Software Test
e Types of test

= System test
= Integration test
= Unit test

o Types of test
= Black box
= White box

e Regression test
e The Junit tool for unit testing Java programs

OOP: Software Test

Introduction

o ,.Sofware test 1s the process of executing a program with the
intent of find errors* [Glen Myers].

=, This should not be done by customers* [K.Torp]

o Software test 1s an activity taking place after the program has
been implemented and before the program 1s debugged.

= Program implementation is an activity where design 1s converted to
actual source code.

= Debugging 1s an activity where the causes of program malfunctions are
found.

e Software testing is a very resource and time consuming activity

e A test can show that there 1s an error 1 a program. However, it
can never show that program 1is error free!

OOP: Software Test

Unit, Integration, and System Tests

Success

Success

Failures

Success

[source http//www.stsc.hillaf. mil/stscdocs]

Problems Related to Testing

e Test 1s done late m a project
= [fit1s done at all, ,,1t takes too long time to write test cases!“

e Test cases gets outdated

= Test cases are for version 1.0 of the system which is currently now
release in version 5.2.

e Test 1s mcomplete
= Not all parts of the program are tested

Advantages of Testing

Fewer bugs
= Less anoying product patching, more interesting development

A better and more robust product

= Users are more likely to buy more software from your company

Better sleep at nigth

= You know there are no obvious bugs in your program

More proude of your company and its products

'79

= ”See Darling, what I have build
Faster to release new versions of the product

= Buidling test cases is not a detour it 1s a short-cut!
= “Test More, Spend Less!”

More aggresive changes of system
= Refactoring to build the best system possible

Disadvantages of Testing

None!

Absolutely none!

Absolutely, definitively none!

Absolutely, definitively, surely none!

Absolutely, definitively, surely, conclusively none!
Absolutely, definitively, surely, conclusively, decisively none!

Absolutely, definitively, surely, conclusively, decisively,
determantively none!

Absolutely, definitively, surely, conclusively, decisively,
determantively, positively none!

Ran out of synonyms!

Testability
Observability

= The results are easy to see
= Different outputs are generated for different inputs
= Incorrect outputs are easy to identify

Controllability
= Processing can be controlled (e.g., wall clock)
= Running test cases can be automated (and easily repeated)

Decomposability

= Modules can be tested individually
Simplicity

= No huge and complex modules in the system

Understandability

= The design of the system can be easily communicated from implementor
to tester

Testability, cont.

o Testability must be taken mto account during the design fase

e High testability
= cos(X)
* Integer2string(int) return string
= insert(Object)
e Low testability
= GUI, low controllability because hard to automate

= Recovery system of database management system
¢ Hard to thing of all possible error (low controllability, inputs hard to guess)
+ The system 1s highly complex (low simplicity, low understandability)

+ Extremly badly if it does not work correct

Test Units

Single expression or statement
Method

Class

Package

Entire program

Black Box Test

Look at the program from the outside, no knowledge of the
internals

= Are requirement fulfilled
= Are interfaces available and working
= Can also reveal performance problems with the program

¢ Takes too long to compute

¢ Consumes too much main memory or disk space

Can be applied to all levels of testing (unit, integration, system)
Can be done by independent testers or even customers

It 1s impossible to test for all possible mputs!

10

Black Box Test, cont.

e The challange m black box testing 1s picking the input values

e Equivalence partitioning (input domain partitioning)

= Partition input space into a small number of equvivalent classes all
elements 1n one class should be handled identically by the program

e Boundary value analysis
= A technique on 1dentifying test cases to explore boundary conditions
= At boundaries there are typically many errors

11

Black Box Test, Examples

e Look at an mterval [A..B]

Boundary value analysis YVYY Yvy

| SRR]
Equivalence partitioning A B

e Look atasetS

Equivalence partitioning Boundary value analysis Boundary value analysis
(empty) (full)

12

White-Box Test

Look nside the program
= Conditions and path taking with in the program
= Data flow

Can be applied to level unit test
Can be done by the developers or in house

Block-box testing can be considered a sub set of white-box testing
for unit testing

It 1s impossible to check all paths a program can take mternally.

13

White-Box Test, cont.

The challenge in white box testing is to exercise each line of code
in the unit being tested at least once.
A number of techniques exists for this

= Basis path coverage also called Cyclomatic Complexity

= Logical coverage

= Dataflow coverage

Basis path coverage is based on finding the basis set of paths for a
programs path space.

Defines the number of independent paths n the basis set

Path coverage set 1s the set of paths that will execute all
statements and all conditions in a program at least once

= Are not unique

14

White-Box Test, Example

public static int mid(int a,

int b,
int ¢c) {
int res;
if (a < b){ 0
if (c < a)
res = a;

else if (¢ < b)

res = c; ~c<a_— ~c<b

else
res = b;

) ~_c<b —c<a >

else{ // a > Db

if (c < b)

res = b; res=a res=c res=b res=b res=c res=a
else i1if (c < a)

res = c;
else

res = a;

}

return res;

White-Box Test, Another Example

// greatest common divisor
public static int ged(int u, int v) {
int g = 1;
while (u%2==0 && v%2==0){ // u is even and v is even
u /= 2; // right shift
v /=2; // right shift
g *= 2; // (left shift)
}

// now u or v (or both) are odd

int t;

while (u > 0) {
if (u%2==0){ u /= 2; } // u is even, u = u/2
else if (v%2==0){ v /= 2;} // v is even, v = v/2
else{

t = java.lang.Math.abs(u-v)/2; //t = |u-v|/2
if (u<v) {v==¢t;}
else {u=t;}
}
}

return g*v;

}

16

White-Box Test, Another Example, cont.

false
€

end loop 4//

—» return

Y

Test Cases

Describe how to test a unit (system/module/method/statement)

Must include
= System state before execution of the test
= Part of system tested
= Input to the run test
= Expected outcome of the test (system state, output to screen, etc.)

Good test cases will find bugs
Good test cases are based on requirement specification

18

Regression Test

Regression testing 1s a technique not a tool

After a change to a piece of code two things must be tested
= That the changed piece of code works properly

= That the functionality of the entire system other than the change piece
of code 1s unaffected

It 1s very time consuming to test the two things above
= Automate
= modularization of the system (with solid interfaces)

The foundation for maintaining a good software product
= To avoid introducing error in the maintenance phase

19

JUnit andUnit Test

For each unit (’program atoms”) write at least one test

All unit tests can be executed at any time to ensure entire program
1s working properly

For each change fiished (before commit to CVS) all unit tests
must succeed, 1.e., no errors found

Unit test central to the extreme programming paradigm
= Rapid feed back
= Assumed simplicity
= Incremental change
= Quality work

20

Unit Test Concepts

e Assertion
= The smallest building blocks of a unit test
= Expression that determines if a test succedes or fails

o Test case
= A collection of test methods e.g., the test for an entire class or method

e Test suite
= (Jne or more test cases
= Entire test suite can be execute with a single command

21

Assertions 1n JUnit

assertTrue (boolean)
assertFalse (boolean)
assertEquals (Object, Object)
assertNull (Object)
assertNotNull (Object)

// examples

assertTrue (true) ;

assertFalse (false) ;

assertFalse("true is not false", true)
assertNull (null) ;

assertNotNull (,hey") ;

22

Test Cases 1n JUnit

e A test case in JUnit must inherit from the class
junit. framework.TestCase

e Methods of special importants

= setUp() set up the test fixture
¢ Called before every test method

= tearDown() tear down the test fixture
¢ Called after every test method

= test<method name>() a single test method

¢ The set of these method 1n a class is a test case

23

Test Cases 1n JUnit, Example

public class TestMiddleValue extends junit.framework.TestCase{

MiddleValue md; // to have something to set up
/** Sets up the test fixture */
protected void setUp() { md = new MiddleValue(); }
public void testMidAEqualBEqualC () {
int val = md.mid(1,1,1);
assertTrue (val==1) ;
}
public void testMidASmallerThanB () {
int val;
val = md.mid (50, 100, 10);
assertTrue ("Did not return 50 but " + wval, wval==50);
val = md.mid (50, 100, 70);
assertTrue ("Did not return 70 but " + wval, wval==70);

24

Test Suites 1n JUnit

e Collection of test cases 1 a single logical unit
= BlueJ will do this automatically for you!

e Test coverage
= No help from JUnit or BlueJ

* Add test until you run out of ideas for good things to test for

+ Expensive products exists (not aware of any open source projects)

= Every time you write a System.out.println for test move it to a JUnit test
case instead

+ Reuse your work!!!!

25

Limits of JUnit
e Works very well with

= Function libraries
= API in general
e Having problem to deal with
= GUI
= Network

= Web
= Database

e Most test framework have these limitations

26

Automate the Testing

e You have a combination of very strong tools at your disposition

= JUnit

= Cron jobs

= CVS

= Ant (build-tool like make)

e YOu can now
= Extract a specific version of your product
= Compile entire program and test

+ Send an eail if there are errors in nightly tests
= Run test of experimental version of your program
= Generate documentation

e Combination used by several Aalborg companies.

27

Advantages and Disadvantages of JUnit

e Advantages
* Small and very-well documented framework
= (Can structure test better and make 1t much easier to run the tests
= Available for most Java development tools including BlueJ
= Testing becomes very systematic and partly automatic
= Defactor standard for unit testing Java programs

e Disadvantages
= No matic you have to write the test code your self
= Java specific but being ported to other languages

e JUnit 1s highly relevant for your projects!!!

28

Summary

e Testing 1s vital to provide a high-quality program.
o Up to 50% of time in real-world project may be testing.

e JUnit 1s a small Java based framework for unit testing

= Very hand and well-integrated with Bluel, Eclipse, and other Java
IDEs

OOP: Software Test

29

White-Box Test, A Third Example

// greatest common divisor
public static boolean stringCompare (String x, String y) {
boolean result = false;
int m = x.length();
int n = y.length() ;
int i, j;

/* Searching */
for (J = 0; J <=n - m; ++3) {
for (i = 0; i < m && x.charAt(i) == y.charAt(i + j); ++i);
if (i >= m)
result = true;

}

return result;

30

White-Box Test, A Third Example,

!

cont.

boolean result = false; ... int 1,73,

false

trye

false result= true

¢

loop

—» end loop

¢

» return

v
@,

31

Interval Test Cases

32

Test Coverage

e Goal: To ensure that all statements and conditions have been
executed at least once.

o Why:
= Studies show that logic errors and incorrect assumptions are inversely

proportional to a path’s execution probability.

= Typographical errors are distributed random across the program, it 1s
therefore likely that untested paths will contain such errors.

= Often assumed by programmer that a particular path is not likely to be
executed. However, reality 1s often counter intuitive.

33

Cyclomatic Complexity

Industry studies have shown that the higher V(G), the higher the
probability of errors.

Defines the number of independent paths n the basis set

Path coverage set 1s the set of paths that will execute all
statements and all conditions in a program at least once

= Are not unique

Define test cases for basis set

34

