The Interface Concept

e Multiple inheritance
e Interfaces

e Four often used Java interfaces
= Tterator
= Cloneable
= Serializable
= Comparable

e Complete story available after lecture on generics!!!

OOP: The Interface Concept

Multiple Inheritance, Example

e For the teaching assistant (TA)

Person we want the properties from

name () both Employee and

cpr ()

Student.
Employee Student . .
salary() gpal() e Is this a great 1dea?
degree () | courses|()
t }

TA

OOP: The Interface Concept

Some Problems with Multiple Inheritance

Person
name ()
cpr ()

Employee | Student

department A department

f f

TA

ta = new TA();
ta.department = “CS”;

OOP: The Interface Concept

e Name clash problem: Which

department does ta refers
to?

Combination problem: Can
department from Employee
and Student be combined in
TA?

Selection problem: Can you
select between department
from Employee and
department from Student?

Replication problem: Should
there be two departments in
TA?

Multiple Classifications

Employee Student

! !

TA

e Multiple classification for the class TA.

= [t1s “employee-able” and “student-able”

Comparable Runnable Serializable Cloneable
T ? !
|
X Y

e Multiple and overlapping classification for the classes X and ¥

= (Class X 1s Runnable and Comparable.
= Class Y is Runnable, Serializable, and Cloneable.

OOP: The Interface Concept

Java's interface Concept

public interface Shape {
double PI = 3.14; // static and final => upper case
void draw() ; // automatic public
void resize() ; // automatic public

public class Rectangle implements Shape ({
public void draw() {System.out.println("Rectangle"); }
public void resize() { /* do stuff */ }

public class Square extends Rectangle {
public void draw() {System.out.println("Square"); }
public void resize() { /* do stuff */ }

OOP: The Interface Concept

Java's interface Concept, cont

OOP: The Interface Concept

Shape
draw ()
resize ()

Circle

draw ()
resize ()

draw ()
resize ()

Rectangld
draw ()
resize ()

ext%nds

Square
draw ()
resize ()

- Interface

Java's interface Concept, cont.

public class UseShape({
/** Use the Shape interface as a parameter */

public static void shapeAsParameter (Shape sh) {
sh.draw() ;
}

/** Use the Shape interface as a return type */

public static Shape getAShape () {
return new Line();

}

public static void main (String[] args) {
/** Use the Shape interface as a type */
Shape sl = new Circle()
Shape s2 = getAShape() ;
shapeAsParameter (sl) ;
s2.draw () ;

}
}

OOP: The Interface Concept

Java's interface Concept

* An interface is a collection of method declarations.
= A class-like concept.
= Has no variable declarations or method bodies.

e Describes a set of methods that a class can be forced to
implement.

e (Can be used to define a set of “constants”.
e Can be used as a type concept.

e (Can be used to implement multiple inheritance like hierarchies.

OOP: The Interface Concept

Combining Multiple interfaces

interface InterfaceName {
// "constant" declarations
// method declarations

// inheritance between interfaces
interface InterfaceName extends InterfaceName {

}

// extends multiple interfaces (multiple inheritance like)
interface InterfaceName extends InterfaceNamel, InterfaceName’l

{
}

// not possible!
interface InterfaceName extends ClassName { ... }

OOP: The Interface Concept

Interfaces and Classes Combined

// implements instead of extends
class ClassName implements InterfaceName {

}

// multiple inheritance like
class ClassName implements InterfaceNamel, InterfaceNamel({

}

// combine inheritance and interface implementation
class ClassName extends SuperClass implements InterfaceName{

}

// multiple inheritance like again
class ClassName extends SuperClass
implements InterfaceNamel, InterfaceNamelZ {

}

// not possible!
class ClassName extends InterfaceName {...}

OOP: The Interface Concept 10

Interfaces and Classes Combined, cont.

e By using interfaces objects do not reveal which classes the
belong to.

= [t 1s possible to send a message to an object without knowing which
class(es) 1t belongs.

= By implementing multiple interfaces it is possible for an object to
change role during its life span.

e Design guidelines
= Use classes for specialization and generalization
= Use interfaces to add properties to classes

OOP: The Interface Concept

11

Semantic Rules for Interfaces

e Type
= An interface can be used as a type, like classes

= A variable or parameter declared of an interface type is polymorph
* Any object of a class that implements the interface can be referred by the variable

e [nstantiation
= Does not make sense on an interface.

e Access modifiers
= An interface can be public or “friendly” (the default).

= All methods 1n an interface are default abstract and public.
¢ Static, final, private, and protected cannot be used.

= All variables (“constants’) are public static final by default
* Private, protected cannot be used.

OOP: The Interface Concept

12

Interface vs. Abstract Class

Interface
e Methods can be declared

e No method bodies
e “Constants” can be declared

e Has no constructors
e Multiple inheritance possible

e Has no top interface
e Multiple “parent” interfaces

OOP: The Interface Concept

Abstract Class

Methods can be declared
Method bodies can be defined

All types of variables can be
declared

Can have constructors

Multiple inheritance not
possible

Always inherits from Object

Only one “parent” class

13

Multiple Inheritance vs. Interface

Multiple Inheritance

e Declaration and definition 1s
inherited.

e Little coding to implement
subclass.

e Hard conflict can exist.

e Very hard to understand
(C++ close to impossible).

e Flexible

OOP: The Interface Concept

Interface

Only declaration 1s inherited.

Must coding to implement an
interface.

No hard conflicts.
Fairly easy to understand.

Very flexible. Interface
totally separated from
implementation.

14

What 1s Ugly/Wrong?

public interface Al ({
int getA();

}

public interface A2 {
double getA() ;

}

public interface A3 extends Al, A2{
//more stuff

}

public interface Bl {
int getA();

}

public interface B2 extends Bl {
int getB() ;

}
public interface B3 extends Bl, B2{

//more stuff
}

OOP: The Interface Concept 15

What 1s Ugly/Wrong, cont. ?

public interface Cl extends C3{
int getA();

}
public interface C2 extends C1l {

int getB()

}

public interface C3 extends C1l{
int getC()

}

public interface D1 ({
int getA()

}

public class DoesD1l implements DI1{
int getA() {return 42;}

}

public interface E1 ({
}

OOP: The Interface Concept

16

Some of Java's most used Interfaces

e Iterator
= Runs through a collection of objects in an array, list, bag, or set.
= More on this in the lecture on the Java collection library.
e Cloneable
= Copies an existing object via the clone () method
= More on this topic in todays lecture.
e Serializable
= Packs or ships a web of objects (file or network).
= More on this in the lecture on Java's I/O system
e Comparable

= Makes a total order on objects, e.g., 3, 56, 67, 879, 3422, 34234
= More on this topic in todays lecture.

Stuff you often need to do in a software project!!

OOP: The Interface Concept 17

The Iterator Interface

e java.util.Iterator is a basic iterator that works on all
collections

package java.util;

public interface Iterator {
// the full meaning is public abstract boolean hasNext ()

boolean hasNext () ;

Object next();
void remove(); // optional throws exception

// use an iterator
myShapes = getSomeCollectionOfShapes() ;

Iterator iter = myShapes.iterator();

while (iter.hasNext()) {
Shape s = (Shape)iter.next(); // downcast

s.draw () ;

}

OOP: The Interface Concept

18

The Cloneable Interface

e A class X that implements the Cloneable interface tells
clients that X objects can be cloned.

 The interface has no methods
= An “empty” interface

e Returns an 1dentical copy of an object.
= A shallow copy, by default.
= A deep copy 1s often preferable.

e Prevention of cloning

= Necessary if unique attribute, e.g., database lock or open file reference.
= Not sufficient to omit to implement Cloneable.

¢ Subclasses might implement it.

= clone method should throw an exception:
¢ CloneNotSupportedException

OOP: The Interface Concept

19

The Cloneable Interface, Example

// Car example revisited
public class Car implements Cloneable ({
// instance variables
private String make;
private String model;
private double price;
// give reasonable values to instance variables
public Car (String make, String model, double price) {
this.make = make;
this.model = model;
this.price = price;
}
// the clone method 1.4
public Object clone() {
return new Car (this.make, this.model, this.price);
}
// the clone method 5.0
public Car clone () {
return new Car (this.make, this.model, this.price);
}
}

OOP: The Interface Concept 20

The Cloneable Interface, Example 2

package geometric; // [Source: java.sun.com]

/** A cloneable Point */
public class Point extends java.awt.Point implements Cloneable

{

// the Cloneable interface
public Object clone() {

try {
return (super.clone()); // protected in Object

}

catch (CloneNotSupportedException e) {
return null;
}
}
public Point(int x, int y) {
super (x,Vy) ;

}

OOP: The Interface Concept 21

The Serializable Interface

e A class X that implements the Serializable interface tells
clients that X objects can be stored e.g, on file.

 The interface has no methods

public class Car implements Serializable {
// rest of class unaltered

}

OOP: The Interface Concept

22

The Serializable Interface, cont.

e Very hard to do in other programming languages!!!
e (Class must implement the Serializable interface

e Uses

= QOutput: ObjectOutputStream
¢ writeObiject ()

= [nput: ObjectInputStream
¢ readObject ()

e All relevant parts (the web of objects) are serialized.

e Lightweight persistence
= used in RMI (send objects across a network)
* used in JavaBeans

e Similar functionality in C#, PhP, Python, Perl

OOP: The Interface Concept 23

InputStream Hierarchy

InputStream

A

ByteArraylnputStream | | FilelnputStream | | FilterinputStream | | ObjectInputStream | | PipedinputStream || SequencelnputStream | | StringBufferinputStream

A

BufferedInputStream | [DatalnputStream | [LineNumberlnputStream | |PushbacklnputStream

e InputStream, the abstract component root in decorator
pattern

e FileInputStream, ctc. the concrete components
e FilterInputStream, the abstract decorator

e LineNumberInputStream, DataInputStream, €tc.
concrete decorators

OOP: The Interface Concept 24

OutputStream Hierarchy

OutputStream

A

ByteArrayOutputStream || FileOutputStream || FilterOutputStream || ObjectOutputStream || PipedOutputStream

JaY

BufferedOutputStream DataOutputStream PrintStream

e OutputStream, the abstract component root in decorator
pattern

e FileOutputStream, ctc. the concrete components
e FilterOutputStream, the abstract decorator

e PrintStream, DataOutputStream, etc. concrete
decorators

OOP: The Interface Concept 25

The Serializable Interface, Example

// Car class we have seen many times before
import java.io.¥*;
public class Car implements Serializable { // only change
private String make;
private String model;
private double price;
// default constructor
public Car() {
this("", "", 0.0);

4

}
// give reasonable values to instance variables

public Car (String make, String model, double price) ({
this.make = make;

this.model = model;
this.price = price;

}
//snip

OOP: The Interface Concept 26

The Serializable Interface, Example, cont.

// Write an object to disk
ObjectOutputStream out =
new ObjectOutputStream (
new FileOutputStream("mycars.dat")) ;

Car myToyota = new Car();
out.writeObject (myToyota) ;

// Read an object from disk
ObjectInputStream in =
new ObjectInputStream (
new FileInputStream('"mycars.dat"))
Car myToyota = (Car)in.readObject()

OOP: The Interface Concept

27

The Comparable Interface

e In the package java. lang.

e Returns
= negative integer 1f less than
" ZEro if equals
= positive integer if greater than

// 1.4
package java.lang;
public interface Comparable ({

int compareTo (Object 0);

}

// 5.0
package java.lang;
public interface Comparable<T> ({

int compareTo (T o) ;

}

OOP: The Interface Concept

28

The Comparable Interface, Example 1.4

// IPAddress example revisited
public class IPAddress implements Comparable {
private int[] n; // here IP stored, e.g., 125.255.231.123

/** The Comparable interface */
public int compareTo (Object o) {
IPAddress other = (IPAddress) o; // downcast
int result = 0;
for(int 1 = 0; i < n.length; i++) {
if (this.getNum(i) < other.getNum(i)) {
result = -1;
break;
}
if (this.getNum(i) > other.getNum(i)) {
result = 1;
break;

}
}

return result;
}
}

OOP: The Interface Concept

The Comparable Interface, Example 5.0

// IPAddress example revisited
public class IPAddress implements Comparable<IPAddress>{
private int[] n; // here IP stored, e.g., 125.255.231.123

/** The Comparable interface */
public int compareTo (IPAddress o) {
int result = 0;
for(int i = 0; i < n.length; i++) {
if (this.getNum(i) < o.getNum(i)) {
result = -1;
break;
}
if (this.getNum(i) > o.getNum(i)) {
result = 1;
break;
}
}

return result;

}

OOP: The Interface Concept

Summary

e Purpose: Interfaces and abstract classes can be used for program
design, not just program implementation [Meyer pp 239 {f].

e Java only supports single inheritance.

e Java “fakes” multiple inheritance via interfaces.

= Very flexible because the interface 1s totally separated from the
implementation.

e An interface consists of
= public abstract methods
= public constants (public, static, and final variables)

e An interface 1s a type!
= return type, formal parameter type, variable type

e Interfaces used throughout the JDK

e Interfaces also in C# and PHP5
= Not in C++, Perl5, and Python here multiple inheritance

OOP: The Interface Concept 31

