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Introduction

Important constraint on data

Designers frequently fail to specify foreign keys

Most previous work focuses on inclusion dependencies

Inclusion dependencies yields many false positives

Multi-column foreign keys have not been considered yet
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ABSTRACT
A foreign/primary key relationship between relational tables is one
of the most important constraints in a database. From a data anal-
ysis perspective, discovering foreign keys is a crucial step in un-
derstanding and working with the data. Nevertheless, more often
than not, foreign key constraints are not specified in the data, for
various reasons; e.g., some associations are not known to designers
but are inherent in the data, while others become invalid due to data
inconsistencies. This work proposes a robust algorithm for discov-
ering single-column and multi-column foreign keys. Previous work
concentrated mostly on discovering single-column foreign keys us-
ing a variety of rules, like inclusion dependencies, column names,
and minimum/maximum values. We first propose a general rule,
termed Randomness, that subsumes a variety of other rules. We
then develop efficient approximation algorithms for evaluating ran-
domness, using only two passes over the data. Finally, we validate
our approach via extensive experiments using real and synthetic
datasets.

1. INTRODUCTION
A foreign/primary key relationship between relational tables is

one of the most important constraints in a database. From a data
analysis perspective, discovering foreign keys is a crucial step in
understanding and working with the data. For that reason, database
systems allow the explicit specification of foreign key constraints
in the database schema. Nevertheless, in practice, database design-
ers frequently fail to specify such constraints for various reasons,
including: they are not aware of implicit relationships inherent in
the data; such relationships might hold across multiple databases; it
is not feasible to specify the constraints due to data inconsistencies
(e.g., those arising from data integration or from database evolu-
tion over time); or because of performance considerations. When
this happens in enterprise databases, which often contain hundreds
of tables, thousands of columns and insufficient (or missing) doc-
umentation, even expert users have a difficult time identifying for-
eign key constraints.

In this paper, we propose a novel approach for discovering for-
eign/primary key (fk/pk) relationships between single or multiple
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Figure 1: A small subset of the TPC-E schema with one multi-
column and several single-column foreign keys.
columns in relational databases. Surprisingly, little previous work
deals with the case of discovering multi-column foreign keys [14].
Even for single-column keys, existing work is limited and focuses
mainly on identifying inclusion dependencies, since the only for-
mal requirement for specifying a foreign key constraint is that the
foreign key be a subset of the primary key [1,14]. However, check-
ing only for inclusion can lead to a large number of false positives.

For example, Figure 1 shows a portion of the benchmark TPC-
E schema, which represents a stock transaction system. It has
information about customer accounts, companies, brokers, stock
trades, etc. Column Trade.TID contains all integers in the interval
[1, 10000], while column Broker.BID, which is unrelated to TID,
contains all integers in [1, 100]. A simple inclusion test would in-
correctly report (Broker.BID, Trade.TID) as a foreign/primary key
pair. This scenario arises frequently in practice because of auto-
increment fields. Of course, one could adapt the test so that it
discards pairs in which one column is a consecutive subset (e.g.,
a prefix or a suffix) of the other. However, that is not sufficient.
Notice that the values in column Customer Account.BID, which
is a foreign key of column Broker.BID, are a random subset of
a prefix of Trade.TID. Hence, the inclusion test adapted as above
would still incorrectly report (Customer Account.BID, Trade.TID)
as a foreign/primary key pair. To complicate matters further, this
problem is not limited to numerical attributes. It arises with date-
time fields that may contain consecutive values, or even alphanu-
meric fields composed of letters followed by a number (e.g., A-
1, A-2). The same is true for multi-column keys. For example,
Holding.(CID, SMB) is a two-column foreign key of Holding Sum-
mary.(CID, SMB). However, Broker.(BID, STID) is not a valid for-
eign key of Trade History.(TID, STID), even though column-wise
inclusion is satisfied.

Reducing the number of false positives is a critical requirement805
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Traits of a Foreign Key

1 Should have significant cardinality

2 Should have good coverage of the primary key

3 Should not be the primary key of many other foreign keys

4 Its values should not be a subset of many primary keys

5 The average length should be similar to that of the primary key

6 The column names of foreign/primary keys should be similar
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Traits of a Foreign Key - continued

Randomness

The values of a foreign key will appear to be a random sample of the
primary key

P

SMB

C
I
D

F F'

Figure 2: A good foreign key F is a set of random values from
the primary key. Column F ′ fails the randomness test.
More precisely, we require that

σ(F, P ) =
|F ∩ P |
|F | ≥ θ,

where σ(F, P ) is the inclusion coefficient and θ is user-defined. In
our experiments, we use θ = 0.9, i.e., partial inclusion is satisfied
if at least 90% of the values in F are also contained in P . We use
the notation F ⊂θ P to denote that σ(F, P ) ≥ θ.

Computing σ(F, P ) is very expensive, especially when consid-
ering the potentially very large number of multi-column candidate
fk/pk pairs. Therefore, we estimate all inclusion coefficients by
computing a bottom-k sketch [5] for each column (refer to Ap-
pendix C for details on bottom-k sketches). We then use the SCS
estimator from [5], which estimates the Jaccard coefficient ρ(F, P ) =
|F∩P |
|F∪P | . Since σ(F, P ) = ρ(F,P )

ρ(F∪P,F )
, we estimate σ(F, P ) by di-

viding the estimators for the two Jaccards. 1 Section 4 provides
details on how to efficiently compute bottom-k sketches for both
single and multi-column candidate keys.

3. RANDOMNESS
In this section we assume that the inclusion coefficients between

all pairs of single/multi-column pks and columns in C have been
computed, and pairs that do not satisfy partial inclusion have been
discarded. As mentioned in Section 1, we conjecture that random-
ness is a strong indicator of the quality of an fk/pk pair. Formally:

DEFINITION 1 (RANDOMNESS TEST). Given two sets of val-
ues (tuples) F and P , test the statistical hypothesis that the distinct
values (tuples) in F have the same underlying distribution as the
distinct values (tuples) in P .

Figure 2 shows an example of a two-column primary key and
two candidate foreign keys. Set F is a good fk, since it appears to
be a random subset of values from the pk. Set F ′ is a contiguous
subset of the pk and does not pass the randomness test.

Domain Order. The randomness test requires the existence of
an underlying order over the domain of the primary and foreign
keys. To see this, consider the example in Figure 3. If the val-
ues are sorted numerically, then the candidate column F is a prefix
of the primary key. However, when the same values are sorted
lexicographically, F falsely appears to be a random sample of the
primary key. To handle this issue, we adopt the following natu-
ral convention: numeric values are sorted numerically, and strings
are sorted lexicographically. The implicit assumption is that it is
very rare that a column containing only numeric values is a foreign
key for a primary key that contains strings (in which case it should
have been sorted lexicographically, rather than numerically). When
columns contain both numeric, alphanumeric, and string values, we
use a combination sort (same as the Unix “sort -n” command). For
multi-column keys we define an order along each dimension, as
above.

1In Section 5 we discuss two alternative estimators we considered.
Each had a significant drawback. By contrast, this estimator proved
highly accurate.
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Figure 3: A column containing numeric values might falsely
appear to be a random sample of a primary key based on lexi-
cographic sorting of values.
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Figure 4: The Wilcoxon test: 1. Sort values in multi-set F ∪ P ;
2. Assign ranks; 3. Compute the rank-sum of values in F (13.5
in this example).

Randomness measure. A standard, non-parametric statistical
test for randomness is the Wilcoxon rank-sum test [18]. Assume
that F, P are single-column candidate keys. Sort the values in the
multi-set union F ∪P and rank them. Since F ⊂θ P , the majority
of values in F appear in P , so there are duplicate values. Assign
the mean rank for duplicate values (i.e., if a duplicate value is 3rd
and 4th in the sorted order, it is assigned rank 3.5; see Figure 4).
Finally, compute the sum of ranks of all values in F . This rank-
sum is an indication of whether F and P are drawn from the same
distribution. Intuitively, if the rank-sum is too small, then most
values in F are contained in a prefix of P , and if the rank-sum is
too large then most values in F are contained in a suffix of P .

The Wilcoxon test is straightforward for univariate distributions
but does not generalize to multivariate distributions, so it cannot be
used for multi-column keys. Attempting to apply the Wilcoxon test
separately for each dimension of a multi-column key results in false
negatives. For example, consider the multi-column key F in Figure
2. Even though F appears to be a uniform random sample of P ,
the projection of F in either dimension is not a uniform sample due
to the multiplicity of some of the values (two points project into the
same value in both dimensions). An independent Wilcoxon test in
either dimension would dismiss F .

We now propose a novel approach for deciding whether two
multi-dimensional sets are drawn from the same distribution. Our
method computes a value that reflects how close the distributions
of the two sets are. We start by defining a probability distribu-
tion for each set, so that the total probability mass is 1 (this step
is detailed later in the section). A standard distance measure be-
tween two probability distributions is the Earth Mover’s Distance
(EMD) [16]. The smaller the value EMD(F, P ) is, the closer the
distributions of F and P are. The output of our algorithm is the
list of (F, P ) pairs, in increasing order of their (normalized) EMD
values.

Intuitively, EMD measures the amount of work needed to con-
vert the set of values of the foreign key into the set of values of the
primary key. If we regard each distribution as piles of dirt spread
over some space, EMD is the least amount of effort needed to con-
vert the first set of piles into the second. The effort is the amount
of dirt that needs to be moved times the distance it has to travel.
Figure 5 illustrates the computation of EMD for pairs (F, P ) and
(F ′, P ) from Figure 2. In this example, all points in a set have
equal probability and the sum in each set is equal to 1. To convert
F into P , a probability mass of 0.1 needs to be moved from each807
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Motivation for Randomness

Intuition

The logic that generates the primary key, is disconnected from the logic
generating the fk.
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Overall Design

1 Find candidate foreign/primary key pairs based on inclusion
dependencies

2 Rank the pairs such that pairs with similar distribution scores best

3 Return top X-%
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Inclusion Dependencies

Approach

Estimate inclusion dependencies based on a number of samples

Dirty data due to unenforced constraints.

Include pairs fulfilling: σ(F ,P) = |F∩P|
|F | ≥ θ

Use bottom-k sketches to estimate inclusion dependencies

APPENDIX
A. NOTATIONS

Table 5 summarizes the notations used in the paper.
Symbol Description

T Set of tables
C Set of columns
Ps Single-column primary keys
Pm Multi-column primary keys
Fs Single-column candidate foreign keys
Fm Multi-column candidate foreign keys
B Hash table for bottom-k sketches
Q Hash table for quantile/distribution histograms
F Single/multi-column candidate foreign key
P Single/multi-column primary key
Ĉ Bottom-k sketch of C
F̂ Bottom-k sketch of F
P̂ Bottom-k sketch of P
P̄ Quantile histogram of P
F̄P Distribution histogram of F with respect to P

σ(F, P ) Inclusion coefficient
θ User-defined threshold for inclusion coefficient

Table 5: Notation used throughout the paper.

B. ALGORITHM

Algorithm B.1: DISCOVER FOREIGN KEYS(C,Ps,Pm, θ)

Phase 1.
Fs ← ∅,Fm ← ∅, B ← ∅, Q← ∅, S ← ∅
for all C ∈ C : B[C]← Ĉ
for all P = {C1, . . . , Cn} ∈ (Ps ∪Pm)



for p← 1 to n

do





for all Cf ∈ C

do





if σ(Ĉf , Ĉp) ≥ θ /*Ĉf , Ĉp ∈ B*/

then
{

if n = 1 : Fs ← (Cp, Cf )
if n > 1 : S[P,Cp]← Cf

if n > 1 : B[P ]← P̂

/*For n = 1, P̂ already in B*/
Q[P ]← P̄

Phase 2.
for all P = {C1, . . . , Cn} ∈ Pm



for all T ∈ T
Fm ← ({{C′1, . . . , C′n} | C′i ∈ S[P,Ci] ∩ T}, P )

for all F = ({C′1, . . . , C′n}, P ) ∈ Fm

do





Build F̂
if σ(F̂ , P̂ ) ≥ θ /*P̂ ∈ B*/

then
{
Q[P ]← P̄
Q[F ]← F̄P

else Remove (F, P ) from Fm
for all (F, P ) ∈ Fs : Q[F ]← F̄P

for all (F, P ) ∈ (Fs ∪ Fm)
Compute EMDn(F, P ) /*Using Q*/

Output F = Fs ∪ Fm in increasing order of EMDn

C. BOTTOM-K SKETCHES
Given a set F , a bottom-k sketch F̂ for F is computed as fol-

lows: Assign ranks to all values in F uniformly at random, and let

CID SMB ...

10 INTC

2 AAPL

217 GOOG

Hash

h(10|INTC) = 10

h(2|AAPL) = 1

h(217|GOOG)=5

Bottom-1

2|AAPL, 1

Figure 11: Constructing a Bottom-k sketch.
F̂ be the set of k values with the smallest ranks. In practice, to
compute the rank assignment we choose a hash function h, hash
each value in F , and keep the k values corresponding to the small-
est k hash values. If F is a set of tuples, rather than simple values,
we first concatenate all values in a tuple using a predefined field
separator and hash the resulting string as a whole. Figure 11 shows
an example bottom-1 sketch for a set of tuples. Clearly, a bottom-k
sketch can be computed in one pass over F .

Bottom-k sketches have been used to estimate various measures,
such as the Jaccard coefficient ρ(F, P ) = |F∩P |

|F∪P | (see [5]) or the
intersection size |F ∩ P | (see [2]). The estimators require that
the same hash function h be used for computing both bottom-k
sketches F̂ and P̂ (hence, the sketches are called coordinated).

D. PROOF OF LEMMA 1
PROOF. Let EMDP=n·EMDn,P and EMDGP =n·EMDn,GP be

the unnormalized EMD values in the primary space P and the
reduced space GP respectively. Consider a movement of mass
m that EMDP executes in the primary space P , from a point p
to a point q. Its cost is m · d(p, q). Let a and b be the upper
right corners of the cells that contain p, respectively q. Then we
can define a valid movement of mass m in the space GP , be-
tween a and b. The cost of this mass movement is m · d(a, b)
≤ m(d(a, p)+d(p, q)+d(q, b))≤ md(p, q) + m 2n

`
. Making this

transformation for all mass movements in EMDP , we obtain a valid
mass movement in GP , of cost at most EMDP + 2n

`

∑
m ≤

EMDP + 2n
`

(the sum is over all the mass moved in EMDP ).
Since EMDGP is the minimum cost movement in GP , we deduce
EMDGP ≤ EMDP +2n/`. A similar argument holds for the other
inequality, by transforming mass movements from EMDGP into
valid mass movements in P . We deduce that |EMDP−EMDGP | ≤
2n
`
.

E. DATASET DESCRIPTIONS
The datasets can be downloaded from the following sites: TPC-

H from http://www.tpc.org/tpch, TPC-E from http:
//www.tpc.org/tpce, WP from http://www.archive.
org/details/enwiki-20080312, IMDB from
http://www.imdb.com/interfaces.

When generating instances for the synthetic datasets, we use the
following parameter settings: For TPC-H we use scale factor 1. For
TPC-E we use 1000 customers, 20 trading days, and scale factor
1000. The characteristics of all datasets are given in Table 6, where
|T| is the number of non-empty tables, |CT | and max |CT | are the
average and maximum number of columns per table, and |RT | and
max |RT | are the average and maximum number of rows per table.

All these datasets come with a schema specification. Table 7
summarizes the single/multi-column foreign/primary keys explic-
itly stated in each schema. Notice that, e.g., TPC-E specifies nine
2-column primary keys but only one 2-column foreign key.

F. SCHEMA AND DATA UPDATES
Our methods can easily handle insertions and deletions of new

tables and columns given the existing bottom-k sketches and quan-
tile/distribution histograms. Let the new set of columns be C′.813

: Bottom-1 sketch
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Randomness Test - Single-Column

Wilcoxon test

A standard statistical test for randomness

1 Sort values in F ∪ P

2 Assign ranks

3 Compute rank-sum of duplicate values

P

SMB

C
I
D

F F'

Figure 2: A good foreign key F is a set of random values from
the primary key. Column F ′ fails the randomness test.
More precisely, we require that

σ(F, P ) =
|F ∩ P |
|F | ≥ θ,

where σ(F, P ) is the inclusion coefficient and θ is user-defined. In
our experiments, we use θ = 0.9, i.e., partial inclusion is satisfied
if at least 90% of the values in F are also contained in P . We use
the notation F ⊂θ P to denote that σ(F, P ) ≥ θ.

Computing σ(F, P ) is very expensive, especially when consid-
ering the potentially very large number of multi-column candidate
fk/pk pairs. Therefore, we estimate all inclusion coefficients by
computing a bottom-k sketch [5] for each column (refer to Ap-
pendix C for details on bottom-k sketches). We then use the SCS
estimator from [5], which estimates the Jaccard coefficient ρ(F, P ) =
|F∩P |
|F∪P | . Since σ(F, P ) = ρ(F,P )

ρ(F∪P,F )
, we estimate σ(F, P ) by di-

viding the estimators for the two Jaccards. 1 Section 4 provides
details on how to efficiently compute bottom-k sketches for both
single and multi-column candidate keys.

3. RANDOMNESS
In this section we assume that the inclusion coefficients between

all pairs of single/multi-column pks and columns in C have been
computed, and pairs that do not satisfy partial inclusion have been
discarded. As mentioned in Section 1, we conjecture that random-
ness is a strong indicator of the quality of an fk/pk pair. Formally:

DEFINITION 1 (RANDOMNESS TEST). Given two sets of val-
ues (tuples) F and P , test the statistical hypothesis that the distinct
values (tuples) in F have the same underlying distribution as the
distinct values (tuples) in P .

Figure 2 shows an example of a two-column primary key and
two candidate foreign keys. Set F is a good fk, since it appears to
be a random subset of values from the pk. Set F ′ is a contiguous
subset of the pk and does not pass the randomness test.

Domain Order. The randomness test requires the existence of
an underlying order over the domain of the primary and foreign
keys. To see this, consider the example in Figure 3. If the val-
ues are sorted numerically, then the candidate column F is a prefix
of the primary key. However, when the same values are sorted
lexicographically, F falsely appears to be a random sample of the
primary key. To handle this issue, we adopt the following natu-
ral convention: numeric values are sorted numerically, and strings
are sorted lexicographically. The implicit assumption is that it is
very rare that a column containing only numeric values is a foreign
key for a primary key that contains strings (in which case it should
have been sorted lexicographically, rather than numerically). When
columns contain both numeric, alphanumeric, and string values, we
use a combination sort (same as the Unix “sort -n” command). For
multi-column keys we define an order along each dimension, as
above.

1In Section 5 we discuss two alternative estimators we considered.
Each had a significant drawback. By contrast, this estimator proved
highly accurate.
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Figure 3: A column containing numeric values might falsely
appear to be a random sample of a primary key based on lexi-
cographic sorting of values.
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Figure 4: The Wilcoxon test: 1. Sort values in multi-set F ∪ P ;
2. Assign ranks; 3. Compute the rank-sum of values in F (13.5
in this example).

Randomness measure. A standard, non-parametric statistical
test for randomness is the Wilcoxon rank-sum test [18]. Assume
that F, P are single-column candidate keys. Sort the values in the
multi-set union F ∪P and rank them. Since F ⊂θ P , the majority
of values in F appear in P , so there are duplicate values. Assign
the mean rank for duplicate values (i.e., if a duplicate value is 3rd
and 4th in the sorted order, it is assigned rank 3.5; see Figure 4).
Finally, compute the sum of ranks of all values in F . This rank-
sum is an indication of whether F and P are drawn from the same
distribution. Intuitively, if the rank-sum is too small, then most
values in F are contained in a prefix of P , and if the rank-sum is
too large then most values in F are contained in a suffix of P .

The Wilcoxon test is straightforward for univariate distributions
but does not generalize to multivariate distributions, so it cannot be
used for multi-column keys. Attempting to apply the Wilcoxon test
separately for each dimension of a multi-column key results in false
negatives. For example, consider the multi-column key F in Figure
2. Even though F appears to be a uniform random sample of P ,
the projection of F in either dimension is not a uniform sample due
to the multiplicity of some of the values (two points project into the
same value in both dimensions). An independent Wilcoxon test in
either dimension would dismiss F .

We now propose a novel approach for deciding whether two
multi-dimensional sets are drawn from the same distribution. Our
method computes a value that reflects how close the distributions
of the two sets are. We start by defining a probability distribu-
tion for each set, so that the total probability mass is 1 (this step
is detailed later in the section). A standard distance measure be-
tween two probability distributions is the Earth Mover’s Distance
(EMD) [16]. The smaller the value EMD(F, P ) is, the closer the
distributions of F and P are. The output of our algorithm is the
list of (F, P ) pairs, in increasing order of their (normalized) EMD
values.

Intuitively, EMD measures the amount of work needed to con-
vert the set of values of the foreign key into the set of values of the
primary key. If we regard each distribution as piles of dirt spread
over some space, EMD is the least amount of effort needed to con-
vert the first set of piles into the second. The effort is the amount
of dirt that needs to be moved times the distance it has to travel.
Figure 5 illustrates the computation of EMD for pairs (F, P ) and
(F ′, P ) from Figure 2. In this example, all points in a set have
equal probability and the sum in each set is equal to 1. To convert
F into P , a probability mass of 0.1 needs to be moved from each807
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Randomness Test - Multi-Column

Earth Mover’s Distance

Assume two piles of dirt A and B, then EMD(A,B) is the amount of work
to convert A to B.

1 Assign a probability mass to each point, such that the sum of
probabilities is 1.

2 For each point a in A, find the distance to the nearest point in B \ A
and multiply by a’s mass.

P

SMB

F F'

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.1

0.1

C
I
D

Figure 5: EMD quantifies the amount of work required to con-
vert one set of values into another.

point p ∈ F to the nearest point np(p) ∈ P \ F . Similarly for
F ′ and P . Since the points of F are uniformly distributed over P
the average distance between p and np(p) is smaller than the aver-
age distance for F ′. Hence, the amount of work needed to convert
distribution F to P is smaller than the one to convert F ′ to P .

While the definition of EMD applies to single and multi-dimen-
sional sets, it has a crucial restriction: unlike the Wilcoxon test,
EMD requires a metric distance between the values of the two dis-
tributions. A metric distance can be used only when both columns
F and P contain numeric values, but not when they contain strings.
Even for numeric values, using the underlying distance is undesir-
able because we need to be able to compare EMD values between
different candidate pairs for sorting pairs according to confidence.
However, given distinct F, F ′, P, P ′, if F and P have larger ranges
of values than F ′ and P ′, then EMD(F, P ) will generally tend to
be larger than EMD(F ′, P ′), even if F is a “more random” sub-
set of P than F ′ is for P ′. Therefore, a uniform way of defining a
distance function for numeric and string columns is needed, which
is independent of the range of values in any column.

We propose using the distance between the ranks of the values in
the pk column. For single-column F and P , rank all values in P in
the underlying ordered space, then define the rank distance between
two values in F or P to be the (absolute) difference between their
ranks in P . For multi-columns F and P , define the rank distance to
be the sum of single-dimensional rank distances (i.e., the Manhat-
tan distance). However, the rank distance will still introduce bias
when comparing EMD(F, P ) and EMD(F ′, P ′) if the number
of values in |P | is much larger than the number of values in |P ′|.
Therefore, the rank distance is normalized by the number of values,
in effect replacing ranks by quantiles:

DEFINITION 2 (QUANTILE DISTANCE). Given a multi-col-
umn set X consisting of n columns, a total order in each column
Xi, a function qi(x) that returns the quantile order of value x in
column Xi, and two tuples v, w ∈ X , the quantile distance is

d(v, w) =
∑

1≤i≤n
|qi(v)− qi(w)|.

Notice that the quantile distance is independent of the type of val-
ues in X as long as a total ordering of the values in each dimen-
sion is defined. We refer to the EMD measure using the quantile
distance as Quantile-EMD. A final normalization is needed to com-
pare (F, P ) and (F ′, P ′) when they have different dimensionality.
Let EMDn(F, P ) = EMD(F, P )/n, where n is the dimension-
ality of F and P .

Computing Quantile-EMD. We now consider the problem of
efficiently approximating EMD(F, P ) for all pairs of candidate
keys (F, P ). The first step is to define a probability distribution
for F and P . The easiest choice is to let each value in F have
a probability mass of 1/|F |, and each value in P have a proba-
bility of 1/|P |. Computing EMD is equivalent to the well-known
transportation problem and can be solved by the Hungarian algo-
rithm [7]. However, the Hungarian algorithm has cubic complexity
and is very inefficient over large F and P . For our purposes, it

P

SMB

C
I
D

1 1

1

1

1 1

11 1

1

A

B

Figure 6: Constructing a 2-dimensional 4-quantile histogram
for primary key P .

is sufficient to compute EMD on coarser probability distributions.
More precisely, we use a quantile histogram to define the probabil-
ity distribution in the primary key, since quantiles best approximate
the original distribution w.r.t. the quantile distance. The probability
distribution in the candidate foreign key is then defined with respect
to the quantiles of the primary key.

For every single/multi-column key P ∈ P construct a quantile
histogram based on the `-quantiles of P (for some constant `). In
one dimension, the histogram is equi-depth. In multiple dimen-
sions, compute quantiles separately on each dimension (over the
distinct values in that dimension) and construct a grid based on the
quantiles in each dimension. An example 2-dimensional 4-quantile
histogram is shown in Figure 6. Notice that in this particular exam-
ple there exists a three point tie in each dimension. After projecting
the points in either dimension there are only 8 distinct values left.
Hence, the 1st 4-quantile is the point with rank 8 · 1/4, the 2nd is
the one with rank 8 · 2/4, etc. The probability distribution of P
based on the corresponding histogram is defined as:

DEFINITION 3 (QUANTILE HISTOGRAM). Given a multi-col-
umn primary keyP consisting of n columns, letQi = {qi1, . . . , qi`i}
be the `i-quantiles of P in column i (different columns may have
different number of quantiles). LetGP = Q1×. . .×Qn be the cor-
responding n-dimensional quantile grid. The quantile histogram P̄
is defined as the number of values of P within each grid cell ofGP .
The total number of grid cells is |GP | = `1 × . . .× `n. The prob-
ability distribution over P is defined as the normalized P̄ ; i.e., the
count in each cell is divided by |P |.

For a candidate multi-column F , the probability distribution his-
togram based on the quantile grid GP of P is defined as:

DEFINITION 4 (DISTRIBUTION HISTOGRAM). Given a can-
didate pair (F, P ), the distribution histogram F̄P of F with respect
to P is defined as the number of distinct values of F within each
grid cell of the quantile grid GP . The probability distribution over
F is defined as the normalized F̄P ; i.e., the count in each cell is
divided by |F |.

We now describe how to approximate EMD(F, P ) using the
quantile histograms. Assume that the probability mass of a grid
cell is concentrated in its upper right corner. Therefore, the dis-
tance between two grid cells is defined as the quantile distance be-
tween the upper right corners of the cells. For example, in Figure 6,
the distance between grid cells A and B is (3/4− 2/4) + (2/4−
1/4) = 0.5. As before, the Hungarian algorithm is used to com-
pute the EMD between the two distributions. The input size is now
|GP | = `n � |P | (usually 1 ≤ n ≤ 4 and ` is small). Once the
normalized histograms are computed, the method requires no addi-
tional access to the raw data. Note that the value ` need not be the
same for all primary keys. Since Quantile-EMD uses the quantile
distance we can compare EMD(F, P ) and EMD(F ′, P ′) even
if the quantile histograms were computed for different values of `.
This is important, since some primary keys may have only a few
values. On the other hand, a larger ` for larger primary keys will
improve accuracy.

Now we can bound the approximation error for the Quantile-808
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Randomness Test - Multi-Column continued

Problem

Exact algorithm for EMD has cubic complexity, i.e. unfeasible for large
tables.

Solution

Use quantiles to summarize values.
The motivation for n-quantiles is to divide ordered data into n essentially
equal-sized data subsets.

: An example 4-quantile, dividing a collection into 4 equal sized parts.
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Randomness Test - Multi-Column continued

Problem

Exact algorithm for EMD has cubic complexity, i.e. unfeasible for large
tables.

Solution

Use quantiles to summarize values.
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Figure 5: EMD quantifies the amount of work required to con-
vert one set of values into another.

point p ∈ F to the nearest point np(p) ∈ P \ F . Similarly for
F ′ and P . Since the points of F are uniformly distributed over P
the average distance between p and np(p) is smaller than the aver-
age distance for F ′. Hence, the amount of work needed to convert
distribution F to P is smaller than the one to convert F ′ to P .

While the definition of EMD applies to single and multi-dimen-
sional sets, it has a crucial restriction: unlike the Wilcoxon test,
EMD requires a metric distance between the values of the two dis-
tributions. A metric distance can be used only when both columns
F and P contain numeric values, but not when they contain strings.
Even for numeric values, using the underlying distance is undesir-
able because we need to be able to compare EMD values between
different candidate pairs for sorting pairs according to confidence.
However, given distinct F, F ′, P, P ′, if F and P have larger ranges
of values than F ′ and P ′, then EMD(F, P ) will generally tend to
be larger than EMD(F ′, P ′), even if F is a “more random” sub-
set of P than F ′ is for P ′. Therefore, a uniform way of defining a
distance function for numeric and string columns is needed, which
is independent of the range of values in any column.

We propose using the distance between the ranks of the values in
the pk column. For single-column F and P , rank all values in P in
the underlying ordered space, then define the rank distance between
two values in F or P to be the (absolute) difference between their
ranks in P . For multi-columns F and P , define the rank distance to
be the sum of single-dimensional rank distances (i.e., the Manhat-
tan distance). However, the rank distance will still introduce bias
when comparing EMD(F, P ) and EMD(F ′, P ′) if the number
of values in |P | is much larger than the number of values in |P ′|.
Therefore, the rank distance is normalized by the number of values,
in effect replacing ranks by quantiles:

DEFINITION 2 (QUANTILE DISTANCE). Given a multi-col-
umn set X consisting of n columns, a total order in each column
Xi, a function qi(x) that returns the quantile order of value x in
column Xi, and two tuples v, w ∈ X , the quantile distance is

d(v, w) =
∑

1≤i≤n
|qi(v)− qi(w)|.

Notice that the quantile distance is independent of the type of val-
ues in X as long as a total ordering of the values in each dimen-
sion is defined. We refer to the EMD measure using the quantile
distance as Quantile-EMD. A final normalization is needed to com-
pare (F, P ) and (F ′, P ′) when they have different dimensionality.
Let EMDn(F, P ) = EMD(F, P )/n, where n is the dimension-
ality of F and P .

Computing Quantile-EMD. We now consider the problem of
efficiently approximating EMD(F, P ) for all pairs of candidate
keys (F, P ). The first step is to define a probability distribution
for F and P . The easiest choice is to let each value in F have
a probability mass of 1/|F |, and each value in P have a proba-
bility of 1/|P |. Computing EMD is equivalent to the well-known
transportation problem and can be solved by the Hungarian algo-
rithm [7]. However, the Hungarian algorithm has cubic complexity
and is very inefficient over large F and P . For our purposes, it
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Figure 6: Constructing a 2-dimensional 4-quantile histogram
for primary key P .

is sufficient to compute EMD on coarser probability distributions.
More precisely, we use a quantile histogram to define the probabil-
ity distribution in the primary key, since quantiles best approximate
the original distribution w.r.t. the quantile distance. The probability
distribution in the candidate foreign key is then defined with respect
to the quantiles of the primary key.

For every single/multi-column key P ∈ P construct a quantile
histogram based on the `-quantiles of P (for some constant `). In
one dimension, the histogram is equi-depth. In multiple dimen-
sions, compute quantiles separately on each dimension (over the
distinct values in that dimension) and construct a grid based on the
quantiles in each dimension. An example 2-dimensional 4-quantile
histogram is shown in Figure 6. Notice that in this particular exam-
ple there exists a three point tie in each dimension. After projecting
the points in either dimension there are only 8 distinct values left.
Hence, the 1st 4-quantile is the point with rank 8 · 1/4, the 2nd is
the one with rank 8 · 2/4, etc. The probability distribution of P
based on the corresponding histogram is defined as:

DEFINITION 3 (QUANTILE HISTOGRAM). Given a multi-col-
umn primary keyP consisting of n columns, letQi = {qi1, . . . , qi`i}
be the `i-quantiles of P in column i (different columns may have
different number of quantiles). LetGP = Q1×. . .×Qn be the cor-
responding n-dimensional quantile grid. The quantile histogram P̄
is defined as the number of values of P within each grid cell ofGP .
The total number of grid cells is |GP | = `1 × . . .× `n. The prob-
ability distribution over P is defined as the normalized P̄ ; i.e., the
count in each cell is divided by |P |.

For a candidate multi-column F , the probability distribution his-
togram based on the quantile grid GP of P is defined as:

DEFINITION 4 (DISTRIBUTION HISTOGRAM). Given a can-
didate pair (F, P ), the distribution histogram F̄P of F with respect
to P is defined as the number of distinct values of F within each
grid cell of the quantile grid GP . The probability distribution over
F is defined as the normalized F̄P ; i.e., the count in each cell is
divided by |F |.

We now describe how to approximate EMD(F, P ) using the
quantile histograms. Assume that the probability mass of a grid
cell is concentrated in its upper right corner. Therefore, the dis-
tance between two grid cells is defined as the quantile distance be-
tween the upper right corners of the cells. For example, in Figure 6,
the distance between grid cells A and B is (3/4− 2/4) + (2/4−
1/4) = 0.5. As before, the Hungarian algorithm is used to com-
pute the EMD between the two distributions. The input size is now
|GP | = `n � |P | (usually 1 ≤ n ≤ 4 and ` is small). Once the
normalized histograms are computed, the method requires no addi-
tional access to the raw data. Note that the value ` need not be the
same for all primary keys. Since Quantile-EMD uses the quantile
distance we can compare EMD(F, P ) and EMD(F ′, P ′) even
if the quantile histograms were computed for different values of `.
This is important, since some primary keys may have only a few
values. On the other hand, a larger ` for larger primary keys will
improve accuracy.

Now we can bound the approximation error for the Quantile-808
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Figure 7: Utility measures on TPC-H, Wikipedia and IMDB.
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Figure 9: Scalability results.

to the data generation process itself. A total of 15 false positive
pairs (some pairs are counted in both directions) are between only
eight columns. These columns belong to seven different tables and
contain exactly the same number of rows and number of distinct
values: the numbers 1 to 5000. Clearly, only a domain expert
can label them as false positives (in our case, we used the exten-
sive TPC-E documentation). The algorithm also fails to discover
8 out of 45 true constraints and 28 implied constraints; the pairs
are shown in Table 3. Five of these foreign keys contain only one
distinct value (either the status ‘Completed’ or ‘Active’). Clearly,
the generator assigns a default value for this column for every row
in the table, since not all trades in Trade can be completed, while
all trades in Broker are active. One column contains address iden-
tifiers 1 to 4 even though the corresponding primary key contains
7504 distinct addresses. Finally, the other two address columns are
(almost) a prefix and a suffix of the primary key and constitute a
counter-example for the randomness rule.

5.3 Scalability
We tested the scalability of our method on TPC-H, for which it

is easy to generate instances of progressively larger sizes. We used
five instances with sizes 1MB, 10MB, 100MB, 1GB and 10GB.
The running times for each of the two phases, as well as the total
time are shown in Figure 9. For readability, we use a logarithmic
scale on both axes. As expected, each phase takes linear time. The
second phase is faster because we only have to scan the columns
that satisfy inclusion (while in the first case, we scan all columns).
For the 10GB instance, the total running time is less than 2.5 hours,
making our method applicable to enterprise-scale datasets.

5.4 Column Names
So far our foreign key discovery process has been a data-driven

approach. However, it is easy to enhance it by considering the or-
thogonal approach of looking at the column names (rule 7 in Sec-
tion 1). As shown in [10], comparing column names is not neces-
sarily straightforward, and can lead to false conclusions. For exam-
ple, in TPC-E columns that form valid fk/pk constraints have very
different names, because they contain an abbreviation of the table
name as a prefix (e.g., columns Trade History.th t id and Trade.t t id
are an fk/pk pair; the prefixes ’th’ and ’t’ in the column names stand

Precision Recall F-measure
TPC-H 1 1 1
TPC-E 0.57 0.82 0.67

TPC-E Ext. 1 0.89 0.94
IMDB 1 1 1

Table 4: Results after eliminating non-matching column
names.

for Trade History and Trade respectively). Fortunately, TPC-E has
extensive documentation that explains the naming conventions, so
we can delete these prefixes and compare the remaining strings.
The resulting names are identical only if the pair is a valid con-
straint.

We are not aware of any method for automatically determining
which string similarity measure to use for any given schema. In Ta-
ble 4, we report our results using string identity (for TPC-E, we ap-
ply this to column names after deleting their table prefixes). The re-
sults are generated as follows: First, we compute for each database
the most relevant answer set, i.e., the top-X% for the best valueX .
We then delete all pairs from these sets whose column names are
not identical, and compute the precision/recall on the resulting an-
swer set. For TPC-E, we also report results using the extended set
of valid constraints. For WP there is no single pair with identical
column names, hence we exclude it from this experiment.

5.5 Comparison With Alternatives
The algorithm of Rostin et al. [17] uses a learning phase to train

four different classifiers that are then used to discover single-column
keys only. Each classifier uses a training set consisting of known
fk/pk pairs from four out of five different databases. The goal is to
learn the relative importance of rules 1-7 stated in Section 1, then
apply them to the fifth database. No classifier was consistently the
best across all datasets.

We compare our results over TPC-H using the results already re-
ported in [17]. As reported in that paper, the best classifier (J48)
for the TPC-H dataset results in F-measure equal to 0.95, with the
average value over all classifiers being 0.915. The success of J48
for TPC-H can be largely attributed to the use of rule 7 (match-
ing column names), making TPC-H an easy target. Our method
achieves an F-measure of 1 for TPC-H when using column names
(even without column names, F-measure is 0.95).

5.6 Inclusion Estimators
We considered two alternative estimators for the inclusion coef-

ficient σ(F, P ):

1. The estimator proposed in [3], which is unbiased. However,
it is defined over sketches whose sizes are a user-defined frac-
tion of the size of the original column. This is generally too
large for practical purposes (e.g., the Wikipedia database has
size O(109), so the size of 1%-sketches is O(107)). Note811

: TPC-H
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to the data generation process itself. A total of 15 false positive
pairs (some pairs are counted in both directions) are between only
eight columns. These columns belong to seven different tables and
contain exactly the same number of rows and number of distinct
values: the numbers 1 to 5000. Clearly, only a domain expert
can label them as false positives (in our case, we used the exten-
sive TPC-E documentation). The algorithm also fails to discover
8 out of 45 true constraints and 28 implied constraints; the pairs
are shown in Table 3. Five of these foreign keys contain only one
distinct value (either the status ‘Completed’ or ‘Active’). Clearly,
the generator assigns a default value for this column for every row
in the table, since not all trades in Trade can be completed, while
all trades in Broker are active. One column contains address iden-
tifiers 1 to 4 even though the corresponding primary key contains
7504 distinct addresses. Finally, the other two address columns are
(almost) a prefix and a suffix of the primary key and constitute a
counter-example for the randomness rule.

5.3 Scalability
We tested the scalability of our method on TPC-H, for which it

is easy to generate instances of progressively larger sizes. We used
five instances with sizes 1MB, 10MB, 100MB, 1GB and 10GB.
The running times for each of the two phases, as well as the total
time are shown in Figure 9. For readability, we use a logarithmic
scale on both axes. As expected, each phase takes linear time. The
second phase is faster because we only have to scan the columns
that satisfy inclusion (while in the first case, we scan all columns).
For the 10GB instance, the total running time is less than 2.5 hours,
making our method applicable to enterprise-scale datasets.

5.4 Column Names
So far our foreign key discovery process has been a data-driven

approach. However, it is easy to enhance it by considering the or-
thogonal approach of looking at the column names (rule 7 in Sec-
tion 1). As shown in [10], comparing column names is not neces-
sarily straightforward, and can lead to false conclusions. For exam-
ple, in TPC-E columns that form valid fk/pk constraints have very
different names, because they contain an abbreviation of the table
name as a prefix (e.g., columns Trade History.th t id and Trade.t t id
are an fk/pk pair; the prefixes ’th’ and ’t’ in the column names stand

Precision Recall F-measure
TPC-H 1 1 1
TPC-E 0.57 0.82 0.67

TPC-E Ext. 1 0.89 0.94
IMDB 1 1 1

Table 4: Results after eliminating non-matching column
names.

for Trade History and Trade respectively). Fortunately, TPC-E has
extensive documentation that explains the naming conventions, so
we can delete these prefixes and compare the remaining strings.
The resulting names are identical only if the pair is a valid con-
straint.

We are not aware of any method for automatically determining
which string similarity measure to use for any given schema. In Ta-
ble 4, we report our results using string identity (for TPC-E, we ap-
ply this to column names after deleting their table prefixes). The re-
sults are generated as follows: First, we compute for each database
the most relevant answer set, i.e., the top-X% for the best valueX .
We then delete all pairs from these sets whose column names are
not identical, and compute the precision/recall on the resulting an-
swer set. For TPC-E, we also report results using the extended set
of valid constraints. For WP there is no single pair with identical
column names, hence we exclude it from this experiment.

5.5 Comparison With Alternatives
The algorithm of Rostin et al. [17] uses a learning phase to train

four different classifiers that are then used to discover single-column
keys only. Each classifier uses a training set consisting of known
fk/pk pairs from four out of five different databases. The goal is to
learn the relative importance of rules 1-7 stated in Section 1, then
apply them to the fifth database. No classifier was consistently the
best across all datasets.

We compare our results over TPC-H using the results already re-
ported in [17]. As reported in that paper, the best classifier (J48)
for the TPC-H dataset results in F-measure equal to 0.95, with the
average value over all classifiers being 0.915. The success of J48
for TPC-H can be largely attributed to the use of rule 7 (match-
ing column names), making TPC-H an easy target. Our method
achieves an F-measure of 1 for TPC-H when using column names
(even without column names, F-measure is 0.95).

5.6 Inclusion Estimators
We considered two alternative estimators for the inclusion coef-

ficient σ(F, P ):

1. The estimator proposed in [3], which is unbiased. However,
it is defined over sketches whose sizes are a user-defined frac-
tion of the size of the original column. This is generally too
large for practical purposes (e.g., the Wikipedia database has
size O(109), so the size of 1%-sketches is O(107)). Note811

: Wikipedia
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Conclusion

Linear approach to finding foreign key

Ranking based on Randomness property

Distance measure quantifying randomness

Fast approximate algorithms for evaluating randomness over a large
set of columns

Comprehensive experimental validation using both synthetic and real
datasets.
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Good

A better approach to fk discovery, requiring no domain knowledge

Novel idea of Randomness

Evaluation on real world schemas and datasets

They propose a solution to a very real and very important problem

The first to consider multi-column fks.
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Bad

1 ”Highly unlikely that a database design incurs a bias” on p. 2 is an
unsupported claim.

2 Algorithm in appendix is very dense and unexplained (A more little
handholding please).

3 It is unclear why Wilcoxon test is relevant, nearly half a page is spent.

4 Approximate quantiles on p. 6 are not defined.

5 Example on fig. 1 is not too helpful.

6 Paper is fragmented into many topics, difficult to read.

7 From the description of EMD it is unclear how the probability mass
affects the result.

8 Not explained why a dataset is dirty.
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Relevance to Project

Foreign keys are an integral part of good database design

Given foreign keys many additional checks can be implemented

The majority of open source systems we have examined does not have
fks
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Questions

?
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