The Java I/O System
e Binary I/O streams (ASCII, 8 bits)

= InputStream
= QutputStream

e The decorator design pattern

e Character I/0 streams (Unicode, 16 bits)
= Reader
= Writer

e Comparing binary I/O to character 1/0O

e Files and directories
= The class File

OOP: The Java I/O System

Overview of The Java I/O System

e Goal: To provide an abstraction of all types of 1/0O
= Memory
= File
= Directory
= Network

e Express all configurations
* Character, binary, buffered, etc.

e Different kinds of operations
= Sequential, random access, by line, by word, etc.

OOP: The Java I/O System

The Stream Concept

e A stream 1s a sequential source of information used to transfer
information from one source to another.

o A stream
LR
[T dest
3 I
i o [
A stream

Source Nt o "

=

[Source: java.sun.com]
OOP: The Java I/O System 3

Streams 1n Java

e There 1s a huge (and complicated) hierarchy of stream classes in
Java.

e Overview classes of the stream hierarchy

= TnputStream (input + binary)

= QutputStream (output + binary)

= Reader (input + Unicode)
= Writer (output + Unicode)

o All abstract classes.

OOP: The Java I/O System

The Decorator Design Pattern

 Wrapper classes 1n “decorators” to add functionality.

Component «
operation ()

1

component
ConcreteComponent Decorator — R §
operation () operation() component.operation ()
T
ConcreteDecoratorl ConcreteDecorator?2
addState operation ()
addOperation ()
operation ()

OOP: The Java I/O System

The Decorator Design Pattern, cont

Beautifulstring

iget{}: String

JaY

ConcreteString

StringDecorator

-s5tr:

#component: BeautifulString

+get(): String

A

CenterStringDecorator TopStringDecorator
+CenterStringDecorator(comp:BeautifulString) +TopStringDecorator(comp:BeautifulComponent)
+get(): String +get(): String

Hello -—->Hello<-- Hello

OOP: The Java I/O System

The Decorator Design Pattern, cont

public abstract class BeautifulString {
// encapsulated nice string

protected String text;
// The abstract methods that get a beautiful string

public abstract String get() ;
}

public abstract class StringDecorator extends BeautifulString {
/** The component that is decorated */
protected BeautifulString component;

}

public class CenterStringDecorator extends StringDecorator ({
public CenterString(BeautifulString comp) {
component = comp; }
// the decorator method

public String get () {
String temp = component.get() ;
temp = "-->" + temp + "<--";

return temp;

}

OE)P: The Java I/O System

The Decorator Design Pattern, cont

public static void main(String[] args) {
System.out.println ("Concrete") ;
BeautifulString bsl = new ConcreteString("Hello");
System.out.println(bsl.get())

System.out.println("Center + Concrete") ;
BeautifulString bs2 = new CenterStringDecorator (

new ConcreteString("Hello")) ;
System.out.println(bs2.get())

System.out.println("Top + Center + Concrete");
BeautifulString bs3 = new TopStringDecorator (
new CenterStringDecorator (
new ConcreteString('"Hello")))
System.out.println(bs3.get()) ;

OOP: The Java I/O System

Decorator Pattern and Java I/O

e Two 1ssues with I/0O
= What are you talking to (n).
= The way you are talking to 1t (m).

e Solution no. 1
= Make a class for every combination
= n * m classes, not flexible, hard to extend

e Solutions no. 2

= Java filter streams (decorators) are added dynamically to create the
functionality needed.

= n+ m classes
= Input decorator: FilterInputStream

= Qutput decorator: FilterOutputStream

OOP: The Java I/O System

InputStream Hierarchy

InputStream

A

ByteArraylnputStream | | FilelnputStream | | FilterinputStream | | ObjectInputStream | | PipedinputStream || SequencelnputStream | | StringBufferinputStream

A

BufferedInputStream | [DatalnputStream | [LineNumberlnputStream | |PushbacklnputStream

e InputStream, the abstract component root in decorator
pattern

e FileInputStream, ctc. the concrete components
e FilterInputStream, the abstract decorator

e LineNumberInputStream, DataInputStream, €tc.
concrete decorators

OOP: The Java I/O System 10

OutputStream Hierarchy

OutputStream

A

ByteArrayOutputStream || FileOutputStream || FilterOutputStream || ObjectOutputStream || PipedOutputStream

JaY

BufferedOutputStream DataOutputStream PrintStream

e OutputStream, the abstract component root in decorator
pattern

e FileOutputStream, ctc. the concrete components
e FilterOutputStream, the abstract decorator

e PrintStream, DataOutputStream, etc. concrete
decorators

OOP: The Java I/O System 11

InputStream lypes

Type of InputStream

e ByteArrayInputStream

e StringBufferInputStreame

e PipedInputStream

e FileInputStream

e SequencedInputStream

e ObjectInputStream

OOP: The Java I/O System

Concrete Components

Reads From
Block of memory

String (note not
StringBuffer)

Pipe (in another thread)
File
Combines InputStreams

Objects from an
InputStream

12

OutputStream Types

Type of OutputStream

e ByteArrayOutputStream

e PipedOutputStream

e FileOutputStream

e ObjectOutputStream

OOP: The Java I/O System

Concrete Components

Writes 1o
Block of memory

Pipe (in another thread)
File

Objects to a
OutputStream

13

FilterInputStream

e DataInputStream

= Full interface for reading built-in types
= For portable reading of data between different OS platforms

e BufferedInputStream

= Adds buffering to the stream (do this by default)
e LineNumberInputStream

= Only adds line numbers
e PushbackInputStream

= One-character push pack for scanners (lexers)

Concrete Decorators

OOP: The Java I/O System

14

FilterOutputStream

e DataOutputStream

= Full interface for writing built-in types
= For portable writing of data between different OS platforms
= Example: System.out.println

e PrintStream

= Allows primitive formatting of data for display
= Not for storage use DataOutputStream for this

e BufferedOutputStream
= Adds buffering to output (do this by default!)

Concrete Decorators

OOP: The Java I/O System

15

http://System.out.println/

OutputStream, Example

import java.io.*; // [Source: java.sun.com]
public class DataIODemo ({
public static void main(String[] args) throws IOException ({

// where to write to
DataOutputStream out =
new DataOutputStream(
new FileOutputStream("invoicel.txt"))

// alternative also using a buffer decorator
DataOutputStream out =
new DataOutputStream (
new BufferedOutputStream (
new FileOutputStream("invoicel.txt")))

OOP: The Java I/O System 16

OutputStream, Example, cont.

import java.io.*; // [Source: java.sun.com]
public class DataIODemo ({
public static void main (String[] args) throws IOException {
//snip
double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
int[] units = { 12, 8, 13, 29, 50 };
String[] descs = { "Java T-shirt",
"Java Mug",
"Duke Juggling Dolls",
"Java Pin",
"Java Key Chain" };

for (int i = 0; i < prices.length; i ++) {
out.writeDouble (prices[i]) ;

out.writeChar('\t'); // add a tab
out.writelInt (units[i]) ;
out.writeChar('\t'); // add a tab
out.writeChars (descs[i]) ;
out.writeChar('\n'); // add a newline

}

out.close() ;
OOP: The Java I/O System 17

InputStream, Example

// read it in again
DataInputStream in =
new DataInputStream (
new FileInputStream("invoicel.txt"));

// alternative also using a buffer decorator
DataInputStream in =
new DataInputStream (
new BufferedInputStream (
new FileInputStream("invoicel.txt"))):

double price;

int unit;
StringBuffer desc;
double total = 0.0;

OOP: The Java I/O System 18

InputStream, Example, cont.

try {
while (true) {

price = in.readDouble() ;

in.readChar () ; // throws out the tab
unit = in.readInt();

in.readChar() ; // throws out the tab
char chr;

desc = new StringBuffer (20) ;
char lineSep =
System.getProperty('"line.separator") .charAt(0) ;
while ((chr = in.readChar()) != lineSep)
desc.append (chr) ;
System.out.println("You've ordered " +
unit + " units of " +
desc + " at $" + price);
total = total + unit * price;
}
} catch (EOFException e) { }
System.out.println("For a TOTAL of: $" + total);
in.close();
}// end main

OOP: The Java I/O System

19

Reader and Writer Classes

e Added in Java 1.1
e Not meant to replace InputStream and OutputStream

e Internationalization Unicode support
e Designed to solved efficiency problems

e Structured in class hierarchies similar to the InputStream
and OutputStream hierarchies

= Uses the decorator design pattern

OOP: The Java I/O System

20

Reader Class Hierarchy

Reader

7

BufferedReader

CharArrayReader

FilterReader | | InputStreamReader

PipedReader

StringReader

T

LineNumberReader

7

T

PushbackRead

er FileReader

e Reader, the abstract component root in decorator pattern

e BufferedReader, ctc. the concrete components

e FilterReader, the abstract decorator

e PushbackReader, concrete decorators

OOP: The Java I/O System

21

Writer Class Hierarchy

Writer

BufferedWriter CharArrayWriter | |FilterWriter | | OutputStreamWriter PipedWriter PrintWriter StringWriter

e Writer, the abstract component root in decorator pattern
e BufferedWriter, etc. the concrete components

e FilterWriter, the abstract decorator

e No concrete decorators

OOP: The Java I/O System 22

Reader and Writer Types

e Transport to and from main memory
= CharArrayReader, CharArrayWriter

» StringReader, StringWriter

e Transport to and from pipelines (networking)
* PipedReader, PipedWriter

e Transport to and from files
= FileReader, FileWriter

e DataOutputStream unaltered from Java 1.0 to 1.1

OOP: The Java I/O System

23

Character Based Streams

e InputStreamReader

= Reads platform characters and delivers Unicode characters to the Java
program.

e OutputStreamWriter

= Writes Unicode characters to platform dependent characters.
e PrintWriter

= Writes Java primitive data types to file.

OOP: The Java I/O System

24

FileReader and FileWriter, Example

import java.io.¥*;

public class Copy {
public static void main(String[] args) throws IOException
{
FileReader in = new FileReader (new File(args[0])) ;s
FileWriter out = new FileWriter (new File (args[1l]));
int c;
do{
c = in.read() ;
if(c '= -1) {
out.write(c) ;

}
} while (c '= -1);

in.close() ;
out.close() ;

OOP: The Java I/O System 25

Binary vs. Character Based I/0O Overview

e InputStream
e QutputStream

e FileInputStream

e FileOutputStream

e StringBufferedInputStream
e N/A

e ByteArraylnputStream

e ByteArrayOutputStream

e PipedInputStream

e PipedOutputStream

OOP: The Java I/O System

Reader
convert: InputStreamReader

Writer
convert: OutputStreamWriter

FileReader

FileWriter

StringReader (better name)
StringWriter
CharArrayReader
CharArrayWriter
PipedReader

PipedWriter

26

Binary vs. Character Filter Overview

e FilterInputStream
e FilterOutputStream
e BufferedInputStream

e BufferedOutputStream
e DatalnputStream

e PrintStream
e LineNumberInputStream
e PushbackInputStream

OOP: The Java I/O System

FilterReader
FilterWriter (abstract class)

BufferedReader
(has a readline())

Butfered Writer

Use DatalnputStream or
BufferedReader

PrintWriter

LineNumberReader
PushbackReader

27

Representing the File System

e File systems varies between operating system, 1.¢.,
= Path separators
= Permissions in Unix
= Directories on the Mac
= Drive letters on Windows
* Needs an abstraction to hide the differences
= To make Java program platform independent.

OOP: The Java I/O System

28

The File Class

e Refers to one or more file names, 1.e., not a handle to a file
= Composite design pattern

e To get an array of file names. Call the 1ist () method.

OOP: The Java I/O System

29

The Composite Design Pattern, Again

Component «

operation ()
add ()
remove ()
getChild()

*

Leaf Composite - R —
operation () operation() for all c in children
c.operation() ;

add () ___G.operation();
remove ()
getChild()

children

OOP: The Java I/O System

The File Class, Example

import java.io.¥*;

public class DirectoryList {
public static void main(String[] args) throws IOException({
File dir = new File(args[0]);

if (dir.isDirectory () == false) {
if (dir.exists () == false)
System.out.println("There is no such dir!");
else

System.out.println("That file is not a dir.");
}
else {
String[] files = dir.list();
System.out.println
("Files in dir \"" 4+ dir + "\":");
for (int 1 = 0; i < files.length; i++)
System.out.println(" " + files[i]) ;

}

OOP: The Java I/O System

31

Summary

e Streams a large class hierarchy for input and output.
= The decorator pattern is the key to understanding it

e The decorator design pattern may seem strange
= Very flexible, but requires extra coding in clients.

e Scanner class for input/output very versatile

e For objects to live between program invocations use the
Serializable interface. Covered later in course.

e java.nio packages goal speed

= Look at it if you needed it in your projects

OOP: The Java I/O System

32

