
OOP: Software Test 1

Software Test
• Types of test

 System test
 Integration test
 Unit test

• Types of test
 Black box
 White box

• Regression test
• The Junit tool for unit testing Java programs

OOP: Software Test 2

Introduction
• „Sofware test is the process of executing a program with the

intent of find errors“ [Glen Myers].
 „This should not be done by customers“ [K.Torp]

• Software test is an activity taking place after the program has
been implemented and before the program is debugged.
 Program implementation is an activity where design is converted to

actual source code.
 Debugging is an activity where the causes of program malfunctions are

found.

• Software testing is a very resource and time consuming activity

• A test can show that there is an error in a program. However, it
can never show that program is error free!

3

Unit, Integration, and System Tests

Requirements

High-Level Design

Low-level Design

Code

Unit Test

Integration Test

System Test

A Need Finished
System

Failures

Failures

Failures
Success

Success

Success

[source http://www.stsc.hill.af.mil/stscdocs]

4

Problems Related to Testing
• Test is done late in a project

 If it is done at all, „it takes too long time to write test cases!“

• Test cases gets outdated
 Test cases are for version 1.0 of the system which is currently now

release in version 5.2.

• Test is incomplete
 Not all parts of the program are tested

5

Advantages of Testing
• Fewer bugs

 Less anoying product patching, more interesting development

• A better and more robust product
 Users are more likely to buy more software from your company

• Better sleep at nigth
 You know there are no obvious bugs in your program

• More proude of your company and its products
 ”See Darling, what I have build!”

• Faster to release new versions of the product
 Buidling test cases is not a detour it is a short-cut!
 ”Test More, Spend Less!”

• More aggresive changes of system
 Refactoring to build the best system possible

6

Disadvantages of Testing
• None!
• Absolutely none!
• Absolutely, definitively none!
• Absolutely, definitively, surely none!
• Absolutely, definitively, surely, conclusively none!
• Absolutely, definitively, surely, conclusively, decisively none!
• Absolutely, definitively, surely, conclusively, decisively,

determantively none!
• Absolutely, definitively, surely, conclusively, decisively,

determantively, positively none!

• Ran out of synonyms!

7

Testability
• Observability

 The results are easy to see
 Different outputs are generated for different inputs
 Incorrect outputs are easy to identify

• Controllability
 Processing can be controlled (e.g., wall clock)
 Running test cases can be automated (and easily repeated)

• Decomposability
 Modules can be tested individually

• Simplicity
 No huge and complex modules in the system

• Understandability
 The design of the system can be easily communicated from implementor

to tester

8

Testability, cont.
• Testability must be taken into account during the design fase

• High testability
 cos(x)
 integer2string(int) return string
 insert(Object)

• Low testability
 GUI, low controllability because hard to automate
 Recovery system of database management system

 Hard to thing of all possible error (low controllability, inputs hard to guess)
 The system is highly complex (low simplicity, low understandability)
 Extremly badly if it does not work correct

9

Test Units
• Single expression or statement
• Method
• Class
• Package
• Entire program

10

Black Box Test
• Look at the program from the outside, no knowledge of the

internals
 Are requirement fulfilled
 Are interfaces available and working
 Can also reveal performance problems with the program

 Takes too long to compute
 Consumes too much main memory or disk space

• Can be applied to all levels of testing (unit, integration, system)
• Can be done by independent testers or even customers

• It is impossible to test for all possible inputs!

11

Black Box Test, cont.
• The challange in black box testing is picking the input values

• Equivalence partitioning (input domain partitioning)
 Partition input space into a small number of equvivalent classes all

elements in one class should be handled identically by the program

• Boundary value analysis
 A technique on identifying test cases to explore boundary conditions
 At boundaries there are typically many errors

12

Black Box Test, Examples
• Look at an interval [A..B]

A BEquivalence partitioning

Boundary value analysis

• Look at a set S

S

Equivalence partitioning

S

Boundary value analysis
(empty)

S

Boundary value analysis
(full)

13

White-Box Test
• Look inside the program

 Conditions and path taking with in the program
 Data flow

• Can be applied to level unit test
• Can be done by the developers or in house

• Block-box testing can be considered a sub set of white-box testing
for unit testing

• It is impossible to check all paths a program can take internally.

14

White-Box Test, cont.
• The challenge in white box testing is to exercise each line of code

in the unit being tested at least once.
• A number of techniques exists for this

 Basis path coverage also called Cyclomatic Complexity
 Logical coverage
 Dataflow coverage

• Basis path coverage is based on finding the basis set of paths for a
programs path space.

• Defines the number of independent paths in the basis set
• Path coverage set is the set of paths that will execute all

statements and all conditions in a program at least once
 Are not unique

15

White-Box Test, Example
public static int mid(int a,
 int b,
 int c) {
 int res;
 if (a < b){
 if (c < a)
 res = a;
 else if (c < b)
 res = c;
 else
 res = b;
 }
 else{ // a >= b
 if (c < b)
 res = b;
 else if (c < a)
 res = c;
 else
 res = a;
 }
 return res;
}

a<b

res=a

c<bc<a

c<b

res=c res=b res=b

c<a

res=c res=a

16

White-Box Test, Another Example
// greatest common divisor
public static int gcd(int u, int v){
 int g = 1;
 while(u%2==0 && v%2==0){ // u is even and v is even
 u /= 2; // right shift
 v /=2; // right shift
 g *= 2; // (left shift)
 }
 // now u or v (or both) are odd
 int t;
 while (u > 0){
 if (u%2==0){ u /= 2; } // u is even, u = u/2
 else if (v%2==0){ v /= 2;} // v is even, v = v/2
 else{
 t = java.lang.Math.abs(u-v)/2; //t = |u-v|/2
 if (u < v) {v = t;}
 else {u = t;}
 }
 }
 return g*v;
}

17

u%2==0 && v%s==0

u>0

g=1

u/=2; v/=s; g*=2
looptrue

int t

false

u/=2 u>0
true false

v/=2
v>0

u<v

true false
t=|u-v|/2

v=t u=t
true false

end loop

loop

true

false

return

White-Box Test, Another Example, cont.

18

Test Cases
• Describe how to test a unit (system/module/method/statement)
• Must include

 System state before execution of the test
 Part of system tested
 Input to the run test
 Expected outcome of the test (system state, output to screen, etc.)

• Good test cases will find bugs
• Good test cases are based on requirement specification

19

Regression Test
• Regression testing is a technique not a tool

• After a change to a piece of code two things must be tested
 That the changed piece of code works properly
 That the functionality of the entire system other than the change piece

of code is unaffected

• It is very time consuming to test the two things above
 Automate
 modularization of the system (with solid interfaces)

• The foundation for maintaining a good software product
 To avoid introducing error in the maintenance phase

20

JUnit andUnit Test
• For each unit (”program atoms”) write at least one test
• All unit tests can be executed at any time to ensure entire program

is working properly
• For each change finished (before commit to CVS) all unit tests

must succeed, i.e., no errors found

• Unit test central to the extreme programming paradigm
 Rapid feed back
 Assumed simplicity
 Incremental change
 Quality work

21

Unit Test Concepts
• Assertion

 The smallest building blocks of a unit test
 Expression that determines if a test succedes or fails

• Test case
 A collection of test methods e.g., the test for an entire class or method

• Test suite
 One or more test cases
 Entire test suite can be execute with a single command

22

Assertions in JUnit
assertTrue (boolean)
assertFalse(boolean)
assertEquals(Object, Object)
assertNull(Object)
assertNotNull(Object)

// examples
assertTrue(true);
assertFalse(false);
assertFalse("true is not false", true)
assertNull(null);
assertNotNull(„hey“);

23

Test Cases in JUnit
• A test case in JUnit must inherit from the class
junit.framework.TestCase

• Methods of special importants
 setUp() set up the test fixture

 Called before every test method
 tearDown() tear down the test fixture

 Called after every test method
 test<method name>() a single test method

 The set of these method in a class is a test case

24

Test Cases in JUnit, Example
public class TestMiddleValue extends junit.framework.TestCase{
 MiddleValue md; // to have something to set up
 /** Sets up the test fixture */
 protected void setUp() { md = new MiddleValue(); }
 public void testMidAEqualBEqualC(){
 int val = md.mid(1,1,1);
 assertTrue(val==1);
 }
 public void testMidASmallerThanB(){
 int val;
 val = md.mid(50, 100, 10);
 assertTrue("Did not return 50 but " + val, val==50);
 val = md.mid(50, 100, 70);
 assertTrue("Did not return 70 but " + val, val==70);
 }
}

25

Test Suites in JUnit
• Collection of test cases in a single logical unit

 BlueJ will do this automatically for you!

• Test coverage
 No help from JUnit or BlueJ

 Add test until you run out of ideas for good things to test for
 Expensive products exists (not aware of any open source projects)

 Every time you write a System.out.println for test move it to a JUnit test
case instead

 Reuse your work!!!!

26

Limits of JUnit
• Works very well with

 Function libraries
 API in general

• Having problem to deal with
 GUI
 Network
 Web
 Database

• Most test framework have these limitations

27

Automate the Testing
• You have a combination of very strong tools at your disposition

 JUnit
 Cron jobs
 CVS
 Ant (build-tool like make)

• You can now
 Extract a specific version of your product
 Compile entire program and test

 Send an eail if there are errors in nightly tests
 Run test of experimental version of your program
 Generate documentation

• Combination used by several Aalborg companies.

28

Advantages and Disadvantages of JUnit
• Advantages

 Small and very-well documented framework
 Can structure test better and make it much easier to run the tests
 Available for most Java development tools including BlueJ
 Testing becomes very systematic and partly automatic
 Defactor standard for unit testing Java programs

• Disadvantages
 No matic you have to write the test code your self
 Java specific but being ported to other languages

• JUnit is highly relevant for your projects!!!

OOP: Software Test 29

Summary
• Testing is vital to provide a high-quality program.
• Up to 50% of time in real-world project may be testing.

• JUnit is a small Java based framework for unit testing
 Very hand and well-integrated with BlueJ, Eclipse, and other Java

IDEs

30

White-Box Test, A Third Example
// greatest common divisor
public static boolean stringCompare(String x, String y){
 boolean result = false;
 int m = x.length();
 int n = y.length();
 int i, j;

 /* Searching */
 for (j = 0; j <= n - m; ++j) {
 for (i = 0; i < m && x.charAt(i) == y.charAt(i + j); ++i);
 if (i >= m)
 result = true;
 }
 return result;
}

31

j<=n-m

boolean result = false; ... int i,j;

true

false

end loop

return

White-Box Test, A Third Example, cont.

x.charAt(i) = y.charAt(i+j)

i>=m

result= true
true

loop

false

true
false

32

Interval Test Cases

33

Test Coverage
• Goal: To ensure that all statements and conditions have been

executed at least once.

• Why:
 Studies show that logic errors and incorrect assumptions are inversely

proportional to a path’s execution probability.
 Typographical errors are distributed random across the program, it is

therefore likely that untested paths will contain such errors.
 Often assumed by programmer that a particular path is not likely to be

executed. However, reality is often counter intuitive.

34

Cyclomatic Complexity
• Industry studies have shown that the higher V(G), the higher the

probability of errors.

• Defines the number of independent paths in the basis set
• Path coverage set is the set of paths that will execute all

statements and all conditions in a program at least once
 Are not unique

• Define test cases for basis set

