath (dyspnoea) may be due to
tuberculosis, lung cancer or bronchitis, or none of
them, or more than one of them. A recent visit to
Asia increases the chances of tuberculosis, while
smoking is known to be a risk factor for both lung
cancer and bronchitis. The results of a single chest
X-ray do not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence
of dyspnoea.

This is a typical diagnostic situation.
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Bayesian Decision Problems

Bayesian networks can be augmented with explicit representation
of decisions and utilities. Such augmented models are denoted
influence diagrams (or decision networks).

Bayesian decision theory provides a solid foundation for
assessing and thinking about actions under uncertainty.

Intuitive, graphical specification of a decision problem.

Automatic determination of a optimal strategy and
computation of the maximal expected utility of this strategy.
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Example: Oil Wildcatter

Oil Wildcatter

An oil wildcatter must decide either to drill or not to
drill. He is uncertain whether the hole is dry, wet, or
soaking, The wildcatter could perform a seismic
soundings test that will help determine the geological
structure of the site. The soundings will give a closed
reflection pattern (indication of much oil), an open
pattern (indication of some oil), or a diffuse pattern
(almost no hope of oil). The cost of testing is
$10,000 whereas the cost of drilling is $70,000. The
utility of drilling is $270,000, $120,000, and $0 for a
soaking, wet, and dry hole, respectively.

This is a typical decision scenario.
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Normative Systems — Characteristics

Systems based on Bayesian networks and influence diagrams are
normative, and have the following characteristics:

Graph representing causal relations.

Strength of relations by probabilities.

Preferences represented by utilities.

Recommendations based on maximizing expected utility.
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Normative Systems — Task Categories

The class of tasks suitable for normative systems can be divided
into three broad subclasses:

Forecasting:

Computing probability distributions for future events.

Interpretation:

Pattern identification (diagnosis, classification).

Planning:

Generation of optimal sequences of decisions/actions.
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Sample Application Areas of Normative Systems

Medical

Software

Info. proc.

Industry

Economy

Military

Agriculture

Mining

Law enforcement

Etc.
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Contents of Course

Lecture plan:
1 Causal networks and Bayesian probability calculus Tue 26/4 UK
2 Construction of Bayesian networks Wed 27/4 UK
3 Workshop: Construction of Bayesian networks Thu 28/4 UK
4 Inference and analyses in Bayesian networks Fri 29/4 UK
5 Decisions, utilities and decision trees Mon 2/5 FVJ
6 Troubleshooting and influence diagrams Tue 3/5 FVJ
7 Solution of influence diagrams Wed 4/5 FVJ
8 Methods for analysing an ID spec. dec. scenario Fri 6/5 FVJ
9 Workshop: Construction of influence diagrams Mon 9/5 FVJ

10 Learning parameters from data Tue 10/5 FVJ
11 Bayesian networks as classifiers Wed 11/5 FVJ
12 Learning the structure of Bayesian networks Thu 12/5 FVJ
13 Continuous variables Fri 13/5 FVJ

The two workshops have a duration of 4 hours.

All lectures start at 10:00.

The plan is subject to changes.
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Literature, Requirements, Etc.

Literature:

Finn V. Jensen (2001), Bayesian Networks and Decision
Graphs, Springer-Verlag.

Exercises suggested after each lecture.

To pass the course you are required to

attend all lectures and
hand in written answers to home assignments.

A number of the exercises require access to the HUGIN Tool.
See the course home page for instructions on downloading and
installing the HUGIN Tool.

Home page: www.cs.aau.dk/∼uk/teaching/Reykjavik-05/.
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Causal Networks and Relevance Analysis

1 Causal networks, variables and DAGs
2 Relevance analysis (transmission of evidence)

Three types of connections
Explaining away
d-separation
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Burglary or Earthquake

Burglary or Earthquake

Mr. Holmes is working in his office when he receives a
phone call from his neighbor Dr. Watson, who tells
him that Holmes’ burglar alarm has gone off.
Convinced that a burglar has broken into his house,
Holmes rushes to his car and heads for home. On his
way, he listens to the radio, and in the news it is
reported that there has been a small earthquake in
the area. Knowing that earthquakes have a tendency
to turn burglar alarms on, he returns to his work.
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Burglary or Earthquake: The Model

Burglary Earthquake

Alarm RadioNews

WatsonCalls

Each node in the graph represents a random variable.

In this example, each variable has state space {no, yes}.

Reykjavik University, April/May 2005, BNs and DGs: Causal Networks and Relevance Analysis 24



Burglary or Earthquake: The Model

Burglary Earthquake

Alarm RadioNews

WatsonCalls

Each node in the graph represents a random variable.

In this example, each variable has state space {no, yes}.

Three types of connections:

Serial

Diverging

Converging
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Serial Connections

“Burglary” has a causal influence on “Alarm”, which in turn
has a causal influence on “Watson calls”.

Burglary Alarm WatsonCalls
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Serial Connections

“Burglary” has a causal influence on “Alarm”, which in turn
has a causal influence on “Watson calls”.

Burglary Alarm WatsonCalls

If we observe “Alarm”, any information about the state of
“Burglary” is irrelevant to our belief about “Watson calls”
and vice versa.

Burglary Alarm WatsonCalls
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Serial Connections

X has a causal influence on Y that has a causal influence on Z :

X Y Z

Serial Connections

Information may be transmitted through a serial
connection unless the state of the variable (Y ) in the
connection is known.
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Diverging Connections

“Earthquake” has a causal influence on both “Alarm” and
“Radio news”.

Alarm Earthquake RadioNews
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Diverging Connections

“Earthquake” has a causal influence on both “Alarm” and
“Radio news”.

Alarm Earthquake RadioNews

If we observe “Earthquake”, any information about the state
of “Alarm” is irrelevant for our belief about an earthquake
report in the “Radio news” and vice versa.

Alarm Earthquake RadioNews
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Diverging Connections

Y has a causal influence on both X and Z :

X Y Z

Diverging Connections

Information may be transmitted through a diverging
connection, unless the state of the variable (Y ) in the
connection is known.
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Converging Connections

“Alarm” is causally influenced by both “Burglary” and
“Earthquake”.

Burglary Alarm Earthquake
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Converging Connections

“Alarm” is causally influenced by both “Burglary” and
“Earthquake”.

Burglary Alarm Earthquake

If we observe “Alarm” and “Burglary”, then this will effect
our belief about “Earthquake”: Burglary explains the alarm,
reducing our belief that earthquake is the triggering factor,
and vice versa.

Burglary Alarm Earthquake
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Converging Connections

Both X and Z have a causal influence on Y :

X Y Z

Diverging Connections

Information may only be transmitted through a
converging connection if either information about the
state of the variable in the connection (Y ) or one of
its descendants is available.
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Transmission of Evidence

Serial

Evidence may be
transmitted unless the
state of B is known.

A B C

Diverging

Evidence may be
transmitted unless the
state of B is known.

B

A1 A1 · · · An

Converging

Evidence may only be
transmitted if B or
one of its descendants
has received evidence.

A1 A1 · · · An

B

It takes hard evidence to block a serial or diverging connection, whereas to
open a converging connection soft evidence suffices.

Notice the explaining away effect in a converging connection: B has been
observed; then if Ai is observed, it explains the observation of B and the other
causes are explained away (i.e., the beliefs in them are reduced).
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Explaining Away I

Burglary Earthquake

Alarm RadioNews

WatsonCalls

The converging connection realizes the explaining away
mechanism: The news about the earthquake strongly suggests that
the earthquake is the cause of the alarm, and thereby explains
away burglary as the cause.

The ability to perform this kind of intercausal reasoning is unique
for graphical models and is one of the main differences between
automatic reasoning systems based on graphical models and those
based on e.g. production rules.
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Explaining Away II

Assume that we have observed the symptom RunnyNose, and that
there are two competing causes of it: Cold and Allergy. Observing
Fever, however, provides strong evidence that cold is the cause of
the problem, while our belief in Allergy being the cause decreases
substantially (i.e., it is explained away by the observation of Fever).

intercausal
reasoning

Cold Allergy

causal
reasoning

diagnostic
reasoning

Fever RunnyNose

The ability of probabilistic networks to automatically perform such
intercausal inference is a key contribution to their reasoning power.
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d-separation

The rules for transmission of evidence over serial, diverging, and
converging connections can be combined into one general rule
known as d-separation:

d-separation

A path π = 〈u, . . . , v〉 in a DAG, G = (V , E ), is
blocked by S ⊆ V if π contains a node w such that
either

w ∈ S and the connections in π does not meet
head-to-head at w , or

w 6∈ S , w has no descendants in S , and the
connections in π meet head-to-head at w .

For three (not necessarily disjoint) subsets A, B, S of
V , A and B are said to be d-separated hvis all paths
between A and B are blocked by S .
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d-separation: Dependence and Independence

If X and Y are not d-separated, they are d-connected.

d-separation provides a criterion for reading statements of
(conditional) dependence and independence (or relevance and
irrelevance) from a causal structure.

Dependence and independence depends on what you know
(and do not know).
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Example: Dependence and Independence

A B

C D E

F G

H

1 C and G are d-connected.

2 C and E are d-separated.

3 C and E are d-connected
given evidence on G .

4 A and G are d-separated
given evidence on D and
E .

5 A and G are d-connected
given evidence on D.
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Summary

Causal networks

Serial/diverging/converging connections
Transmission of evidence in causal networks
Explaining away (intercausal reasoning)
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Summary

Causal networks

Serial/diverging/converging connections
Transmission of evidence in causal networks
Explaining away (intercausal reasoning)

Dependence and independence

d-separation in causal networks
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Bayesian Probability Theory

Axioms of probability theory

Probability calculus

Fundamental rule
Bayes’ rule
The chain rule
Combination and marginalization

Conditional independence

Evidence
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Axioms of Probability

The probability of an event, a, is denoted P(a). Probabilities obey
the following axioms:

1 0 ≤ P(a) ≤ 1, with P(a) = 1 if a is certain.
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Axioms of Probability

The probability of an event, a, is denoted P(a). Probabilities obey
the following axioms:

1 0 ≤ P(a) ≤ 1, with P(a) = 1 if a is certain.

2 If events a and b are mutually exclusive, then

P(a or b) ≡ P(a ∨ b) = P(a) + P(b).

In general, if events a1, a2, . . . are pairwise incompatible, then

P

(

⋃

i

ai

)

= P(a1) + P(a2) + · · · =
∑

i

P(ai ).
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Axioms of Probability

The probability of an event, a, is denoted P(a). Probabilities obey
the following axioms:

1 0 ≤ P(a) ≤ 1, with P(a) = 1 if a is certain.

2 If events a and b are mutually exclusive, then

P(a or b) ≡ P(a ∨ b) = P(a) + P(b).

In general, if events a1, a2, . . . are pairwise incompatible, then

P

(

⋃

i

ai

)

= P(a1) + P(a2) + · · · =
∑

i

P(ai ).

3 Joint probability: P(a and b) ≡ P(a, b) = P(b |a)P(a).

Reykjavik University, April/May 2005, BNs and DGs: Bayesian Probability Theory 47



Conditional Probabilities

The basic concept in the Bayesian treatment of uncertainty in
causal networks is conditional probability.
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Conditional Probabilities

The basic concept in the Bayesian treatment of uncertainty in
causal networks is conditional probability.

Every probability is conditioned on a context. For example,

“P(six) =
1

6
” ≡ “P(six |SymmetrixDie) =

1

6
”
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Conditional Probabilities

The basic concept in the Bayesian treatment of uncertainty in
causal networks is conditional probability.

Every probability is conditioned on a context. For example,

“P(six) =
1

6
” ≡ “P(six |SymmetrixDie) =

1

6
”

In general, given the event b, the conditional probability of
the event a is x :

P(a |b) = x .

It is not “whenever b we have P(a) = x”.
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Conditional Probabilities

The basic concept in the Bayesian treatment of uncertainty in
causal networks is conditional probability.

Every probability is conditioned on a context. For example,

“P(six) =
1

6
” ≡ “P(six |SymmetrixDie) =

1

6
”

In general, given the event b, the conditional probability of
the event a is x :

P(a |b) = x .

It is not “whenever b we have P(a) = x”.

Conditional Probability

If b is true and everything else known is irrelevant for
a, then the probability of a is x .
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A Justification of Axiom 3 — The Fundamental Rule

C : a set of cats

B: the subset of brown cats (m)

A: the subset of Abyssinians (i of them are brown)

C

B A

m
i

n

f (A |B, C ) =
i

m
, f (B |C ) =

m

n
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A Justification of Axiom 3 — The Fundamental Rule

C : a set of cats

B: the subset of brown cats (m)

A: the subset of Abyssinians (i of them are brown)

C

B A

m
i

n

f (A |B, C ) =
i

m
, f (B |C ) =

m

n

f (A, B|C ) =
i

n
=

i

m
·
m

n
= f (A |B, C ) · f (B |C ).
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Discrete Random Variables

A discrete random variable, A, has a set of exhaustive and
mutually exclusive states, dom(A) = {a1, . . . , an}.
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Discrete Random Variables

A discrete random variable, A, has a set of exhaustive and
mutually exclusive states, dom(A) = {a1, . . . , an}.

In this context, an event is an assignment of values to a set of
variables and

P(A = a1 ∨ · · · ∨ A = an) = P(A = a1) + · · · + P(A = an)

=

n
∑

i=1

P(A = ai ) = 1.
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Discrete Random Variables

A discrete random variable, A, has a set of exhaustive and
mutually exclusive states, dom(A) = {a1, . . . , an}.

In this context, an event is an assignment of values to a set of
variables and

P(A = a1 ∨ · · · ∨ A = an) = P(A = a1) + · · · + P(A = an)

=

n
∑

i=1

P(A = ai ) = 1.

Capital letters will denote a variable, or a set of variables, and
lower case letters will denote states (values) of variables.

Example: R = r , B = ¬b (Rain? = Raining, BirdsOnRoof =
No) is an event.
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Probability Distributions for Variables

If X is a variable with states x1, . . . , xn, then P(X ) denotes a
probability distribution over these states:

P(X ) = (P(X = x1), . . . ,P(X = xn)),

where

P(X = xi ) ≥ 0 and
n
∑

i=1

P(X = xi ) = 1.

P(X |pa(X )) consists of one P(X ) for each configuration of
the parents, pa(X ), of X .

B E

A

B = n B = n B = y B = y
E = n E = y E = n E = y

A = n 0.999 0.1 0.05 0.01
A = y 0.001 0.9 0.95 0.99
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Rule of Total Probability

P(A) = P(A, B = b1) + · · · + P(A, B = bn)

= P(A |B = b1)P(B = b1) + · · · + P(A |B = bn)P(B = bn).
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Rule of Total Probability

P(A) = P(A, B = b1) + · · · + P(A, B = bn)

= P(A |B = b1)P(B = b1) + · · · + P(A |B = bn)P(B = bn).

Computing P(A) from P(A, B) using the rule of total probability is
often called marginalization, and is written compactly as

P(A) =
∑

i

P(A, B = bi ),

or even shorter as
P(A) =

∑

B

P(A, B).
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The Fundamental Rule and Bayes’ Rule

The fundamental rule of probability calculus on variables:

P(X , Y ) = P(X |Y )P(Y )

= P(Y |X )P(X ).
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The Fundamental Rule and Bayes’ Rule

The fundamental rule of probability calculus on variables:

P(X , Y ) = P(X |Y )P(Y )

= P(Y |X )P(X ).

Bayes’ rule:

P(Y |X )

=
P(X |Y )P(Y )

P(X )

=
P(X |Y )P(Y )

P(X |Y = y1)P(Y = y1) + · · · + P(X |Y = yn)P(Y = yn)
.
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Simple Bayesian Inference

Graphically, inference using Bayes’ rule corresponds to reversing
arrows:

A A

B B

P(A, B) = P(A)P(B |A) P(A, B) = P(B)P(A |B)

P(A |B) =
P(A, B)

P(B)
=

P(A)P(B |A)
∑

a∈dom(A)

P(A = a)P(B |A = a)
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The Chain Rule

Let V = {X1, . . . ,Xn} be a set of variables

Let P(V ) denote the joint probability distribution over V

Using the Fundamental Rule, P(V ) can be written as

P(V ) =
n
∏

i=1

P(Xi |X1, . . . ,Xi−1)

Thus, any joint can be represented as a product of
conditionals, e.g.,

P(X1, X2, X3) = P(X3 |X1, X2)P(X2, X1)

= P(X3 |X1, X2)P(X2 |X1)P(X1)
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The Chain Rule and Graph Structure

Let V = {A, B, C , D}. Then P(V ) factorizes as

P(V ) = P(A, B, C , D) = P(A |B, C , D)P(B, C , D)
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The Chain Rule and Graph Structure

Let V = {A, B, C , D}. Then P(V ) factorizes as

P(V ) = P(A, B, C , D) = P(A |B, C , D)P(B, C , D)

= P(A |B, C , D)P(B |C , D)P(C , D)
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The Chain Rule and Graph Structure

Let V = {A, B, C , D}. Then P(V ) factorizes as

P(V ) = P(A, B, C , D) = P(A |B, C , D)P(B, C , D)

= P(A |B, C , D)P(B |C , D)P(C , D)

= P(A |B, C , D)P(B |C , D)P(C |D)P(D) (1)

(1)

A

B C

D
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The Chain Rule and Graph Structure

Let V = {A, B, C , D}. Then P(V ) factorizes as

P(V ) = P(A, B, C , D) = P(A |B, C , D)P(B, C , D)

= P(A |B, C , D)P(B |C , D)P(C , D)

= P(A |B, C , D)P(B |C , D)P(C |D)P(D) (1)

= P(B |A, C , D)P(D |A, C )P(C |A)P(A) (2)

(1)

A

B C

D

(2)

A

B C

D
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The Chain Rule and Graph Structure

Let V = {A, B, C , D}. Then P(V ) factorizes as

P(V ) = P(A, B, C , D) = P(A |B, C , D)P(B, C , D)

= P(A |B, C , D)P(B |C , D)P(C , D)

= P(A |B, C , D)P(B |C , D)P(C |D)P(D) (1)

= P(B |A, C , D)P(D |A, C )P(C |A)P(A) (2)

= · · ·

(1)

A

B C

D

(2)

A

B C

D

etc.
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Combination and Marginalization

Combination of probability distributions is multiplication.
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Combination and Marginalization

Combination of probability distributions is multiplication.

Using the Rule of Total Probability, from P(X , Y ) the
marginal probability distribution P(X ) can be computed:

P(x) = P(X = x) =
∑

y∈dom(Y )

P(X = x , Y = y).
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Combination and Marginalization

Combination of probability distributions is multiplication.

Using the Rule of Total Probability, from P(X , Y ) the
marginal probability distribution P(X ) can be computed:

P(x) = P(X = x) =
∑

y∈dom(Y )

P(X = x , Y = y).

A variable Y is marginalized out of P(X , Y ) as

P(X ) =
∑

y∈dom(Y )

P(X , Y = y) or short: P(X ) =
∑

Y

P(X , Y ).
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Combination and Marginalization

Combination of probability distributions is multiplication.

Using the Rule of Total Probability, from P(X , Y ) the
marginal probability distribution P(X ) can be computed:

P(x) = P(X = x) =
∑

y∈dom(Y )

P(X = x , Y = y).

A variable Y is marginalized out of P(X , Y ) as

P(X ) =
∑

y∈dom(Y )

P(X , Y = y) or short: P(X ) =
∑

Y

P(X , Y ).

The unity rule:

∑

X

P(X |pa(X )) = 1pa(X )
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Combination and Marginalization — Example

Combination:

b1 b2

a1 0.4 0.2
a2 0.5 0.6
a3 0.1 0.2

×
b1 b2

0.3 0.7
=

b1 b2

a1 0.12 0.14
a2 0.15 0.42
a3 0.03 0.14
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Combination and Marginalization — Example

Combination:

b1 b2

a1 0.4 0.2
a2 0.5 0.6
a3 0.1 0.2

×
b1 b2

0.3 0.7
=

b1 b2

a1 0.12 0.14
a2 0.15 0.42
a3 0.03 0.14

Marginalization:

P(A) =

b1 b2

a1 0.12 + 0.14
a2 0.15 + 0.42
a3 0.03 + 0.14

= (0.26, 0.57, 0.17)
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Conditional Independence

A variable X is independent of Y given Z if

P(xi |yj , zk) = P(xi |zk), ∀i , j , k

Shorthand:
P(X |Y , Z ) = P(X |Z )

Notice that the definition is symmetric

Notation: X ⊥⊥ Y |Z
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Conditional Independence

A variable X is independent of Y given Z if

P(xi |yj , zk) = P(xi |zk), ∀i , j , k

Shorthand:
P(X |Y , Z ) = P(X |Z )

Notice that the definition is symmetric

Notation: X ⊥⊥ Y |Z

Under X ⊥⊥ Y |Z the Fundamental Rule reduces to:

P(X , Y |Z ) = P(X |Y , Z )P(Y |Z )

= P(X |Z )P(Y |Z )
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Graphical Representations of X ⊥⊥ Y |Z

X and Y are conditionally independent given Z :

P(X , Y , Z ) = P(X |Y , Z )P(Y |Z )P(Z )

= P(X |Z )P(Y |Z )P(Z )

Z

X Y
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Graphical Representations of X ⊥⊥ Y |Z

X and Y are conditionally independent given Z :

P(X , Y , Z ) = P(X |Y , Z )P(Y |Z )P(Z )

= P(X |Z )P(Y |Z )P(Z )

Z

X Y

P(X , Y , Z ) = P(X )P(Y |X , Z )P(Z |X )

= P(X )P(Y |Z )P(Z |X )

Z

X Y
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Graphical Representations of X ⊥⊥ Y |Z

X and Y are conditionally independent given Z :

P(X , Y , Z ) = P(X |Y , Z )P(Y |Z )P(Z )

= P(X |Z )P(Y |Z )P(Z )

Z

X Y

P(X , Y , Z ) = P(X )P(Y |X , Z )P(Z |X )

= P(X )P(Y |Z )P(Z |X )

Z

X Y

P(X , Y , Z ) = P(X |Y , Z )P(Y )P(Z |Y )

= P(X |Z )P(Y )P(Z |Y )

Z

X Y
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Evidence

Definition 1
An instantiation of a variable X is an observation on the exact
state of X .

f (X ) = (0, . . . , 0, 1, 0, . . . , 0)
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Evidence

Definition 1
An instantiation of a variable X is an observation on the exact
state of X .

f (X ) = (0, . . . , 0, 1, 0, . . . , 0)

Definition 2
Let X be a variable with n states. An evidence function on X is an
n-dimensional table of zeros and ones.

f (X ) = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)
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Evidence

Definition 1
An instantiation of a variable X is an observation on the exact
state of X .

f (X ) = (0, . . . , 0, 1, 0, . . . , 0)

Definition 2
Let X be a variable with n states. An evidence function on X is an
n-dimensional table of zeros and ones.

f (X ) = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)

Definition 3
Let X be a variable with n states. An evidence function (likelihood
evidence) on X is an n-dimensional table of non-negative numbers.

f (X ) = (0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0)
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Evidence

Let U be a set of variables and let {X1, . . . ,Xn} be the subset
of U.

Given a set of evidence ε = {ε1, . . . , εm} we want to compute
P(Xi |ε), for all i .

This can be done via

P(Xi |ε) =

∑

X∈U\{Xi}
P(U, ε)

∑

U P(U, ε)
=

P(Xi , ε)

P(ε)
.

This requires the full joint P(U).
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Summary

Axioms of probability theory.

Conditional probabilities.

The fundamental rule and Bayes’ rule.

Probability calculus.

Fundamental Rule.
Bayes’ Rule.
Combination and marginalization.
The chain rule.

Conditional independence.

Evidence.
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