
OOP: Object-Oriented Programming, Part 2 1

Object-Oriented Programming, Part 2
• Packages

 The Java library unit ---“Think Big”
• Information hiding
• Access modifiers

 Private, protected, public, and “friendly”
• The singleton design pattern

 Making use of access modifiers
• Designing an email class

 Conventional object-oriented design
• Designing and implementing a debug facility

 Unconventional object-oriented design

OOP: Object-Oriented Programming, Part 2 2

Package Example
package com.mycompany.misc; // file Car.java
public class Car {

public Car(){
System.out.println("com.mycompany.misc.Car");

}
}

package com.mycompany.misc; // file Truck.java
public class Truck {

public Truck(){
System.out.println("com.mycompany.misc.Truck");

}
}

OOP: Object-Oriented Programming, Part 2 3

Packages in Java
• A package is a collection of classes (a library).

• The first line in a file must specify the package, e.g.,
 package mypackage;
 package dk.aau.cs.torp.debug;

• Characteristic of a package
 Organized in a hierarchy

 Uses the file system for implementing the hierarchy
 A package corresponds to a directory (and typically subdirectories)

 Every package is a name space
 More than one class called Test

• By default, classes belong to the unnamed package.

OOP: Object-Oriented Programming, Part 2 4

Packages in Java, cont.
• Typical problems with packages

 Tied to the local directory structure
 Case sensitive
 Default package in current directory.

• Good design
 All classes should be in a explicit package, i.e., do not use the unnamed

package
 Hint: MIP exam

OOP: Object-Oriented Programming, Part 2 5

Accessing Classes in a Package
• A class MyClass in a package mypackage is accessed via

 mypackage.MyClass
• This can be nested to any level

 mypackage1.mypackage2.mypackage3.MyOtherClass
• Naming convention for package names: all lower case and

words run together.

• To avoid too much doting packages can be imported, e.g.,
 In a file import mypackage1.mypackage2.mypackage3.*,

then, MyOtherClass does not have to be qualified.

• If name clashes, i.e., same class name in two imported
packages, then use fully qualified name.

• The package java.lang is always imported.

OOP: Object-Oriented Programming, Part 2 6

Accessing Classes, Example One
import java.lang.*; // not needed always done implicit
public class Garage1 {

com.mycompany.misc.Car car1;
com.mycompany.misc.Truck truck1;
public Garage1(){

car1 = new com.mycompany.misc.Car();
truck1 = new com.mycompany.misc.Truck();

}
public void toPrint(){

System.out.println ("A garage: " + Math.PI);
System.out.println ("A car: " + car1);

}
}

from java.lang

OOP: Object-Oriented Programming, Part 2 7

Accessing Classes, Example Two
import com.mycompany.misc.*;
//import com.mycompany.*; // not possible
//import com.*; // not possible
public class Garage {

Car car1;
Truck truck1;
public Garage(){

car1 = new Car();
truck1 = new Truck();

}
public void toPrint(){

System.out.println ("A garage: " + Math.PI);
System.out.println ("A car: " + car1);

}
}

from com.mycompany.misc

OOP: Object-Oriented Programming, Part 2 8

Static import
// without static import
public class WithOutStaticImport {

public static void main(String[] args) {
System.out.println("Value of PI is " + Math.PI);

}
}

// with static import
import static java.lang.Math.PI;
import static java.lang.System.out;
public class StaticImport {

public static void main(String[] args) {
out.println("Value of PI is " + PI);

}
}

• Tip: Use with caution!

OOP: Object-Oriented Programming, Part 2 9

CLASSPATH
• Store misc package in /user/torp/java/com/mycompany/misc

directory, i.e., the files Car.class and Truck.class.

• CLASSPATH = .;/user/torp/java;/user/torp/something.jar

• CLASSPATH = c:\java:c:\user\torp\something.jar
 Test echo %CLASSPATH% on Windows
 Test echo $CLASSPATH on *nix

 Java ARchive (jar) files are used to store multiple files. Makes for
example downloads over the Internet much faster.

• Compiler starts search at CLASSPATH

OOP: Object-Oriented Programming, Part 2 10

Information Hiding
• Separate interface from implementation!

 Also hides the errors that you make in the implementation

• How much should a user of a class see?

• Rules of thumb
 Make instance variables private
 Make at least one constructor public
 Make part of the methods public

OOP: Object-Oriented Programming, Part 2 11

Access Modifiers on Variables/Methods
• private

 Variable/method is private to the class
 "Visible to my self"

• public
 Variable/method can be seen by all classes
 "Visible to all"

• protected
 public to other members of the same package
 public to all subclasses
 private to anyone else
 "Visible to the family" or "beware of dog"

OOP: Object-Oriented Programming, Part 2 12

Access Modifiers on Variables/Methods, cont.
• “Friendly”

 Default access modifier, has no keyword
 public to other members of the same package
 private to anyone outside the package
 Also called package access
 "Visible in the neighborhood"

• Is “friendly” more restrictive
 than private?
 than protected?

OOP: Object-Oriented Programming, Part 2 13

Public/”Friendly” Example

package mynewpackage; // in another package
import com.mycompany.misc.*;
public static void main(String[] args){

Car car1 = new Car();
car1.foo(); // compile error "private" in this package

}

package com.mycompany.misc;
public class Car{

public Car(){
System.out.println("com.mycompany.misc.Car");

}
void foo () { // "friendly"

System.out.println("foo");
}

}

OOP: Object-Oriented Programming, Part 2 14

Singleton Design Pattern

public class UseSingleton {
public static void main (String[] args){

Singleton s1 = new Singleton(); // compile error
Singleton s2 = Singleton.getSingleton();
s2.singletonMethod();

 // s2 and s3 are reference equal
Singleton s3 = Singleton.getSingleton();

}

public class Singleton{
 private int myData = 42;

private static Singleton s = new Singleton();
// make default constructor private
private Singleton(){ }
public static Singleton getSingleton(){

return s;
}
public void singletonMethod() { /* do stuff */ };
public int getSingletonData() { return myData; }

}

OOP: Object-Oriented Programming, Part 2 15

Singleton Design Pattern, cont.

• Controlled access to one instance
• Reduced name space (not a “global” variable)
• Permits refinement of operations and representation
• Permits a variable number of instances
• More flexible than static methods
• Very nice object-oriented design

Singleton
static uniqueInstance
otherData
static getInstance()
singletonMethod()
getSingletonData()

return uniqueInstance

OOP: Object-Oriented Programming, Part 2 16

Design an Email Class
• Instance variables

 from single email address, should provide a default
 to multiple email addresses, mandatory
 cc multiple email addresses, default empty
 bcc multiple email addresses, default empty
 reply-to single email address, default empty
 subject string
 body large string

• Open questions
 What are the data types of the instance variables?

 Should subject and body be of the same data type?
 Should email address be a class or simply a string?

 What should the access modifiers be for the instance variables?
 How to store a list of multiple email addresses?
 Should subject and body be mandatory?

OOP: Object-Oriented Programming, Part 2 17

Design an Email Class, cont.
• Methods

 setDefaultFrom(emailAddress), sets default from address
 setFrom(emailAddress), sets from this email
 getFrom() return emailAddress, get the from for this email
 setTo(emailAddress), sets single to in to email address
 setTo(emailAddress[]), sets more than one email address
 send(), sends the email
 send(emailAddress), sends the email to the email address

specified
 send(emailAddress[]), sends the email to the list specified
 clean(), clean all the instance variables
 show(), shows what is currently stored in the instance variables in a

nice human readable fashion
 setSubjectMandatory(boolean), should a subject be specified

before the email can be send?

OOP: Object-Oriented Programming, Part 2 18

Design an Email Class, cont.
• Constructors

 Email()
 Email(to, subject, body)
 Email(to, cc, subject, body)
 Email(to, cc, bcc, subject, body)
 Email(to, cc, bcc, reply-to, subject, body)

• Open questions
 How many constructors are enough?

 There can be too few, however there can also be too many!
 Pick the most simple and the most complete and add some in between!

 Should we automatically send the email when all mandatory instance
variables are supplied to the constructor?

OOP: Object-Oriented Programming, Part 2 19

Design an Email Class, cont.
• Missing, then we must reiterate the design!

 Must count the number of emails send
 Simple let us do it, to make the customer satisfied.

 Default at-address, e.g., torp means torp@cs.aau.dk
 Semi complex, would be nice but not strictly needed! (postpone to the next

release?)
 Save draft of email that can be restored later!

 Complicated and is not in the original requirement specification!
 Postpone delivery deadline or add to the price of the product!

• List of good idea for next release of Email class
 Adding attachments
 Setup to mail server

OOP: Object-Oriented Programming, Part 2 20

Evaluation of Design of an Email Class
• Open questions

 Does the class do one and only one thing well?
 Do we have a coherent and general class?

 Do we provide a good abstraction for clients?
 Are the method names saying and easy to understand and use?
 Are the internal data structures encapsulated (information hiding)?

 The correct access modifiers applied?
 Did we prepare for refinements of the class by other programmers?

 Inheritance (covered in next lectures)
 Do we have good documentation for the clients?
 Is the source code stored in the right package?

OOP: Object-Oriented Programming, Part 2 21

Access Modifiers on Classes
• private

 Not supported in Java! (however, works for inner class)
 Default see the slide on friendly

• protected
 Not supported in Java!

• public
 Can be seen by all other classes in other packages
 One public class per file

• “Friendly”
 A class without an access modifier can be accessed from the classes

within the same package.

• Packages have no access modifiers
 What would it mean?

OOP: Object-Oriented Programming, Part 2 22

Design a Debug Message Facility
• Be able to produce output from method without having to

recompile.

public class TestDebug{
 public void complicatedMethod(){
 int i = (int)(Math.PI + 89 * 62); // complicated stuff
 Debug.show("int debug", i);
 char c = 'x';
 Debug.show("char debug", c);
 String s = "build " + "a " + "string";
 Debug.show("Object debug", s);
 }
}

OOP: Object-Oriented Programming, Part 2 23

Design a Debug Message Facility, cont
• Methods

 enable/disable debugging
 show(int value)
 show(String message, int value)
 show(char value)
 show(String message, char value)
 show(Object value)
 show(String message, Object value)
 collect debug information and print all later, only when debugging
 showCollect(), prints the collected debug information
 clearCollect(), deletes all the collected debug information

• Open questions
 All methods are static, is this okay?
 Show method heavy overloaded okay?

OOP: Object-Oriented Programming, Part 2 24

Implementation of Debug Message Facility
public class Debug{
 /** Is debugging enabled, default it is off */
 private static boolean debugging = false;
 /** Is collecting debug information on, default is off */
 private static boolean collecting = false;
 /** Maximum no of String that can be collected */
 public static final int MAX = 99;
 /** Array to which messages are collected, fixed size */
 private static String[] coll = new String[MAX];
 /** index within coll array */
 private static int counter = 0;
 /** The method that actual displays the message */
 private static void realShow(String msg){
 if (debugging){
 if (collecting) {coll[counter++] = msg; }
 else { System.out.println(msg); }
 }
 }
}

OOP: Object-Oriented Programming, Part 2 25

Implementation of Debug Message Facility, cont
public class Debug{
 // snip
 /** Sets the debugging on. */
 public static void on(){ setDebug(true); }
 /** Sets the debugging off. */
 public static void off(){ setDebug(false); }
 /** Sets the debugging mode. */
 public static void setDebug(boolean mode){
 debugging = mode;
 }
 /** Gets the debugging mode. */
 public static boolean getDebug(){ return debugging; }

 /** Sets the collect mode. */
 public static void setCollect(boolean mode){
 collecting = mode;
 }
 /** Gets the collecting mode. */
 public static boolean getCollect(){ return collecting; }
}

OOP: Object-Oriented Programming, Part 2 26

Evaluation of a Debug Message Facility

 class Debug
on()

off()
setDebug(boolean)

setCollect(boolean)

debugging = mode

• All access to variables via methods.
• Only do one thing in one place, examples are

 setDebug() setCollect()
• Provided both on()/off() and setDebug()/getDebug()

 on()/off() method used a lot, and very saying method names
 setDebug()/getDebug() typical way to access private data

collecting = mode;
getCollect() return collecting;

OOP: Object-Oriented Programming, Part 2 27

Implementation of Debug Message Facility, cont
public class Debug{
 // snip
 /** Shows a debug message */
 public static void show(char value){show("", value); }

/** Shows a debug message */
 public static void show(String message, char value){
 String msg = message + " " + value;
 realShow(msg);
 }

/** Shows a debug message */
 public static void show(int value){show("", value); }

/** Shows a debug message */
public static void show(String message, int value){

 String msg = message + " " + value;
 realShow(msg);
 }
}

OOP: Object-Oriented Programming, Part 2 28

Evaluation of a Debug Message Facility, cont.
• Methods with few parameters add default parameters and call

similar method that takes more parameters.
• Many similar public show methods map to a single private
realShow method.

 class Debug
show(char)

show(int)

show(String,char)

show(String,int)

realShow(String){
 // do stuff
}

OOP: Object-Oriented Programming, Part 2 29

Evaluation of a Debug Message Facility, cont
• All variables and method are static, unusual but okay here
• The array that is collected to can easily be changed to a

dynamic structure when we learn about collections
 MAX should then be set to infinitive

• Open questions
 Easy to add show methods for all basic type?
 Can we write out to file or database instead of, must add functionality?

OOP: Object-Oriented Programming, Part 2 30

Summary
• Package, the library unit in Java.
• Access modifiers

 Tells clients what they can and cannot see.
• Separation of interface from implementation.

 Very important in design (and implementation).
• Guideline: Make elements as hidden as possible.
• Class properties

 Use static methods with caution!
• Object-oriented design hard parts

 Decomposing system into classes.
 Defining the public interface of each class.
 Finding out what is likely to change.
 Finding out what is likely to stay the same.

OOP: Object-Oriented Programming, Part 2 31

Class Properties
• A class variable is a variable that is common to all instances of

the same class.
• A class method is a method that operates on a class as it was an

object.

• Classes are objects (meta objects)
 Class variables are stored in meta objects
 Java supports meta object via the class Class. Further, there is a set of

classes in the package java.lang.reflect. See Chapter 12 “Run-
Time Type Identification”.

OOP: Object-Oriented Programming, Part 2 32

Class Properties, cont.
• Variables marked with static are class variables.

 public static float tax = 22.75;

• Methods marked with static are class methods
 public static void main (String[] args){}

• The Math class consists entirely of static methods and
variables.
 We never construct a Math object.
 In general this is not a good object-oriented design.

OOP: Object-Oriented Programming, Part 2 33

Implementation of Debug Message Facility, cont
public class Debug{
 // snip
 /**
 * Show the debug information collected
 */
 public static void showCollect(){
 for(int i = 0; i <= counter - 1; i++){

// do NOT call real show here!
 System.out.println(coll[i]);
 }
 clearCollect();
 }

 /**
 * Clean the collected debug information
 */
 public static void clearCollect(){
 counter = 0;
 }
}

