Object-Oriented Programming, Part 1

e (lasses
e Methods

= Arguments and return value
= Overloading

e Variables

= Instance variables vs. class variables

= Scope rules
e (Object creation and destruction

= Constructors

= Destructors

= Value vs. object (String objects are special)
e Equality

= Three different types of equality

OOP: Object-Oriented Programming, Part 1

Classes 1n Java

e A class encapsulates a set of properties (methods and attributes)
= Some properties are hidden
= The remaining properties are the interface of the class

N\

public class ClassName { // int x, y; > Data declarations

dataDeclarations Car c:
Constructors ~
methods)
} > Constructors
-’
\
> Methods

OOP: Object-Oriented Programming, Part 1 \ /

Example of a Class

public class Car ({

// Data declaration/state

private String make;

private String model;

private double price;

// constructor

public Car(String ma, String mo, double pr) ({
make = ma;
model = mo;
price = pr;

}

// methods

public String getMake () { // “function”
return make;

}

public void setMake (String ma) { // “procedure”
make = ma;

}

public String toString() { // “function”
return "make " + getMake() + " model " + model;

}

OOP: Oijct-Oriented Programming, Part 1

Methods 1n Java

* A method 1s a function or procedure that reads and/or modifies
the state of the class.

= A function returns a value (a procedure does not).
= A procedure has side-effects, e.g., change the state of an object.

char calc(int numl, int num2, String message)

A T ~_ _
o~
method Parameter list
name
The parameter list specifies the type

return and name of each parameter

type
The name of a parameter in the method
declaration is called a formal argument

OOP: Object-Oriented Programming, Part 1

Method 1n Java, Example

public class Car{

// snip
/** Calculates the sales price of the car */

public int salesPrice () {
return (int)price;

}

/** Calculates the sales price of the car */
public int salesPrice(int overhead) {
return (int)price + overhead;

}

/** Calculates the sales price of the car */
public double salesPrice (double overheadPercent) {

return price + (overheadPercent * price);

}

/** Override the toString method */

public String toString() {
return "make " + getMake() + " model "

+ getModel () + " price " + getPrice();

}

OOP: Object-Oriented Programming, Part 1

Method 1n Java, Example, cont.

public class Car{

// snip

// what is wrong here?

public int salesPrice() {
return (int)price;

}

public double salesPrice() {

return (double)price;

}

// what is ugly here?
public double salesPricel (int i, double d) {
// does okay stuff

}
public double salesPricel (double d, int i) {

// does okay stuff
}

public static void main(String[] args) {
Car vw = new Car (“VW”, “Golf”, 1000);

vw.salesPrice() ;

}

OOP: Objéct-Oriented Programming, Part 1

Method 1n Java, Examples, cont.

e What 1s ugly here?

// Finds the maximum wvalue
public int max(int x, int y) {
int result = x; // make a guess on maximum value
if (x < y) { result = y;}
return result;
X++;

// Checks if x > 10

public boolean greaterThanlO (int x) {
boolean result;
if (x > 10) { result true;}
else { result = false;}
return result;

OOP: Basic Parts of Java

Instance Variables

* An instance variable 1s a data declaration 1n a class. Every
object instantiated from the class has its own version of the
instance variables.

public class Car {
private String make;
private String model;
private double price;

() () ()
make: Ford make: Opel make: BMW
model: Taurus model: Kadett model: M1l
price: 100 price: 2500 price: 100

. . . . - .

carl car2 car3

OOP: Object-Oriented Programming, Part 1

Scope

public class Car {
// snip
private String make; // can be seen in entire class

public String someMethod () ({

String tmp = “Hello”; // local to this method
System.out.println(make); // allowed
return tmp + make;

}

public int someOtherMethod () ({

System.out.println(tmp); //not allowed
System.out.println(make); //allowed

for(int 7 = 0; jJ < 10 J++)
System.out.println(j); //allowed

return j; //not allowed

}

OOP: Object-Oriented Programming, Part 1

Scope, cont.

public int myFunction() { // start scope 1
int x = 34;
// x is now available
{ // start scope 2
int y = 98;

// both x and y are available
// cannot redefine x here compile-time error
} // end scope 2
// now only x is available
// y is out-of-scope
return x;
} // end scope 1

e The redefinition of variable x in scope 2 1s allowed in C/C++

OOP: Object-Oriented Programming, Part 1 10

Object Creation in General

e Object can be created by
= Instantiating a class
= Copyling an existing object

e Instantiating

= Static: Objects are constructed and destructed at the same time as the
surrounding object.

= Dynamic: Objects are created by executing a specific command.

e Copying
= Often called cloning

OOP: Object-Oriented Programming, Part 1

11

Object Destruction in General

e Object can be destructed in two way.
= Explicit, e.g., by calling a special method or operator (C++).
= [mplicit, when the object is no longer needed by the program (Java).

e Explicit
= An object in use can be destructed.
= Not handling destruction can cause memory leaks.

e Implicit
= Objects are destructed automatically by a garbage collector.
= There 1s a performance overhead in starting the garbage collector.
= There 1s a scheduling problem in when to start the garbage collector.

OOP: Object-Oriented Programming, Part 1

12

Object Creation 1n Java

e [nstantiation
= A process where storage 1s allocated for an “empty” object.

e [nitialization
= A process where instances variables are assigned start values.

e Dynamic instantiation in Java by calling the new operator.

e Static instantiation 1s not supported in Java.

e Cloning implemented in Java via the method clone () in class
java.lang.Object.

e Objects are always allocated on the heap.

e [nitialization 1s done 1n constructors in Java
= Very similar to the way 1t 1s done in C++

OOP: Object-Oriented Programming, Part 1

13

Object Destruction 1n Java

e (Object destruction in Java is implicit an done via a garbage
collector.
= Can be called explicitly via System.gc ().

e A special method £inalize () i1s called immediately before
garbage collection.
= Method in class java.lang.Object, that can be overridden.

= Takes no parameters and returns void.
= Used for releasing resources, e.g., close file handles.

= Rarely necessary, e.g., “dead-conditions” for error detection purposes.

e Tip: Avoid to use the £inalize method!

OOP: Object-Oriented Programming, Part 1

14

Objects and References

e Variables of non-primitive types that are not initialized have the
special value null.

= Test: varl == null
= Assignment: wvar2 = null

e (Objects have 1dentity but no name

= not possible to identify an object O1 by the name of the variable
referring to O1.

e Aliasing: Many variables referring to the same object

varl 4 ™) 4 D

make: BMW
cylinders: 6

var2 .
model: M1l ////,fP K. 130

engine: ref
var3 . J \. V.

car3 enginel

OOP: Object-Oriented Programming, Part 1 15

Constructors 1n Java

e A constructor 1s a special method where the instance variables
of a newly created object are initialized with “reasonable” start
values.

e A class must have a constructor
= A default is provided implicitly (no-arg constructor).

e A constructor must have the same name as the class.
e A constructor has no return value.
e A constructor can be overloaded.

e A constructor can call other methods
= but not vice-versa.

e A constructor can call other constructors
= via the keyword this

OOP: Object-Oriented Programming, Part 1

16

Constructors 1n Java, cont.

e Every class should have a programmer defined constructor, that
explicitly guarantees correct initialization of new objects.

public class Car {
// instance variables
private String make;
private String model;
private double price;

/** The default constructor */

public Car () {
this("", "", 0.0); // must be the first thing

}

/** Constructor that assigns values to instance vars. */
public Car (String make, String model, double price) ({
this.make = make;
this.model = model;
this.price = price;

}
}

OOP: Object-Oriented Programming, Part 1 17

Typical Errors in Constructors

public class Car ({

// instance variables

private String make;

private String model;

private double price;

/** what is wrong here? */

public Car (String make, String model, double price) ({
make = make; model = model; price = price;

}

/** what is wrong here? */

public Car (String make, String model, double price) ({
this.make = make;
this.model = model;
this.price = price;
return this;

}

/** what is wrong here? */

public Car (String make, String model) {
this.make = make;
this.model = model;

}

OOP: Object-Oriented Programming, Part 1

18

Constructor Initialization

public class Garage ({
Car carl = new Car():;

static Car car2 = new Car(); // created on first access

public class Garagel {
Car carl;

static Car car?2;

// explicit static initialization
static {

car2 = new Car () ;

}

OOP: Object-Oriented Programming, Part 1

19

Constructor vs. Method

Similarities

e (Can take arguments
= all pass-by-value

e Can be overloaded

 Access modifiers can be
specified (e.g., private or
public)

e Can be £inal (covered
later)

OOP: Object-Oriented Programming, Part 1

Dissimilarities

Has fixed name (same as the
class)

No return value
= “returns” a reference to an object

Special call via new operator
= new Car ()

= Cannot be called by methods

Default constructor can be
synthesized by the system

Cannot be declared static

= |t 1s 1n fact a static method!

20

Cloning 1n Java

public class Car {
// instance variables
private String make;
private String model;
private double price;
// snip
/** Constructor that assigns values to instance vars. */

public Car (String make, String model, double price) {
this.make = make;

this.model model;
this.price = price;

}

/** Cloning in Java overrides Object.clone() */

public Object clone() { // note the return type
return new Car (make, model, price);

}
}

e Recommendations for what is allowed in a clone method.

= Will be covered later in the course.

OOP: Object-Oriented Programming, Part 1

21

Object Destruction 1n Java, cont.

public class Car{
// snip

/** Overwrite the finalize method.
* @see java.lang.Object#finalize ()
*/
public void finalize () {
// write who is dying, pretty stupid just an example
System.out.println("I'm dying " + this);

e No guarantee that £inalize method is ever called!

= [f you do not run out of main memory!

e Note that garbage collection only cleans-up memory
= not open files, open network connections, open database connections

OOP: Object-Oriented Programming, Part 1

22

Object Destruction 1n Java, cont.

class MemoryUsage { /* Dummy class to take up mem. */
int id; /* Id of object */
String name; /* Name of object */
MemoryUsage (int id) { /* Constructor */
this.id = id;
this.name = "Name: " + id;

}
/** Overwrite the finalize method */
public void finalize () {
System.out.println ("Goodbye cruel world " + this.id);
}
}

public class Cleanup({
public static void main(String[] args) {
for (int 1 = 0; 1 < 999; i++){
// allocate object and discard it again
MemoryUsage m = new MemoryUsage (i) ;
if (1 $ 100 == 0){ System.gc(); }

}
}

OOP: Object-Oriented Programming, Part 1

23

Value vs. Object

* A value is a data element without 1dentity that cannot change
state.

* An object 1s an encapsulated data element with 1dentity, state,
and behavior.

e An object can behave like value (or record). Is 1t a good idea?

e Values 1n Java are of the primitive type byte, short, int,
long, float, double, boolean, and char.
e Wrapper classes exists 1n Java for make the primitive type act
as objects.
* Character for char

= Integer for int etc.

e Auto-boxing available in Java 1.5

OOP: Object-Oriented Programming, Part 1 24

Value vs. Object, Strings 1n Java

e Strings in Java are of the class String.

= Objects of class String behave like values.

e (Characteristics of Strings
= The notation “Ski” instantiates the class String and initialize it with
the values 'S', 'k', and '1".
= The class String has many different constructors.
= Values in a String cannot be modified (use StringBuffer).

= (Class String redefines the method equals () from class Object.

String
length ()
charAt (int)
indexOf (char)
substring (int)
toLowerCase ()
toUpperCase ()
trim()
endsWith (String)
startsWith (String)
intern () 25

OOP: Object-Oriented Programming, Part 1

Equality Examples

varl ~ ~ e
make: BMW
cylinders: 6
model: M1l
KWw: 130
engine: ref
var2 L D L
reference equal
()
make: BMW
varl model: Ml
-
engine: ref
cylinders: 6
~ Kw: 130
make: BMW
.
var2 model: Ml
engine: ref
. J

shallow equal
OOP: Object-Oriented Programming, Part 1

26

Equality Examples, cont.

make: BMW

varl

model: M1

cylinders:

6

engine: ref

Kw: 130

make: BMW

var2

deep equal

OOP: Object-Oriented Programming, Part 1

model: M1

cylinders:

6

engine: ref

Kw: 130

27

Equality

e Are the references a and b equal?

e Reference Equality

= Returns whether a and b points to the same object.

o Shallow Equality
= Returns whether a and b are structurally similar.
= One level of objects are compared.

e Deep Equality

= Returns where a and b have object-networks that are structurally
similar.

= Multiple level of objects are compared recursively.

* Reference Equality [] Shallow Equality [Deep Equality

OOP: Object-Oriented Programming, Part 1

28

Types of Equality 1in Java

= Equality on primitive data types
¢ 8 ==

V'S 'b' —— |c|

= Reference equality on object references
¢ oneCar == anotherCar

= Strings are special

String sl = "hello"; String s2 = "hello";
if (sl == s2) {
System.out.println(sl + " equals" + s2);}

e equals
= Method on class java.lang.Object.

= Default works like reference equality.
= Can be overridden

OOP: Object-Oriented Programming, Part 1

29

Requirements to equals Method

e Reflexsive

= x.equals (x) i1s always true
° Symmetry

= For all objects x and y, x.equals (y) is true iff y.equals (x)
o Transitivify

= For all objects x andy, and z if x.equals(y) and
y.equals (z)then x.equals (z) must be true

o (Consitency

= For all objects x and y, x.equals (y) should return true (or false)
consistently if the states of are x and y unchanged

e Non-nullable

= For all objects x, x.equals (null) should return false

OOP: Object-Oriented Programming, Part 1

30

equals cxample

public class Car {
// snip
/** Gets the make inst variable (helper function). */
public String getMake () {
return make;

}
// snip

/**
* Implements the equals method
* @see java.lang.Object#equals(java.lang.Object)
*/
public boolean equals (Object o) {
return o instanceof Car // is it a Car object?
&& ((Car) o) .getMake() .equals (this.make)
&& ((Car) o) .getModel () .equals(this.model)
&& ((Car) o) .getPrice() == this.price;
// relies on “short circuiting”

OOP: Object-Oriented Programming, Part 1

31

String Equality

public static void equal () {
String sl = "Hello World"; String s2 = "Hello World";
String s3 = new String ("Hello World") ;

String s4 = sl;
String s5 = "Hello Worl"; s5 += "d";

if (sl == s2) {System.out.println("sl == s2"); }
else {System.out.println("sl '= s2"); }
if (sl == s3) {System.out.println("sl == s3"); }
else {System.out.println("sl '= s3"); }
if (sl == s4) {System.out.println("sl == s4"); }
else {System.out.println("sl '= s4"); }
if (sl == s5) {System.out.println("sl == s5"); }
else {System.out.println("sl != s5"); }

// sl.equals(s2)sl.equals(s3)sl.equals(s4)sl.equals(s5)
// sl = sl.intern|()

}

OOP: Basic Parts of Java

sl

s2

s3

String Equality, cont.

Hello World

s4

sb5

Hello World

>

Hello World

After executing s1-5.intern ()

sl

s2

s3

s4

s5

OOP: Basic Parts of Java

Hello World

Summary

e No code 1s outside classes
= Instance variables
e Methods
= QOverloading 1s generally a good thing
e Initialization 1s critical for objects
= Source of many errors in C
= Java guarantees proper 1nitialization using constructors
e Java helps clean-up with garbage collection
= Only memory is clean, close those file handles explicitly!

= No memory leaks, “show stopper” in a C/C++ project!
e Equality (three types of equality)
= java.lang.Object.equals ()

e Strings are treated specially 1n Java
= Always compare strings by using equals ()

OOP: Object-Oriented Programming, Part 1

34

Example of a Class

public class Coin { // [Source Lewis and Loftus]
public static final int HEADS = 0;
public static final int TAILS = 1;

private int face; // data declaration/state
public Coin() { // constructor
£1ip() ;
}
public void flip() { // method “procedure”

face = (int) (Math.random() * 2);

}

public int getFace () ({ // method “function”
return face;

}

public String toString() { // method “function”
String faceName;

if (face == HEADS)
faceName = "Heads";
else
faceName = "Tails";

return faceName;

}

OOP: Objéct-Oriented Programming, Part 1

35

Arrays 1n Java

Objects and not pointers like in C
Bounds checking at run-time

int[] numbers; // equivalent
int number|[];

int[] numbers = {1, 2, 3, 4, 5, 6, 7};

= The size is fixed at compile-time!

int[] numbers = new Integer[getSize()]:;

= The size is fixed at run-time!
= (Cannot be resized

for (int i = 0; i < numbers.length; i++) {
System.out.println (numbers[i]) ;
}

OOP: Object-Oriented Programming, Part 1

36

Methods 1n Java, cont.

e All methods have a return type
= void for procedures
= A primitive data type or a class for functions
e The return value
= return stops the execution of a method and jumps out

= return can be specified with or without an expression

e Parameter are pass-by-value
= (Class parameter are passed as a reference (reference 1s copied)

public double getPrice() { public double getError () ({
return price; double a = 0;
} at+;

public void increaseCounter () ({ // compile-error

counter = counter + 1;
//return;

}

OOP: Object-Oriented Programming, Part 1

37

