Software Engineering Techniques

e Low level design 1ssues for programming-in-the-large.

e Software Quality

e Design by contract
= Pre- and post conditions
= (Class invariants

e Ten do
e Ten do nots

e Another type of summary

OOP: Software Engineering Techniques

Software Quality

e Correctness: Is the ability of software to exactly perform their tasks,
as defined by the requirements and specifications.

e Robustness: Is the ability of software to function even in abnormal
conditions.

o Extendibility: Is the ease with which software may be adapted to
changes of specifications.

e Reusability: Is the ability of software to be reused, in whole or in
part for new applications.

e Compatible: Is the ease with which software may be combined with
others software.

OOP: Software Engineering Techniques

Other Software Quality

e Lfficiency: Is the good use of hardware resources.

e Portability: Is the ease with which software may be transferred to
various hardware and software environments.

o Verifiability: Is the ease of preparing acceptance procedures, €.g.,
test data and methods for finding bugs and tracing the bugs.

o [ntegrity: Is the ability of software to protect its components against
unauthorized access and modification.

e Ease of use: Is the ease of learning how to use the software,
operating 1t, preparing input data, interpreting results and recovering
from errors.

OOP: Software Engineering Techniques

Design By Contract

e Purpose: To increase software quality by giving each part of a
software product certain obligations and benefits.

e Without contract
= All parts of a program take a huge responsibility
= All parts of a program check for all possible error possibilities (called
defensive programming).
= This makes a large program larger and more complicated
e With contracts
= Methods can make assumptions
= Fewer checks for errors possibilities
= This makes a large program simpler.

OOP: Software Engineering Techniques

Design By Contract, Example

e A stack example the push method.

e Client programmer
= Obligation: Only call push(x) on a non-full stack
= Benefit: Gets x added on top of stack.

e (Class programmer

= (Obligation: Make sure that x 1s pushed on the stack.
= Benefit: No need to check for the case that the stack 1s already full

e Think Win-Win!

OOP: Software Engineering Techniques

Pre and Postconditions

* A precondition expresses the constraints under which a method
will function properly.

= The responsibility of the caller to fulfill the precondition.

* A postcondition expresses properties of the state resulting from
a method's execution.

= The responsibility of the method to fulfill the postcondition

e Both preconditions and postconditions are expressed using
logical expressions also called assertions.

e (Other 1ssues
= (Class invariants
= Loop invariants

OOP: Software Engineering Techniques

Java 1.4's assert Keyword

* An assertion is a boolean expression that a developer
specifically proclaims to be true during program runtime
execution [Source: java.sun.com].

* New to Java 1.4.
e Used for expressing both pre- and postconditions.

e Syntax:

assert expressionl;
assert expressionl : expressionZ;

OOP: Software Engineering Techniques

Java 1.4's assert Keyword, cont.

e Evaluation of an assert statement.

Evaluate expressionl
if true
no further action
else
if expressionZ2 exists
Evaluate expressionZ2 and use the result in a
single-parameter form of the AssertionError
constructor
else
Use the default AssertionError constructor

OOP: Software Engineering Techniques

assert, Examples

assert 0 <= wvalue;

assert 0 <= wvalue : "Value must be positive " + value;
assert ref != null;

assert ref != null : "Ref 1s null in myFunc";

assert newCount == (oldCount + 1);

assert myObject.myFunc (myParaml, myParam?2) ;

OOP: Software Engineering Techniques

Pre- and Postcondition, Example

import java.util.¥*;

public class AStack({
private LinkedList stck = new LinkedList();
private final int no = 42;

public boolean full() ({
i1f (stck.size() >= no) return true;
else return false;
}
public boolean empty () {
return stck.size() == 0;

}

public void push (Object v) ({
// precondition
assert 'full(): "Stack is full";
stck.addFirst(v) ;
// postconditions
assert 'empty() ;
assert top() .equals(v) ;
// check no of elements increase by one

OOP: Software Engineering Techniques

10

Pre- and Postcondition, Example

public Object top () {
// precondition
assert 'empty () ;
return stck.getFirst() ;
// no post conditions
}
public Object pop () ({
// precondition
assert 'empty () ;
return stck.removeFirst() ;
// postcondition placed in the wrong place
assert 'full();
// additional check no of elements decrease by one

OOP: Software Engineering Techniques

11

class Base {

assert and Inheritance

public void myMethod (boolean wval) {

assert val

"Assertion failed: wval is " + wval;

System.out.println ("OK");

}

public class Derived extends Base {
public void myMethod (boolean wval) {

assert wval

"Assertion failed: wval is " + wval;

System.out.println ("OK");

}

public stati

try {
Derived

//...

¢ void main (String[] args) {

derived = new Derived() ;

OOP: Software Engineering Techniques

12

assert and Inheritance, cont

e Preconditions cannot be strengthened in subclasses.
e Postconditions cannot be weakened 1n subclasses.

e Any good reasons for these requirements?

OOP: Software Engineering Techniques

13

Class Invariants

* A class invariant 1s an expression that must be fulfilled by all
objects of the class at all stable times in the lifespan of an object

= After object creation
= Before execution a public method
= After execution of a public method

e A class invariant is extra requirement on the pre and
postconditions of methods.

e (lass invariants can be used to express consistency checks
between the data representation and the method of a class, e.g.,
after 1f a stack 1s empty then size of the linked list 1s zero.

e (lass ivariants cannot be weakened 1n subclasses.

e Supported in Eiffel, not supported in Java.

OOP: Software Engineering Techniques 14

Class Invariants, Example

public class Person{
/** @invariant age >= 0 */
protected int age;

/**
* Constructor for objects of class Person
* @post age = 0
*/

public Person(){ age = 0; }

/**
* Constructor for objects of class Person
* @pre age >= 0
* @post age = the age provided
*/
public Person(int age) {
assert age >= 0: "Age must be positive it is " + age;
this.age = age;
assert this.age == age;
}
//snip

OOP: Software Engineering Techniques

15

Class Invariants, Example, cont.

public class Person{ // snip
/**
* Gets the age of a person
* @return age of person
* @post return value >= 0
*/
public int getAge () {
assert age >= 0;
return age;

}
/**
* Sets the age of a person
* (@param newAge the new age of the person
* @pre newAge >= 0
* @post age = newAge
*/
public void setAge (int newAge) {
assert newAge >= 0: "Age must be positive it is " + age;
age = newAge;
assert age == newAge;

b}

OOP: Software Engineering Techniques 16

Ten Dos

e Logical naming
= Class name p3452 vs. class name Vehicle.
= The foundation for reuse!
e Symmetry
= [fa get () method then also a set () method.
= [fan insert () method then also a delete () method.
If id2number () method then also number2id () method
= Makes testing easier.

= To avoid “surprises’ for the clients.

e Add extra parameters to increase flexibility

= split(string str) vs.
split(string str, char ch default ' ')

= To anticipate “small” changes.

OOP: Software Engineering Techniques

17

Ten Dos, cont.

e Set a maximum line size (80-100 characters)
= To avoid more the one thing being done 1n the same line of code
= To be able to print the code with out wrapping. For code reviews

e Set the maximum of lines for a method
= What can be shown on a screen (30-60 lines)
= To increase readability
= To increase modularity
e Indent your code
= Increases readability, (CRTL-SHIFT-F in Eclipse)

 Avoid side-effects

= [f a method refers to an object in a database and the object does not
exist then raise and error do not create the object.

= Make program logic impossible to understand

OOP: Software Engineering Techniques

18

Ten Dos, cont.

e Add comments in methods

= Comment where you are puzzled yourself or is puzzled the day after
you wrote the code

= Do not comment the obvious!

e Look at (and comment on) other peoples code
= Code reviews are a good investment
* Increases readability of code
= A good way to learn from each other

* Be consistent
= Can automate global changes with scripts

OOP: Software Engineering Techniques

19

Ten Do Nots

e Make a method do more than one thing

= split and store(string str, char ch) vs.

split(string str, char ch) and
store(string array)

= Makes the method more complicated
= Decreases reuse

e Make a method take more than 742 parameters
= (Can parameters be clustered 1n objects?

e Make more than 4 level of nesting in a method
o if GFGFGFGHF Y
= Decreases readability

e Make use of “magic” numbers

= if (employee.status == '1'){} vs
if (employee.status == global.open) {}

OOP: Software Engineering Techniques

20

Ten Do Nots

 Make use of Copy-and-Paste facilities
= Redundant code
= Make a new method or use inheritance

e Become mad and aggressive if some one suggest changes to
your code.

e Have more than one return statement in a method
= May be needed 1n highly optimized code

e Skip exception handling
e Skip testing
e Assume the requirement specification 1s stable

OOP: Software Engineering Techniques

21

Bad Object-Oriented Programs

Not following the coding conventions
Not use javadoc for documenting the code

Constructors
= No default constructor
= Only default constructors

Too many static methods
Too many static variables

Does not remember to close connections that have been opened
(database connection, network connection and files).

Not using the exception handling mechanism

Not using composition (possible also inheritance)

Not using standard class libraries, e.g., Java's huge library
Not using toString (), equals (), ctc from Object

OOP: Software Engineering Techniques

22

Summary

e Any fool can write code that a computer can understand. Good
programmers write code that humans can understand. (Fowler)

e Debug only code - comments can lie.

e If you have too many special cases, you are doing it wrong.

e Get your data structures correct first, and the rest of the
program will write 1tself.

e Testing can show the presence of bugs, but not their absence.

e The first step 1n fixing a broken program 1s getting it to fail
repeatedly.

e The fastest algorithm can frequently be replaced by one that 1s
almost as fast and much easier to understand.

OOP: Software Engineering Techniques

23

Summary, cont.

The cheapest, fastest, and most reliable components of a
computer system are those that are not there.

Good judgment comes from experience, and experience comes
from bad judgment

Do not use the computer to do things that can be done
efficiently by hand.

It 1s faster to make a four-inch mirror then a six-inch mirror
than to make a six-inch mirror.
[Thompson's Rule for first-time telescope makers]

If you lie to the computer, it will get you.

Inside of every large program 1s a small program struggling to
get out.

OOP: Software Engineering Techniques

24

