
OOP: Software Test 1

Software Test
• Types of test

 System test
 Integration test
 Unit test

• Types of test
 Black box
 White box

• Regression test
• The Junit tool for unit testing Java programs

OOP: Software Test 2

Introduction
• „Sofware test is the process of executing a program with the

intent of find errors“ [Glen Myers].
 „This should not be done by customers“ [K.Torp]

• Software test is an activity taking place after the program has
been implemented and before the program is debugged.
 Program implementation is an activity where design is converted to

actual source code.
 Debugging is an activity where the causes of program malfunctions are

found.

• Software testing is a very resource and time consuming activity

• A test can show that there is an error in a program. However, it
can never show that program is error free!

3

Unit, Integration, and System Tests

Requirements

High-Level Design

Low-level Design

Code

Unit Test

Integration Test

System Test

A Need Finished
System

Failures

Failures

Failures
Success

Success

Success

[source http://www.stsc.hill.af.mil/stscdocs]

4

Problems Related to Testing
• Test is done late in a project

 If it is done at all, „it takes too long time to write test cases!“

• Test cases gets outdated
 Test cases are for version 1.0 of the system which is currently now

release in version 5.2.

• Test is incomplete
 Not all parts of the program are tested

5

Advantages of Testing
• Fewer bugs

 Less anoying product patching, more interesting development

• A better and more robust product
 Users are more likely to buy more software from your company

• Better sleep at nigth
 You know there are no obvious bugs in your program

• More proude of your company and its products
 ”See Darling, what I have build!”

• Faster to release new versions of the product
 Buidling test cases is not a detour it is a short-cut!
 ”Test More, Spend Less!”

• More aggresive changes of system
 Refactoring to build the best system possible

6

Disadvantages of Testing
• None!
• Absolutely none!
• Absolutely, definitively none!
• Absolutely, definitively, surely none!
• Absolutely, definitively, surely, conclusively none!
• Absolutely, definitively, surely, conclusively, decisively none!
• Absolutely, definitively, surely, conclusively, decisively,

determantively none!
• Absolutely, definitively, surely, conclusively, decisively,

determantively, positively none!

• Ran out of synonyms!

7

Testability
• Observability

 The results are easy to see
 Different outputs are generated for different inputs
 Incorrect outputs are easy to identify

• Controllability
 Processing can be controlled (e.g., wall clock)
 Running test cases can be automated (and easily repeated)

• Decomposability
 Modules can be tested individually

• Simplicity
 No huge and complex modules in the system

• Understandability
 The design of the system can be easily communicated from implementor

to tester

8

Testability, cont.
• Testability must be taken into account during the design fase

• High testability
 cos(x)
 integer2string(int) return string
 insert(Object)

• Low testability
 GUI, low controllability because hard to automate
 Recovery system of database management system

 Hard to thing of all possible error (low controllability, inputs hard to guess)
 The system is highly complex (low simplicity, low understandability)
 Extremly badly if it does not work correct

9

Test Units
• Single expression or statement
• Method
• Class
• Package
• Entire program

10

Black Box Test
• Look at the program from the outside, no knowledge of the

internals
 Are requirement fulfilled
 Are interfaces available and working
 Can also reveal performance problems with the program

 Takes too long to compute
 Consumes too much main memory or disk space

• Can be applied to all levels of testing (unit, integration, system)
• Can be done by independent testers or even customers

• It is impossible to test for all possible inputs!

11

Black Box Test, cont.
• The challange in black box testing is picking the input values

• Equivalence partitioning (input domain partitioning)
 Partition input space into a small number of equvivalent classes all

elements in one class should be handled identically by the program

• Boundary value analysis
 A technique on identifying test cases to explore boundary conditions
 At boundaries there are typically many errors

12

Black Box Test, Examples
• Look at an interval [A..B]

A BEquivalence partitioning

Boundary value analysis

• Look at a set S

S

Equivalence partitioning

S

Boundary value analysis
(empty)

S

Boundary value analysis
(full)

13

White-Box Test
• Look inside the program

 Conditions and path taking with in the program
 Data flow

• Can be applied to level unit test
• Can be done by the developers or in house

• Block-box testing can be considered a sub set of white-box testing
for unit testing

• It is impossible to check all paths a program can take internally.

14

White-Box Test, cont.
• The challenge in white box testing is to exercise each line of code

in the unit being tested at least once.
• A number of techniques exists for this

 Basis path coverage also called Cyclomatic Complexity
 Logical coverage
 Dataflow coverage

• Basis path coverage is based on finding the basis set of paths for a
programs path space.

• Defines the number of independent paths in the basis set
• Path coverage set is the set of paths that will execute all

statements and all conditions in a program at least once
 Are not unique

15

White-Box Test, Example
public static int mid(int a,
 int b,
 int c) {
 int res;
 if (a < b){
 if (c < a)
 res = a;
 else if (c < b)
 res = c;
 else
 res = b;
 }
 else{ // a >= b
 if (c < b)
 res = b;
 else if (c < a)
 res = c;
 else
 res = a;
 }
 return res;
}

a<b

res=a

c<bc<a

c<b

res=c res=b res=b

c<a

res=c res=a

16

White-Box Test, Another Example
// greatest common divisor
public static int gcd(int u, int v){
 int g = 1;
 while(u%2==0 && v%2==0){ // u is even and v is even
 u /= 2; // right shift
 v /=2; // right shift
 g *= 2; // (left shift)
 }
 // now u or v (or both) are odd
 int t;
 while (u > 0){
 if (u%2==0){ u /= 2; } // u is even, u = u/2
 else if (v%2==0){ v /= 2;} // v is even, v = v/2
 else{
 t = java.lang.Math.abs(u-v)/2; //t = |u-v|/2
 if (u < v) {v = t;}
 else {u = t;}
 }
 }
 return g*v;
}

17

u%2==0 && v%s==0

u>0

g=1

u/=2; v/=s; g*=2
looptrue

int t

false

u/=2 u>0
true false

v/=2
v>0

u<v

true false
t=|u-v|/2

v=t u=t
true false

end loop

loop

true

false

return

White-Box Test, Another Example, cont.

18

Test Cases
• Describe how to test a unit (system/module/method/statement)
• Must include

 System state before execution of the test
 Part of system tested
 Input to the run test
 Expected outcome of the test (system state, output to screen, etc.)

• Good test cases will find bugs
• Good test cases are based on requirement specification

19

Regression Test
• Regression testing is a technique not a tool

• After a change to a piece of code two things must be tested
 That the changed piece of code works properly
 That the functionality of the entire system other than the change piece

of code is unaffected

• It is very time consuming to test the two things above
 Automate
 modularization of the system (with solid interfaces)

• The foundation for maintaining a good software product
 To avoid introducing error in the maintenance phase

20

JUnit andUnit Test
• For each unit (”program atoms”) write at least one test
• All unit tests can be executed at any time to ensure entire program

is working properly
• For each change finished (before commit to CVS) all unit tests

must succeed, i.e., no errors found

• Unit test central to the extreme programming paradigm
 Rapid feed back
 Assumed simplicity
 Incremental change
 Quality work

21

Unit Test Concepts
• Assertion

 The smallest building blocks of a unit test
 Expression that determines if a test succedes or fails

• Test case
 A collection of test methods e.g., the test for an entire class or method

• Test suite
 One or more test cases
 Entire test suite can be execute with a single command

22

Assertions in JUnit
assertTrue (boolean)
assertFalse(boolean)
assertEquals(Object, Object)
assertNull(Object)
assertNotNull(Object)

// examples
assertTrue(true);
assertFalse(false);
assertFalse("true is not false", true)
assertNull(null);
assertNotNull(„hey“);

23

Test Cases in JUnit
• A test case in JUnit must inherit from the class
junit.framework.TestCase

• Methods of special importants
 setUp() set up the test fixture

 Called before every test method
 tearDown() tear down the test fixture

 Called after every test method
 test<method name>() a single test method

 The set of these method in a class is a test case

24

Test Cases in JUnit, Example
public class TestMiddleValue extends junit.framework.TestCase{
 MiddleValue md; // to have something to set up
 /** Sets up the test fixture */
 protected void setUp() { md = new MiddleValue(); }
 public void testMidAEqualBEqualC(){
 int val = md.mid(1,1,1);
 assertTrue(val==1);
 }
 public void testMidASmallerThanB(){
 int val;
 val = md.mid(50, 100, 10);
 assertTrue("Did not return 50 but " + val, val==50);
 val = md.mid(50, 100, 70);
 assertTrue("Did not return 70 but " + val, val==70);
 }
}

25

Test Suites in JUnit
• Collection of test cases in a single logical unit

 BlueJ will do this automatically for you!

• Test coverage
 No help from JUnit or BlueJ

 Add test until you run out of ideas for good things to test for
 Expensive products exists (not aware of any open source projects)

 Every time you write a System.out.println for test move it to a JUnit test
case instead

 Reuse your work!!!!

26

Limits of JUnit
• Works very well with

 Function libraries
 API in general

• Having problem to deal with
 GUI
 Network
 Web
 Database

• Most test framework have these limitations

27

Automate the Testing
• You have a combination of very strong tools at your disposition

 JUnit
 Cron jobs
 CVS
 Ant (build-tool like make)

• You can now
 Extract a specific version of your product
 Compile entire program and test

 Send an eail if there are errors in nightly tests
 Run test of experimental version of your program
 Generate documentation

• Combination used by several Aalborg companies.

28

Advantages and Disadvantages of JUnit
• Advantages

 Small and very-well documented framework
 Can structure test better and make it much easier to run the tests
 Available for most Java development tools including BlueJ
 Testing becomes very systematic and partly automatic
 Defactor standard for unit testing Java programs

• Disadvantages
 No matic you have to write the test code your self
 Java specific but being ported to other languages

• JUnit is highly relevant for your projects!!!

OOP: Software Test 29

Summary
• Testing is vital to provide a high-quality program.
• Up to 50% of time in real-world project may be testing.

• JUnit is a small Java based framework for unit testing
 Very hand and well-integrated with BlueJ, Eclipse, and other Java

IDEs

30

White-Box Test, A Third Example
// greatest common divisor
public static boolean stringCompare(String x, String y){
 boolean result = false;
 int m = x.length();
 int n = y.length();
 int i, j;

 /* Searching */
 for (j = 0; j <= n - m; ++j) {
 for (i = 0; i < m && x.charAt(i) == y.charAt(i + j); ++i);
 if (i >= m)
 result = true;
 }
 return result;
}

31

j<=n-m

boolean result = false; ... int i,j;

true

false

end loop

return

White-Box Test, A Third Example, cont.

x.charAt(i) = y.charAt(i+j)

i>=m

result= true
true

loop

false

true
false

32

Interval Test Cases

33

Test Coverage
• Goal: To ensure that all statements and conditions have been

executed at least once.

• Why:
 Studies show that logic errors and incorrect assumptions are inversely

proportional to a path’s execution probability.
 Typographical errors are distributed random across the program, it is

therefore likely that untested paths will contain such errors.
 Often assumed by programmer that a particular path is not likely to be

executed. However, reality is often counter intuitive.

34

Cyclomatic Complexity
• Industry studies have shown that the higher V(G), the higher the

probability of errors.

• Defines the number of independent paths in the basis set
• Path coverage set is the set of paths that will execute all

statements and all conditions in a program at least once
 Are not unique

• Define test cases for basis set

