SACSO - A Bayesian-Network Tool for Automated Diagnosis of Printing Systems

Claus Skaanning1, Finn V. Jensen2, Uffe Kjærulff2,

Lynn Parker1, Paul Pelletier1 and Lasse Rostrup-Jensen1.

1 Hewlett-Packard Company

2 Department of Computer Science, Aalborg University, Denmark

Abstract

This paper describes a real world Bayesian network application - diagnosis of a printing system. The printing system consists of a large number of individual components that could each be the cause of the problem that we want to diagnose. The paper describes the components of the models and the ideas that went into the construction of them. It finally describes how to add troubleshooting capability to an already existing Bayesian network representing the causal relations between causes and subcauses in the printing domain.

1 Introduction

In this paper we will describe an application of Bayesian networks in the area of diagnosis. Diagnosis has been a crucial application area for AI methodologies due to its high complexity and its requirements for data. It has been an area of much active research in the last decade (de Kleer and Williams, Genesereth, 1984, Heckerman et al., 1995, Breese and Heckerman, 1996). The purpose of diagnostic systems is to ultimately determine the set of faults that best explains the symptoms. The system can request information from the world, and each time new information is obtained, it will update its current view of the world.

This work is partly based on Heckerman et al. (1995) who presented a myopic troubleshooter that suggests sequences of observations, repairs, and configuration changes to obtain further information. The troubleshooter is myopic, i.e., it only has one-step lookahead. Our application is a printing system which consists of several components, the application the user is printing from, the printer driver, the network connection, the server controlling the printer, the printer itself, etc. It is a complex task to troubleshoot such a system, and the printer industry spends millions of dollars a year on customer support. The majority of these expenses are consumed by support agents being sent out to solve problems that could have been handled by phone calls. Therefore, automating the troubleshooting process as much as possible would be highly beneficial. When completed, it is expected that the diagnosis system can run as a web-based application directly accessible to customers. If the customer is guided through a successful diagnostic sequence that concludes with a solution to his problem, then one less phone call will be received. If, on the other hand, the troubleshooter is unable to find a solution, all the information gathered so far will be transferred to a support agent who will continue the troubleshooting. Given all previously gathered information, the support agent will be able to save much time by skipping steps already performed. The troubleshooter is expected to be extended with data probes that automatically gather information from the customer’s environment (printer, PC, network, etc.) without involving the customer.

We have modeled the printing system with a Bayesian network: a directed acyclic graph representing the causal relationships between variables that associates conditional probability distributions to variables given their parent variables. Efficient methods for exact updating of probabilities in Bayesian networks have been developed by e.g., Lauritzen & Spiegelhalter (1988) and Jensen, Lauritzen & Olesen (1990), and implemented in the HUGIN expert system shell (Andersen et al., 1989), used for constructing the models in this project.

2 Bayesian Networks and Troubleshooting

Bayesian networks provide a way of modeling problem areas using probability theory. The Bayesian network representation of the problem can then be used to provide information on some variables given information on others. A Bayesian network consists of a set of variables (nodes) and a set of directed arcs connecting the variables. Each variable has a set of mutually exclusive states. The variables together with the directed arcs form a directed acyclic graph (DAG). For each variable v with parents w1,...,wn, there is defined a conditional probability table P(v|w1,...,wn). Obviously, if v has no parents, this table reduces to the prior probability P(v). For further introduction to Bayesian networks, consult Jensen (1996).

Bayesian networks have been used for many application domains with uncertainty, such as medical diagnosis, pedigree analysis, planning, debt detection, bottleneck detection, etc. However, the major application area has been diagnosis, which lends itself very well to the modeling techniques of Bayesian networks, i.e., underlying factors that cause diseases/malfunctions that again cause symptoms.

The currently most efficient method for exact belief updating in Bayesian networks is the junction-tree method (Jensen, Lauritzen & Olesen, 1990) that transforms the network into a so-called junction tree. The junction tree basically clusters the variables such that a tree is obtained (i.e., all loops are removed) and the clusters are as small as possible. In this tree, a message passing scheme can then update the beliefs of all unobserved variables given the observed variables. Exact updating of Bayesian networks is NP-hard (Cooper, 1990), however, it is still very efficient for some classes of Bayesian networks. The current network for the printing system diagnosis contains approximately 2000 variables and many loops, but still it can be transformed to a junction tree with reasonably efficient belief updating.

Heckerman, Breese and Rommelse (1995) presented a method for performing sequential troubleshooting using Bayesian networks. The current application is based on some of the ideas of their work. These will be presented in the following.

The device that we want to troubleshoot has n components represented by the variables c1,...,cn. In the printing system application, components could for instance be the printer driver, the spooler, etc. Heckerman, Breese and Rommelse follows the single-fault assumption which specifies that exactly one component is malfunctioning and that this component is the cause of the problem. If pi denotes the probability that component ci is abnormal given the current state of information, we must have
[image: image1.wmf]å

=

=

n

i

i

p

1

1

 under the single-fault assumption. Each component ci has a cost of observation, denoted
[image: image2.wmf]o

i

C

(measured in time and/or money), and a cost of repair
[image: image3.wmf].

r

i

C

Under some additional mild assumptions not reproduced here (but can be found in Heckerman et al. (1995)), it can then be shown that with failure probabilities pi updated with current information, it is always optimal to observe the component that has the highest ratio pi/
[image: image4.wmf]o

i

C

. This is intuitive, as the ratio balances probability of failure with cost of observation and indicates the component with the highest probability of failure and the lowest cost of observation. Under the single-fault assumption, an optimal observation-repair sequence is thus given by the following plan:

1. Compute the probabilities of component faults pi given that the device is not functioning.

2. Observe the component with the highest ratio pi/
[image: image5.wmf]o

i

C

.
3. If the component is faulty, then repair it.
4. If a component was repaired, then terminate. Otherwise, go to step 1.
In the above plan, if a component is repaired in step 3, we know from the single-fault assumption that the device must be repaired, and the troubleshooting process can be stopped. The algorithm works reasonably well if the single-fault assumption is lifted, in which case step 1 will take into account new information gained in steps 2 and 3, and step 4 will be:

4. If the device is still malfunctioning, go to step 1.

Heckerman, Breese and Rommelse also introduce a theory for handling service calls (used when the expected cost of the optimal troubleshooting step is higher), an approximate theory for handling systems with multiple faults, a theory for incorporating non-base observations (observations not directly related to components, but which potentially provide useful information). In the companion paper (Breese and Heckerman, 1996), the method is further advanced to also enable configuration changes in the system to provide further useful information that can potentially lower the cost of the optimal troubleshooting sequence.

3 The Basic Causal Models

3.1 An Overview

The SACSO
 printing diagnosis system consists of several Bayesian networks modeling different types of printing errors. These networks and their interrelations are shown in Figure 1. Each of the large circles represents one component of the model. The components are described in the following.

· The Dataflow model covers all errors where the customer does not get output on the printer when attempting to print, or where he gets corrupted output on the printer. These errors can be caused by any of the components in the flow from application to printer that handles the data.

· The Unexpected output model handles all categories of unexpected output that can occur on the printer, i.e., job not duplexed, spots/stripes/banding/etc. on the paper. For some types of unexpected output, the corrupt data caused by some component in the dataflow can be a cause, thus the dataflow component is a parent of this component.

· The Error codes model handles all types of error codes that can appear on the control panel of the printer. For some error codes, corrupt data can be a cause, thus the dataflow component is a parent of this component.

· The Miscellaneous model handles miscellaneous erroneous behavior of the printer not covered by the above three, such as noises from the printer engine, slow printing, problems with bi-directional communication, etc.

· The Settings model represents all the possible settings in the printing system, i.e., application, printer driver, network driver and control panel settings. Often, settings determine the behavior, thus this component is a parent of the four components listed above.

Each of the components except Settings includes a single problem-defining variable that is a descendant of all other variables in the component. This variable basically implements a logical OR of its parents, such that if there is a problem with one of the subcomponents, then the problem-defining variable indicates that there is a problem with the component.

Similarly, the Problem variable in Figure 1 implements a logical OR of the problem-defining variables for the four components. Thus it represents a problem-defining variable for the entire printing system.

In the following, each of the components of the printing system model will be described.

3.2 The Dataflow Model

The Dataflow model and its components are illustrated in Figure 2. Each of the circles represent a Bayesian network model of how the component in question can cause corrupted or stopped/lost output. The dataflow can follow four different routes, as also depicted in Figure 2, depending on the setup that the customer is using, i.e., directly to a printer that is connected with the local PC by a parallel cable, over the network to a printer that is controlled by a printer server, over the network to a printer that is connected to a printer server with a parallel cable, and finally directly over the network to the printer (JetDirect).

The printing system setup is controlled by a variable which makes sure that only the relevant path in the model is being used. Each of the components in the dataflow receives the status of the data as input from the previous component in the flow, i.e., whether it is ok, corrupted or not present anymore (lost somewhere prior in the flow). The component consists of subcomponents that have a probability of causing the data to be corrupted or lost/stopped at this point in the flow.

Figure 3 shows the Bayesian network for one of the parallel-cable component of the Dataflow model. The network models each of the possible causes that could lead to stopped/lost or corrupted data when the data is passing through the parallel cable. Again, all probability tables for variables with parents are logical ORs, and the prior probabilities for the top-level variables (i.e., Disconnected, In wrong plug, etc.) can be computed by use of a set of simple conditional probabilities estimated by printer experts. By inserting constraints on all levels in the Bayesian network, it is possible for the experts to follow a much more intuitive and accurate scheme of probability assessment which is described further by Skaanning et al. (1998a) and Skaanning et al. (1998b).

3.3 Handshaking

Figure 4 illustrates how handshakes can be modeled in our scheme. In Figure 4, an example handshake between the print spooler and the buffer in the server is modeled. In this situation the handshake may fail due to a malfunctioning component between the spooler and the server, in which case the actual job will stop at the spooler. Each component in between has a probability of stopping the handshake if one its subcomponents is malfunctioning. The state of each of the subcomponents that may block the handshake if malfunctioning is joined through a logical OR in the Component stops handshake variable. There is one such variable for each component, and these variables are again joined through a logical OR in the Handshake stops variable, i.e., if any of the subcomponents stop the handshake, the handshake fails. The spooler component now receives as input the probability that its handshake with the server fails, and this probability is used in computing the probability that the spooler passes on the data to the next component in the dataflow. Of course, it is possible that a handshake succeeds but the print job fails, and this can be modeled by not including all subcomponents as causes for the handshake failing.

3.4 The Error-Code Models

These models represent the error codes that can occur on the printer's control panel. There may be several, based on the complexity of the printer. For the printer we have been modeling there are approximately 60 error codes. Figure 5 shows an example of one of the error codes modeled in SACSO. Again, the conditional probability tables of all variables with parents are basically logical ORs, and the prior probabilities of root causes are estimated by printer experts. The error code HP MIO1 not ready signifies that the MIO card (printer network card) is not ready. There can be several causes of this error code:

· The MIO card itself can be malfunctioning due to one of seven subcauses: not seated properly, not meeting specifications, defective card, third party card, RAM on the card is corrupt, firmware on the card is corrupt, or firmware needs to be updated.

· Another accessory could affect the line voltage in the printer, and thus the MIO card.

· The network could affect the MIO card. This variable, Network (dataflow), corresponds to corrupt output from the dataflow. Thus there is a connection to the dataflow model.

· It takes a while for the MIO card to initialize - so perhaps the customer did not wait long enough. This is represented by the variable MIO initializing - didn't wait 5 minutes.

· A catch-all category Other problem which represents both temporary, intermittent and permanent problems that we will not be able to identify through our troubleshooting.

3.5 The Unexpected-Output Models

The unexpected output models represent all the situations where the customer does not get the expected output. This is usually due to settings not set correctly, or malfunctioning printer parts. Figure 6 shows an example Bayesian network model for an unexpected output category, Spots. The customer may experience spots on the paper for one of the following reasons:

· The toner cartridge is malfunctioning either because it is defective or improperly seated.

· The fuser is malfunctioning either because it is not seated, defective or dirty.

· The used media has the wrong specifications.

· A PM (printer maintenance) kit is needed. The printer signals when this is required (after some number of printed pages) and if it is not done, some parts may wear out.

· The environmental conditions of the printer may be out of specification, e.g., too humid, warm, etc.

· The transfer roller is malfunctioning either because it is defective, not seated correctly, or dirty.

· The paper path in the printer could be dirty.

· The power chord of the printer is not earth grounded.

4 The Troubleshooting Layer

The Bayesian network models pictured in Figures 1-6 are not sufficient for troubleshooting as they only contain information about the possible causes for the various problems with the printer. They contain no information on actions that can be used to resolve the problem at hand or gather information that can be used to speed up the troubleshooting. In this section, it will be described how variables representing information like this can be added to the structures presented in the previous sections.

We basically represent two types of troubleshooting steps :

1. Questions: provides general information that can change the optimal sequence of troubleshooting steps.

2. Action: an action that can solve the problem by investigating whether one of the causes is malfunctioning and subsequently correcting it.

In Figure 7, some troubleshooting actions and questions have been added to the model of the HP MIO1 not ready error code. The experts wrote down the actions and questions that they would usually perform when troubleshooting this error code over the phone. It is necessary to decide on a specific granularity for these steps, as there has to be a limit to the amount of detail that we want to represent. It was decided that anything that can be presented to the customer with a static page of text (a web document) and only involves a few steps can be represented as a single action. Thus, Troubleshoot accessories above, even though it consists of several steps when troubleshooting each accessory in turn, many of the steps are similar and can be presented nicely to the customer by the user interface, making it possible to represent it as a single action; see Figure 7.

For each action it was determined which causes it could fix:

· Removing the network / IO cable can solve the problem if the network is the cause.

· Troubleshooting the entire dataflow can also solve the problem if the network is the cause. This action corresponds to the entire dataflow and all its troubleshooting steps.

· Waiting 5 minutes for initialization can solve the problem if the customer did not wait long enough.

· Cycling power can solve temporary problems and some intermittent. Even though intermittent problems are not really solved, this is the way it will look to the customer.

· Etc.

For each cause fixable by an action, the printer experts have given a probability that the action would fix the cause, along with the cost of performing the action. The cost is based on four measures:

· The time it takes to perform the action.

· The risk of breaking something else while performing the action.

· The money involved in performing the action (e.g., buying new parts, etc.).

· Whether the customer could be insulted by having the action suggested (e.g., check whether the power chord is plugged in, check whether the printer is online, etc.).

These four factors are given weights also determined by the printer experts which are then used to combine them into a single value of cost.

In Figure 7, there are also two questions that provide information on which causes are the most likely and allow/disallow certain actions:

· Did you wait 5 minutes? If this question is answered no, the probability that the customer just didn't wait long enough goes up very much, and if it is answered yes, it goes to almost zero.

· 3rd party MIO card? If this question is answered yes, the system is not allowed to suggest resetting the MIO card to default and reloading / updating firmware on the MIO card, as it is not certain that this functionality is supported on a 3rd party MIO card. On the other hand, if the question is answered no, the actions will be allowed.

5 An Example Run

In this section an example run with the currently implemented SACSO troubleshooter will be given. The HP MIO1 not ready error code will be used. Assuming that a defective HP MIO card is the cause of the problem, the troubleshooter will guide the customer through the following actions and questions:

1. Question: Did you wait 5 minutes for initialization? This question is given first to rule out the possibility that there is no problem at all. If the customer answers no, he will be told to wait 5 minutes for proper initialization. As it does not solve the problem, the system continues.

2. Action: Remove network / IO cable. This is done first, as it can rule out a relatively likely cause (10%) with a very low cost (1 minute). It does not solve the problem, and the system continues.

3. Action: Try another HP in-spec MIO card. This is done next, as it can help to rule out one of the most likely causes, defective card (20%). It does solve the problem, but the system cannot say for sure whether it was because the original card was seated improperly, third party, out of spec, defective, had corrupt NVRAM, or corrupt or out of date firmware. Therefore, the system prompts the customer to put the old card back and continue troubleshooting.

4. Action: Verify MIO card is supported by the printer. This will rule out that the customer is using a third party or out of spec card. As the card is not third party and out of spec, the system will continue.

5. Action: Reseat MIO card. This will rule out whether the MIO card was improperly seated. The user interface will give instructions on how to do this correctly. It does not solve the problem, and the system continues.

6. Action: Move MIO card to another printer. As the card is defective, the other printer will show the same error code as the current. This information is reported to the troubleshooter that finally concludes that the card is defective, as it has ruled out all other possible causes.

In all the above steps, the method of Heckerman, Breese and Rommelse (1995) was used to determine which step is the most optimal, based on comparing Pi/Ci ratios.
6 Conclusion

In the above sections, we described a system of Bayesian networks that have been developed in a proof-of-concept project running for approximately 8 months. First, all the models representing the various types of printing system problems and their causes were developed which was a long and time-consuming process in itself. A system for quick and intuitive elicitation of probabilities were developed (Skaanning et al., 1998a, Skaanning et al., 1998b) by which elicitation of the probabilities for the more than a thousand variables in these networks was completed in just one week. The method involved development of a system of constraints enforcing the Bayesian network to have the correct prior probabilities as specified by the printer experts. The probabilities were specified under the single-fault assumption which greatly reduces the needed information, but the constraint system allows lifting this assumption.

Skaanning et al. (1998b) further describes how the knowledge acquisition for the above models were performed, how the constraints enforce the correct prior probabilities, and efficient methods for eliciting information for the troubleshooting.

7 References

Andersen, S.K., Olesen, K.G., Jensen, F.V. and Jensen, F. (1989). HUGIN - a Shell for Building Bayesian Belief Universes for Expert Systems. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence.

Breese, J.S. and Heckerman, D. (1996). Decision-Theoretic Troubleshooting: A Framework for Repair and Experiment. Technical Report MSR-TR-96-06, Microsoft Research, Advanced Technology Division, Microsoft Corporation, Redmond, USA.

de Kleer, J. and Williams, B. (1987). Diagnosing multiple faults. Artificial Intelligence, 32:97-130.

Genesereth, M. (1984). The use of design descriptions in automated diagnosis. Artificial Intelligence, 24:311-319.

Heckerman, D., Breese, J., and Rommelse, K. (1995). Decision-theoretic troubleshooting. Communications of the ACM, 38:49-57.

Jensen, F.V. (1996). An Introduction to Bayesian Networks. UCL Press, London.

Jensen, F.V., Lauritzen, S.L., and Olesen, K.G. (1990). Bayesian updating in causal probabilistic networks by local computations. Computational Statistics Quarterly, 4:269-282.

Lauritzen, S.L. and Spiegelhalter, D.J. (1988). Local computations with probabilities on graphical structures and their applications to expert systems. Journal of the Royal Statistical Society, Series B, 50(2):157-224.

Skaanning, C., Jensen, F.V., Kjærulff, U., Pelletier, P., Rostrup-Jensen, L., and Parker, L. (1998a). Printing system diagnosis - a Bayesian network application. In Proceedings of the Ninth International Workshop on Principles of Diagnosis, Cape Cod, Massachussetts, USA, May, 1998.

Skaanning, C., Jensen, F.V., Kjærulff, U., Pelletier, P., Rostrup-Jensen, L., and Parker, L. (1998b). Knowledge acquisition for a Bayesian network diagnosis application. To be submitted to IEEE Transactions on Knowledge and Data Engineering, Special Issue on "Building Probabilistic Networks: Where do the numbers come from?".
Problem

Miscellaneous

Unexpected output

Error codes

Dataflow - (corrupt or no output)

Settings

Figure 1. The relationships between the Bayesian network models of the SACSO system.

Network connection

Switchbox

Server parallel cable

Switchbox

Local parallel cable

Output

Printer

Network connection 2

Queue

Server

Network connection 1

Network card

Network driver

O/S redirect

Spooler

Printer driver

Application

File

Figure 2 The dataflow model and its components. The data can follow four different routes depending on the setup of the printing system.

Out of spec

 Improp. connected

Third party

 Electrical noise

Defective

In wrong plug

Disconnected

Parallel cable

Corrupted data

Stopped/lost data

Figure 3 The Bayesian network representation of the parallel cable component.

File

Application

Printer driver

Spooler

O/S redirect

Network driver

Network card

Network connection 1

Server

Queue

Network connection 2

Printer

Output

Handshake OK?

O/S redirect stops handshake

Network driver stops handshake

Network card stops handshake

Network connection stops handshake

Handshake stops

Figure 4 Modeling handshake in the dataflow model.

Firmware needs update

Firmware on card corrupt

NVRAM on card corrupt

Third party

Defective card

Does not meet spec

Not seated properly

Permanent problem

Intermittent problem

Temporary problem so

MIO initializing - didn't wait 5 minutes

MIO card problem

Network (dataflow)

Accessories excl. MIO card 1

Other problem

HP MIO1 not ready

Figure 5 Bayesian network model for a control panel error code.

Printer (power chord) not earth-grounded

Permanent problem

Intermittent problem

Temporary problem

Dirty transfer roller

Defective transfer roller

Transfer roller not seated properly

Dirty fuser

Defective fuser

Fuser not seated

Toner cartridge improperly seated

Defective toner cartridge

Paper path dirty

Environmental conditions

PM kit needed

Transfer roller

Media out of spec

Other problem

Fuser

Toner cartridge

Spots

Figure 6 An example of a Bayesian network model of the Spots category of unexpected output.

Wait 5 minutes for initialization

Q: Did you wait 5 minutes?

Try another HP

in-spec MIO card

Cycle power

Reload / update firmware on MIO

Reset MIO card

 to default

Troubleshoot all accessories

Move MIO card to another printer

Troubleshoot dataflow

Remove network / IO cable

Reseat MIO card

Move MIO card to

other slot

Verify MIO card is supported by printer

Q: 3rd party MIO

card?

Firmware needs updating

Firmware on card

corrupt

NVRAM on card

corrupt

Third party

Defective card

Does not meet spec

Not seated properly

Permanent problem

Intermittent problem

Temporary problem

MIO initializing - didn't wait 5 minutes

MIO card problem

Network (dataflow)

Accessories excl.

MIO card 1

Other problem

HP MIO1 not ready

Figure 7 The error code in Figure 5 with added troubleshooting actions (light gray) and questions (dark gray).

� Systems for Automated Customer Support Operations

PAGE
12

_956555737.unknown

_956555735.unknown

_956555736.unknown

_956555734.unknown

_956555733.unknown

