The Hugin Tool for Learning Bayesian Networks

Anders L. Madsen, Michael Lang, Uffe B. Kjeerulff, and Frank Jensen

Hugin Expert A/S
Niels Jernes Vej 10
DK-9220 Aalborg @
Denmark
{Anders .L.Madsen,Michael.Lang,Uffe.Kjaerulff,Frank. Jensen}@hugin .com

Abstract. In this paper, we describe the Hugin Tool as an efficient tool
for knowledge discovery through construction of Bayesian networks by
fusion of data and domain expert knowledge. The Hugin Tool supports
structural learning, parameter estimation, and adaptation of parameters
in Bayesian networks. The performance of the Hugin Tool is illustrated
using real-world Bayesian networks, commonly used examples from the
literature, and randomly generated Bayesian networks.

1 Introduction

Probabilistic graphical models such as Bayesian networks [9/3] are efficient mod-
els for (automated) reasoning under uncertainty. A Bayesian network can be
used as an efficient tool for knowledge representation and inference. Unfortu-
nately, the construction of a Bayesian network can be a quite labor intensive
task to perform. For this reason, automated construction of Bayesian networks
have in recent years received a lot of attention. This attention has focused on the
automated construction of models from a combination of data and domain ex-
pert knowledge. In this paper, we consider the model construction task as a task
of fusing observational data and domain expert knowledge. Through automated
construction, Bayesian networks can be used as efficient tools for knowledge
discovery and data mining [5].

The Hugin Tool [TJ6] is a general purpose tool for probabilistic graphical
models such as Bayesian networks and influence diagrams. In this paper, we de-
scribe the knowledge discovery functionality of the Hugin Tool related to (auto-
mated) construction of Bayesian networks through learning. That is, we describe
the capabilities of the Hugin Tool for learning the structure and parameters of
a Bayesian network. In [6] a recent survey of the general functionality of the
Hugin Tool is given. The present paper extends and details the description of
the learning functionality of the Hugin Tool given in [6].

2 Preliminaries and Notation

A Bayesian network N' = (G = (V, E), P) consists of an acyclic, directed graph
(DAG) G and a set of probability distributions P. Each node X € V represents a

T.D. Nielsen and N.L. Zhang (Eds.): ECSQARU 2003, LNAI 2711, pp. 594-05, 2003.
© Springer-Verlag Berlin Heidelberg 2003

The Hugin Tool for Learning Bayesian Networks 595

unique random variable. (We use the terms “node” and “variable” interchange-
ably and consider only discrete variables.) For each variable X € V there is a
conditional probability distribution P(X |pa(X)) € P.

A Bayesian network N’ = (G, P) is an efficient representation of a joint prob-
ability distribution P(V') over V when G = (V, E) is not dense. P(V') factorizes
according to the structure of G as:

P(v)=] P(X|pa(x)).

XeV

We denote variables by uppercase letters X,Y, ..., sets of variables by up-
percase letters S, Sxy, ..., and states of variables by lowercase letters z,y,
Through the parameters, it is possible to specify unconstrained probabilistic
dependence relations between a node and its parents.

The graph G of N induces a set of (conditional) dependence and indepen-
dence relations (CIDRs) M, which can be read off G using the d-separation
criteria [4]. The relation X Lp Y| S states conditional independence between X
and Y given S under the probability distribution P whereas X Lg Y |S states
conditional independence between X and Y given S in the DAG G (i.e. d-
separation). When no confusion is possible, subscripts are omitted. The faithful-
ness assumption [13] (a.k.a. stability [10]) says that the distribution P over V'
induced by (G, ©) satisfies no independence relations beyond those implied by
the structure of G.

A DAG represents a set of CIDRs and two DAGs may represent the same set
of CIDRs. Two DAGs representing the same set of CIDRs are equivalent. A DAG
is an acyclic, directed graph whereas a PDAG is an acyclic, partially directed
graph, i.e. an acyclic graph with some edges undirected (a.k.a. a pattern [10]). A
PDAG can be used to represent the equivalence class of a DAG. The equivalence
class of a DAG G is the set of DAGs with the same set of d-separation relations
as G. Two DAGs Gy and G5 are equivalent if they have the same skeleton and
the same set of colliders (i.e. X — Y « Z-structures), see e.g. [10].

Example 2.1 [Chest Clinic]
Dyspnoea(D) may be due to tuberculosis(T), lung cancer(L), or bronchitis(B),
or none of them, or more than one of them. A recent visit to Asia(A) increases
the chances of tuberculosis, while smoking(S) is known to be a risk factor for
both lung cancer and bronchitis. The result of a single chest X-ray(X) does not
discriminate between lung cancer and tuberculosis, as neither does the presence
or absence of dyspnoea, see e.g.[3].

The qualitative knowledge of this diagnostic problem can be captured by the
DAG shown in Fig.[d(a) with a mediating variable E representing the disjunction
of tuberculosis and lung cancer.

3 Learning a Bayesian Network

In the remainder of this paper, we will assume that Py is a DAG faithful prob-
ability distribution with underlying DAG Gy. We consider learning a Bayesian

596 A.L. Madsen et al.

(a) Specification (b) Result of NPC

Fig. 1. The Chest Clinic example

network as the task of identifying a DAG structure G and a set of corresponding
parameters © from a sample of data cases D = {c1,...,cn} drawn at random
from Py and possibly some domain expert background knowledge.

3.1 Structural Learning

Structural learning is supported through a constraint-based approach [T6/T5]
T3]. In the constraint-based approach, the graph G of a Bayesian network N is
considered as an encoding of a set of CIDRs M. Structural learning is then the
task of identifying a DAG structure from a set of CIDRs derived from the data
by statistical tests.

Two algorithms for structural learning are supported. The PC algorithm [12]
13] (which is similar to the IC algorithm [I5I10]) and its extension, the NPC
algorithm [I4]. The main steps of the PC algorithm are:

1. Test for (conditional) independence between each pair of variables.
2. Identify the skeleton of the graph induced by the derived CIDRs.
3. Identify colliders.

4. Identify derived directions.

The PC algorithm produces a PDAG. In step[dl, the hypothesis is that X and Y
are independent given Sxy. This hypothesis is tested by statistical tests using
conditioning sets Sxy of size 0,1,2,3. If X 1 Y| Sxy is found to be satisfied
with some significance level «, the search for independence between X and Y is
terminated.

Various improvements of the straightforward incremental testing scheme have
been implemented. These improvements are related to maintaining an undirected
graph describing the current set of neighbors of each node and only performing
independence tests conditional on subsets of the neighbors of X and Y. The order
in which we try out the possible conditioning sets of a fixed size is according to
how likely they are to cause independence for the edge under consideration. We

The Hugin Tool for Learning Bayesian Networks 597

— oo = —re—»e -/—;- = ./_;.

Fig. 2. Four rules for orientation of edges

use the heuristic rule that the variables of the conditioning set should be strongly
correlated with both endpoints of the edge being tested. The neighbor graph is
updated after each independence test accepting the hypothesis.

Due to the nature of the testing scheme, the conditioning set Sxy for an
identified independence relation X 1 Y | Sxy is minimal in the sense that
no proper subset of Sxy and no set of cardinality less than the cardinality
of Sxy produce independence. An undirected edge is added between each pair
of variables X, Y whenever no conditional independence relation has been found
between X and Y. This produces the skeleton of the graph.

Once the skeleton has been identified, colliders are identified. If X and Y are
neighbors, Z and Y are neighbors, X and Z are not neighbors, and Y ¢ Sxz
for any Sxz satisfying X 1 Z|Sxz, then a collider is created at Y.

Starting with any PDAG G, a maximally directed PDAG can be obtained
following four necessary [15] and sufficient [8] rules, see Fig. 2 That is, by re-
peated application of these four rules all edges common to the equivalence class
of G are identified. The fourth rule is unnecessary, if the orientation of the initial
PDAG is limited to colliders (i.e. no background knowledge). The four rules are
necessary and sufficient for achieving maximal orientation (up to equivalence)
of the PDAG returned by the PC algorithm. The first rule follows from the fact
that no collider was identified, the remaining rules ensure that no directed cycle
is created.

Correctness of the PC algorithm has been proved under the assumption of
infinite data sets. In real-life, data sets are finite. When dealing with finite data
sets, the faithfulness assumption is often violated. Hence, when the derived set
of CIDRs is induced by statistical tests on finite data sets, we cannot in general
expect that there exists a DAG (or PDAG) which represents all CIDRs. Often
too many conditional independence relations are derived due to the limited data
set. This suggests to represent all conditional dependence relations, but not all
conditional independence relations in the induced DAGs. Applying the principle
of Occam’s Razor, we will choose the simplest model among equally good models.

As mentioned above, the NPC algorithm is an extension of the PC algorithm.
The new feature of the NPC learning algorithm is the introduction of the notion
of a Necessary Path Condition [14]. Informally, the necessary path condition says
that in order for two variables X and Y to be independent (in a DAG faithful

598 A.L. Madsen et al.

data set) conditional on a set S and no subset S’ C S, there must exist a path
between X and every Z € S (not crossing Y) and between Y and every Z € S
(not crossing X). Otherwise, the inclusion of each Z in S is unexplained. Thus,
in order for an independence relation to be valid, a number of edges are required
to be present in the graph.

An edge (X,Y) is an uncertain edge, if the absence of (X,Y") depends on the
presence of an edge (X', Y”), and vice versa. A maximal set of interdependent un-
certain edges is an ambiguous region. An uncertain edge indicates inconsistency
in the set of independence relations derived by the statistical tests.

In order to increase reliability and stability of the NPC algorithm, the it-
eration step for a fixed size of the conditioning set is completed even if an in-
dependence statement is found. Thus, multiple independence relations may be
found for a pair of variables. If one of these independence relations satisfy the
necessary path condition, then it is accepted.

Prior to the testing phase, background knowledge in the form of constraints
on the structure of the DAG can be specified. It is possible to specify the pres-
ence and absence of edges, the orientation of edges, and a combination. At the
moment, user specified constraints are not tested. In practice, this has produced
some unwanted behavior of the edge orientation algorithm.

Example 3.1 [Structural learning in Chest Clinic]

Figure[d(b) shows the PDAG generated by the NPC algorithm applied on a ran-
dom sample of 10,000 cases drawn from the Chest Clinic network with a signif-
icance level of a = 0.05.

The sets of edges {(T,X),(FE,X),(L,X)} and {(T,D),(E,D),(L,D)} are
the two ambiguous regions of Fig. [lI(b). The two ambiguous regions are due to
the deterministic relation between E and L,T (i.e. E = LV T). This produces,
for instance, {(X L E|T,L),(X L T|E),(X L L|E)}, which is impossible
according to the necessary path condition. The simplest resolution is to include
the edge (E, X). Notice that some certain edges are directed and some are undi-
rected.

3.2 Parameter Estimation

The task of parameter estimation is to estimate the values of the parameters @
corresponding to a given DAG structure GG. Parameter estimation is supported
through the EM algorithm [7]. The EM algorithm is well-suited for calculating
maximum likelihood and maximum a posteriori estimates in the case of missing
data.

Let N' = (G, P) be a Bayesian network with parameters © such that 0, =
P(X; = k|pa(X;) = j) for each 14, j, k. Following [7] the EM algorithm is based
on computing the expected value of the log-likelihood function:

Q(O"]0) = Eo{log P(X|©")| D},

where P is the density function for X, and D is the observed data D = g(X).
Given an initial value of the parameters ©, the E-step is to compute the cur-

The Hugin Tool for Learning Bayesian Networks 599

rent expected value of) with respect to @ while the subsequent M-step is to
maximize @) in @*. These two steps are alternated iteratively until a stopping
criterion is satisfied. In the case of missing data, the log-likelihood function is a
linear function in the sufficient marginals [7]. The log-likelihood function I(©| D)
of the parameters @ given the data D and DAG G is:

(©]D) = log P(c;|0).

i=1

In the case of Bayesian networks, the E-step of the EM algorithm is to com-
pute expected counts for each family fa(X;) and parent pa(X;) configuration of
each node X; under O:

n*(Y) = Ee{n(Y)| D},

where Y is either pa(X;) = j or X; = k,pa(X;) = j. The M-step computes new
estimates of Hjj i from the expected counts under 8;;:

«_ n(Xi =k pa(X;) = j)

E n*(pa(X;) = j)

The E-step and M-step are iterated until convergence of {(©) (or until a
limit on the number of iterations is reached). In the Hugin Tool convergence
is achieved when the difference between the log-likelihoods of two consecutive
iterations is less than or equal to the numerical value of a log-likelihood threshold
times the log-likelihood. Alternatively, the user can specify an upper limit on the
number of iterations to ensure that the procedure terminates.

When both data and domain expert knowledge is available, these two sources
of knowledge can be fused. In [IT] the notion of experience is introduced. Ex-
perience is the quantitative knowledge related to a probability distribution
based on quantitative expert knowledge. Expert knowledge on the parame-
ters is specified as Dirichlet distributions. For each variable X;, the distribu-
tion P(X; | pa(X;)) = {pijr} and the experience counts a1, ... ,q; pa(x;) as-
sociated with X; are used to specify the prior expert knowledge. Hence, the
experience table of a variable X; indicates the experience related to the child
distribution for each configuration of the parents. In the case of expert knowl-
edge, the E-step does not change whereas the M-step becomes:

* n*(Xi = k,pa(X) = j) + pijr;
ik n*(pa(X) = j) + ayj)

The quality of the model is expressed in the value of (@] D) computed after
each iteration. It should be noticed that [(©| D) as a quality measure does not
incorporate the complexity of the model. For comparison of models with different
complexity other measures such as BIC or AIC should be used.

The experience counts for the prior beliefs in the conditional probability
distribution of variable X; given its parents pa(X;) are specified in a separate

600 A.L. Madsen et al.

table including one experience count for each configuration of pa(X;). After the
termination of the EM algorithm the expected counts are stored as the experience
counts.

Example 3.2 [Parameter estimation in Chest Clinic]

Assume that the qualitative knowledge of the Chest Clinic example is as shown in
Fig.[Q and that a database D = {cy,... ,en} with N = 10,000 is available. From
the qualitative knowledge, we know E = LV T. This is specified in P(E|L,T)
and no experience table is allocated to E in order to avoid estimation of this
table from the data whereas all other variables have an experience consisting of
zeros indicating no expert knowledge on the distributions.

The EM algorithm will produce a maximum likelihood estimate of the param-
eters of the model under the constraint that P(E|L,T) encodes disjunction. If
we had expert knowledge on P(S), for instance, we would specify this in P(S)
and encode the second order uncertainty in the experience table of S.

3.3 Sequential Updating

Sequential updating or adaptation [IT)3] is the task of sequentially updating the
conditional probability distributions of a Bayesian network when the structure
and an initial specification of the conditional probability distributions are given
in advance. In sequential learning, experience is extended to include both quanti-
tative expert knowledge and past cases (e.g. from EM learning). Thus, the result
of EM learning could be used as the input for sequential learning.

Let X; be a variable with n states, then the prior belief in the parame-
ter vector 6;; = (0sj1,...,0ijn}, i.e. the conditional probability distribution of
a variable X; given its parents pa(X;) = j, is specified as an n-dimensional
Dirichlet distribution D(e;j1, ... , ®jn). This distribution is represented using
a single experience count ¢, (equivalent sample size) and the initial content
of P(X,|pa(X;) = j). The experience count o for a particular state k of X;
given pa(X;) = j is ajr = Qijpijk-

After a complete observation on (X; = k, pa(X;) = j), the posterior belief in
the distribution is updated as o7, = @i +1 and o}, = ayj for [# k. After an
incomplete observation, the posterior belief in 6;; is a Dirichlet mixture, which
is approximated by a single Dirichlet distribution having the same means and
sum of variances as the mixture. The approximation is used in order to avoid
the combinatorial explosion, which would otherwise occur when subsequent in-
complete observations are made. The updated mean and variance are computed
as:

. Qigk F pije + mige(1 — pijr)
mijk - 9

Olij -|—].
o = Migk(L = mir)
ijk aj 1 .

The updated experience count is computed from the mean and variance.

The Hugin Tool for Learning Bayesian Networks 601

This process is referred to as retrieval of experience. Dissemination of ex-
perience is the process of calculating prior conditional probability distributions
for the variables in the Bayesian network given the experience, and it proceeds
by setting the value of each parameter equal to the mean of the corresponding
updated Dirichlet distribution, i.e. 05, = mfjk.

In order to reduce the influence of the past and possibly outdated informa-
tion, an optional feature of fading is provided. Fading proceeds by reducing the
experience count before the retrieval of experience takes place. The experience
count oy; is faded by a factor of 0 < A;; < 1 typically close to 1 according
to pi; = P(pa(X;) = j) such that of; = a;;((1 — pij) + Aijpij). Notice, that
experience counts corresponding to parent configurations, which are inconsis-
tent with the evidence are unchanged. The fading factors of a variable X; are
specified in a separate table including one fading factor for each configuration
of pa(Xj;).

Example 3.3 [Adaptation in Chest Clinic]

Assume we have evidence e = {S =n, A = y,D = y} on a patient, i.e. a non-
smoking patient with dyspnoea who has recently been to Asia. The evidence is
entered and propagated followed by an adaptation of parameters. Table [1 shows
the experience counts for L, B, and S before (i.e. after EM learning using 10,000
randomly generated cases) and after the adaptation with fading factor of 0.999
for each distribution. Notice, that since S is an observed variable without parents,
the experience count ag for P(S) will converge to % = 1001 if S = n is observed
multiple times.

Table 1. Experience counts for B, L, and S before and after adaptation

QS |OL|S=no|XL|S=yes|¥B|S=no|XB|S=yes
Before|10,000(4970.88| 5029.12| 4970.88| 5029.12
After | 9,001|4472.71| 5029.12| 4473.73| 5029.12

4 Learning Wizard

The learning functionality of the Hugin Tool is supported through a Learning
Wizard. A full learning cycle, as performed by the Learning Wizard consists
of three main steps: Data acquisition, structural learning, and parameter esti-
mation. Each of these consists of a number of sub-steps, which guide the user
in the process of learning the Bayesian network from data and possibly expert
knowledge. The user has the option of performing only one of the steps, but in
both cases, the data acquisition step is required.

602 A.L. Madsen et al.

4.1 Data Acquisition

The data acquisition step serves two purposes: Read data from a data source
and preprocess the data. In the first step, the user can read in data from various
data sources, including data bases and data files. In the second step, the user
can preprocess the data, e.g. discretize a variable. It is also possible for the user
to use his own preprocessor, if the existing preprocessor does not suffice.

4.2 Structural Learning and Parameter Estimation

The structural learning step contains two sub-steps: Structural learning and
data analysis. In the structural learning phase, the user can choose from two
algorithms for performing the learning (PC and NPC). Common for these algo-
rithms are, that the user can control the result to some extent by specifying a
significance-level parameter and by adding structural constraints on the struc-
ture of the DAG before the learning takes place. These structural constraints
provide a way for the user to force known dependences/independences onto the
learning algorithm. As it can be a tiresome task to specify these constraints
for complex networks, the wizard facilitates the saving and loading of network
information, including constraints, node positions, node labels, etc.

If the user chooses NPC for the learning algorithm, he will also have the
possibility of resolving ambiguous regions or unresolved directions found during
the learning process, see e.g. Fig.[Il. In the data analysis phase, the strength of
both the marginal dependences and the found data dependences can be examined
and the complexity of the learned network is indicated.

The parameter estimation phase gives the user the possibility of specifying
the initial value of the parameters and the parameters for the EM-algorithm.
The initial distribution is determined by any prior possibilities and experience
counts specified by the user. To examine if the algorithm may have found a local
maximum, it is possible to randomize the prior probabilities, so that the initial
distribution can be different for subsequent runs.

5 Performance Evaluation

In the performance evaluation we have used the ALARM network [2], which has
become a standard benchmark for structural learning. The ALARM network
consists of 37 variables and 46 edges. Each variable has between two and four
states with an average of 1.2 parents of each variable.

The PDAG shown in Fig. Bl which is the result of NPC learning on a
sample of 10,000 cases generated from the ALARM [2] network with a sig-
nificance level « = 0.01, contains three ambiguous regions. The three ambigu-
ous regions will be resolved by selecting the correct edges ((ArtCO2,Catechol),
(VentLung,KinkedTube), and (LVFailure, LVEDVolume)) and adjacent edges are
directed correctly. A few edges cannot be directed based on the data alone, a
wrong collider is present at Intubation, no other edge is directed incorrectly, no

The Hugin Tool for Learning Bayesian Networks 603

,,,,

I

n

n
W
n

'
\
i

/
L
N\,

’

Fig. 3. NPC learning on a sample from ALARM with « = 0.01

extra edges are present, and one edge (MinVol, Intubation) is missing. The result
of applying the PC algorithm to the same set of data produced a DAG with two
incorrect colliders, the two edges (TPR,Anaphylaxis) and (LVFailure,History)
missing, and a few incorrect directions on edges. At the moment, the PC algo-
rithm generates a DAG structure where some edges have been given direction
at random. Using the NPC algorithm with a = 0.05 produce no missing edges,
but an additional collider at Intubation.

To evaluate the performance of the PC and NPC algorithms as a func-
tion of the significance level @ we have performed tests with values of o equal
to 0.001, 0.01, 0.05, and 0.1. The results are shown in Table Bl The tests have
been performed using samples generated from the ALARM network.

The table shows the number of edges found including neighbors with the
number of incorrect edges found in parentheses, the number of edges with correct
orientation, the time to perform the learning in milliseconds for both algorithms.
Furthermore, for the NPC algorithm the number of ambiguous regions and the
number of uncertain edges in each region with the number of missing edges which
are represented as an uncertain edge in parentheses. The values are average
values over 25 samples of 10,000 cases with 5% missing values (MCAR).

Table 2. Results from using different values of «

Algorithm « Edges|Direction|Time (ms)|Regions|Uncertain edges
PC 0.001| 45.25(0.5) 44.75 419
PC 0.01| 45.5(0.25) 42.5 426
PC 0.05 44.25(0) 41.75 415
PC 0.1] 45.25(0.25) 44 434
NPC 0.001 43.75(0) 39 4,015 1.5 5(1.25)
NPC 0.01 44(0 25) 34.5 4,152 2 7(2)
NPC 0.05 43(0) 36.25 3,805 2.25 9.25(2.75)
NPC 0.1 44.25(0) 38.75 4,125 1 4(1)

604 A.L. Madsen et al.

Structural Learning (PC) Structural Learning (NPC)
50 T‘ [. 50 T‘ [
argel ———— argel ————
45 A wr_’xr,,“xw*,.rr-xrr-—rxrr-»x/—/fééﬁ]é ,,,,,,, iorviiial r 45 A m,_x,,,,,x.,mxr»rr-*r'-'*};e:wned""ﬂ‘*::‘ L
40 A o L 40 A e Uncertain Edges =
" @ * e Ambiguous Regions e
Eﬂ 359 -ﬂé‘) 35 4 E <
S 30 A S 30 A
3 s ™
S 25 g 5]
5] ER .
£ 20 2 0
2 151 Z 15 h—
10 1 L 0] . e
5 L 5 4 DDEDDD * S
0 0 L
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Number of cases Number of cases

Fig. 4. Results of structural learning as a function of NV

Table 3. Average run-time in seconds as a function of number of nodes

25| 50{75{100{150{200
PC |0.2]0.8] 2| 5| 16| 29
NPC| 2| 11|30| 71|204(330

The results show that the average run-time of the PC algorithm is lower
than that of the NPC algorithm. The PC algorithm is faster since fever tests are
performed and since there is no notion of ambiguous regions requiring additional
computations. The PC algorithm is able to direct more edges then the NPC
algorithm, but some of these are directed at random in order to obtain a DAG.

Some of the differences between the NPC and PC algorithm, which seems to
be shortcomings of the NPC algorithm can be remedied by improving the imple-
mentation. For instance, the principle of Occam’s Razor has not been applied to
the ambiguous regions to reduce the number of uncertain edges in each region.
On the ALARM network, this led to ambiguous regions containing a single edge,
which is present in the ALARM network.

The performances of the PC and NPC algorithms on large networks have
been evaluated using randomly generated networks. For a fix size in terms of the
number of variables, 10 networks with random topology (zero to five parents) and
distribution have been generated. Each variable has from two to five states. The
results are shown in Table[3. The time performance tests have been performed
using 10,000 cases with 5% missing cases (MCAR) drawn at random from the
distribution of the network.

All tests have been performed on a HP Omnibook xe4500 with a 1700 MHz
Pentium 4 processor and 256MB of RAM running Linux Redhat 8.

The Hugin Tool for Learning Bayesian Networks 605

Demo

A free demo-version of the Hugin Tool can be downloaded from our web-site:
http://www.hugin.com. Questions related to the functionality of the Hugin Tool
can be directed to support@hugin.com.

References

1.

10.

11.

12.

13.

14.

15.

16.

S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen. HUGIN — a Shell for
Building Bayesian Belief Universes for Expert Systems. In Proc. of the 11th IJCAI,
pages 1080-1085, 1989.

. L.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARM mon-

itoring system: A case study with two probabilistic inference techniques for belief
networks. In Proc. of the Second European Conference on Artificial Intelligence in
Medicine, pages 247-256, 1989.

R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic
Networks and Ezxpert Systems. Springer-Verlag, 1999.

D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian networks.
Networks, 20(5):507-534, 1990. Special Issue on Influence Diagrams.

. D. Heckerman. A tutorial on learning Bayesian networks. In Learning in Graphical

Models, 1999.

F. Jensen, U.B. Kjeerulff, M. Lang, and A.L. Madsen. HUGIN - The Tool for
Bayesian Networks and Influence Diagrams. In First European Workshop on Prob-
abilistic Graphical Models, pages 212-221, 2002.

S.L. Lauritzen. The EM algorithm for graphical association models with missing
data. Computational Statistics & Analysis, 19:191-201, 1995.

C. Meek. Causal inference and causal explanation with background knowledge. In
Proc. of the 11th UAI pages 403—-410, 1995.

. J. Pearl. Probabilistic Reasoning in Intelligence Systems. Series in Representation

and Reasoning. Morgan Kaufmann Publishers, 1988.

J. Pearl. Causality. Models, Reasoning, and Inference. Cambridge University Press,
2000.

D. Spiegelhalter and S.L. Lauritzen. Sequential updating of conditional probabili-
ties on directed graphical structures. Networks, 20:579-605, 1990.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs.
Social Science Computing Review, 9(1):62-72, 1991.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Adap-
tive Computation and Machine Learning. MIT Press, Cambridge, Massachusetts,
second edition, 2000.

H. Steck and V. Tresp. Bayesian belief networks for data mining. Proc. 2nd
Workshop ”Data Mining und Data Warehousing als Grundlage moderner enschei-
dungsunterstuetzender Systeme”, 1999.

T. Verma and J. Pearl. An Algorithm for Deciding if a Set of Observed Inde-
pendencies Has a Causal Explanation. In Proc. of the 8th UAI pages 323-330,
1992.

N. Wermuth and S.L. Lauritzen. Graphical and recursive models for contingency
tables. Biometrika, 70:537-552, 1983.

http://www.hugin.com

	Introduction
	Preliminaries and Notation
	Learning a Bayesian Network
	Structural Learning
	Parameter Estimation
	Sequential Updating

	Learning Wizard
	Data Acquisition
	Structural Learning and Parameter Estimation

	Performance Evaluation

