Polymorphism

e Why use polymorphism
e Upcast revisited (and downcast)
e Static and dynamic type
e Dynamic binding
e Polymorphism
= A polymorphic field (the state design pattern)

e Abstract classes
= The composite design pattern revisited

OOP: Polymorphism

Class Hierarchies 1in Java, Revisited

e (Class Object is the root of the mnheritance hierarchy in Java.

e If no superclass 1s specified a class inherits implicitly from
Object.

o If a superclass 1s specified explicitly the subclass will inherit
indirectly from Object.

Object
!
Shape
| i |
Circle Line Rectangle
i
Square

OOP: Polymorphism

Why Polymorphism?

// substitutability

Shape s;
s.drav() : Shape
s.resize() ‘ i
Circle Line Rectangle
// extensibility
Shape s;
s.draw () > Sh
s.resize () > ape
Circle Line Rectangle
i
Square

OOP: Polymorphism

Why Polymorphism?, cont.

// common interface

Shape s;
s.draw () » Shape
s.resize () draw ()
resize ()
A
Circle Line Rectangle
draw () draw () draw ()
resize () resize() resize()

// upcasting

Shape s = new Line();
s.draw ()

s.resize ()

OOP: Polymorphism

Advantages/Disadvantages of Upcast

e Advantages
= Code i1s simpler to write (and read)

= Uniform interface for clients, 1.e., type specific details only in class code,
not 1n the client code

= Change 1n types in the class does not effect the clients
¢ Iftype change within the inheritance hierarchy

e Used extensively m object-oriented programs
= Many upcast to Object in the standard library

e Disadvantages

= Must explictely downcast if type details needed 1n client after object has
been handled by the standard library (very annoing sometimes).

Shape s = new Line() ;
Line 1 = (Line) s; // downcast

OOP: Polymorphism

Static and Dynamic Type

o The static type of a variable/argument 1s the declaration type.

e The dynamic type of a variable/argument 1s the type of the object
the variable/argument refers to.

class A{
// body
}
class B extends A{
// body
}
public static void main(String args|[]) {
A x; // static type A
B y; // static type B
X = new A(); // dynamic type A
y = new B(); // dynamic type B
X =Y, // dynamic type B

OOP: Polymorphism

Polymorphism, informal

e In a bar you say “I want a beer!”
= What ever beer you get i1s okay because your request was very generic

e In a bar you say “I want a Samuel Adams Cherry Flavored beer!”
= [f you do not exactly get this type of beer you are allowed to complain

e In chemuistry they talk about polymorph materials as an example
H_0 1s polymorph (ice, water, and steam).

OOP: Polymorphism

Polymorphism

e Polymorphism: “The ability of a variable or argument to refer at
run-time to instances of various classes” [Meyer pp. 224].

Shape s = new Shape() ;

Circle ¢ = new Circle();

Line 1 = new Line();

Rectangle r = new Rectangle();

s = 1; // is this legal?
l =-=s; // is this legal?
1l = (Line)s // is this legal?

e The assignment s = 1 1s legal if the static type of 1 1s Shape or
a subclass of Shape.

e This 1s static type checking where the type comparison rules can
be done at compile-time.

e Polymorphism is constrained by the inheritance hierarchy.

OOP: Polymorphism

Dynamic Binding

class A { class B extends A {
void doSomething () { void doSomething () {
} }

} }

A x = new A();

B y = new B();

X =vy;

x.doSomething(); // on class A or class B?

e Binding: Connecting a method call to a method body.

e Dynamic binding: The dynamic type of x determies which
method 1s called (also called late binding).
= Dynamic binding is not possible without polymorphism.
o Static binding: The static type of x determines which method 1s
called (also called early binding).

OOP: Polymorphism

Dynamic Binding, Example

class Shape {

void draw() { System.out.println ("Shape");

}

class Circle extends Shape {

}

void draw() { System.out.println ("Circle"), }

}

class Line extends Shape {
void draw() { System.out.println ("Line") ;

}

class Rectangle extends Shape ({

}

void draw() {System.out.println ("Rectangle"); }

}

public static void main(String args|[]) {
Shape[] s = new Shape[3];
s[0] = new Circle();
s[1] new Line () ;
s[2] = new Rectangle();
for (int i = 0; i < s.length; i++){

s[i] .draw(); // prints Circle, Line, Rectangle

}
}

OOP: Polymorphism

10

Polymorphish and Constructors

class A { // example from inheritance lecture
public A() {
System.out.println("A()") ;
// when called from B the B.doStuff() is called
doStuff () ;

}
public void doStuff () {System.out.println("A.doStuff()"); }

}
class B extends A({
int i = 7;
public B() {System.out.println("B()") ;}
public void doStuff () {System.out.println("B.doStuff() " + 1i);

}
}

public class Base{ ‘Uprhns
public static void main(String[] args) { A()
B b = new B(); B.doStuff() 0
b.doStuff () ; B()
} B.doStuff() 7

OOP: Polymorphism

Polymorphish and private Methods

class Shape {
void draw() { System.out.println ("Shape"); }
private void doStuff () {
System.out.println("Shape.doStuff()") ;
}
}

class Rectangle extends Shape {
void draw() {System.out.println ("Rectangle"); }
public void doStuff () ({
System.out.println("Rectangle.doStuff()");
}
}

public class PolymorphShape {

public static void polymorphismPrivate () {
Rectangle r = new Rectangle() ;

r.doStuff () ; // okay part of Rectangle interface
Shape s = r; // up cast
s.doStuff () ; // not allowed, compiler error

}

OOP: Polymorphism

Why Polymorphism and Dynamic Binding?

e Separate mterface from implementation.
= What we are trying to achieve in object-oriented programming!

o Allows programmers to 1solate type specific details from the maimn
part of the code.

= Client programs only use the method provided by the Shape class in the
shape hierarchy example.

e Code 1s simpler to write and to read.

e Can change types (and add new types) with this propagates to
existing code.

OOP: Polymorphism

13

Overloading vs. Polymorphism (1)

e Has not yet discovered that the Circle, Line and Rectangle classes
are related. (not very realisitic but just to show the i1dea).

Circle
> draw ()
| resize()

Line
OverloadClient — » draw ()
\ resize ()

| Rectangle
» draw ()
resize ()

Usage not
inheritence

OOP: Polymorphism

Overloading vs. Polymorphism (2)

class Circle {

void draw() { System.out.println("Circle"); }}
class Line {

void draw() { System.out.println("Line"); 1}}
class Rectangle {

void draw() { System.out.println("Rectangle"); }}

public class OverloadClient{
// make a flexible interface by overload and hard work
public void doStuff (Circle c¢c){ c.draw(); }
public void doStuff (Line 1){ l.draw(), }
public void doStuff (Rectangle r){ r.draw(), }

public static void main (String[] args) {
OverloadClient oc = new OverloadClient() ;
Circle ci = new Circle();
Line 1li = new Line();
Rectangle re = new Rectangle() ;
// nice encapsulation from client
oc.doStuff(ci); oc.doStuff(li); oc.doStuff (re);

}

OOP: Pllymorphism

15

Overloading vs. Polymorphism (3)

e Discovered that the Circle, Line and Rectangle class are related
are related via the general concept Shape

e Client only needs access to base class methods.

Shape
PolymorphClient————— » draw ()
resize ()
A
Circle Line Rectangle
draw () draw () draw ()
resize () resize() | resize()

OOP: Polymorphism

Overloading vs. Polymorphism (4)

class Shape {
void draw() { System.out.println("Shape"); }}

class Circle extends Shape ({

void draw() { System.out.println("Circle"); }}
class Line extends Shape {

void draw() { System.out.println("Line"); }}
class Rectangle extends Shape {

void draw() { System.out.println("Rectangle"); }}

public class PolymorphClient({
// make a really flexible interface by using polymorphism

public void doStuff (Shape s){ s.draw(); }

public static void main (String[] args) {
PolymorphClient pc = new PolymorphClient() ;
Circle ci = new Circle();
Line 1li = new Line();
Rectangle re = new Rectangle() ;
// still nice encapsulation from client
pc.doStuff(ci); pc.doStuff(li); pc.doStuff (re);

}

OOP: Pllymorphism 17

Overloading vs. Polymorphism (5)

e Must extend with a new class Square and the client has still not
discovered that the Circle, Line, Rectangle, and Square classes are
related.

Circle
> draw ()
| resize()

| Line
. > draw()
| resize ()

OverloadClient —

| Rectangle
. > draw ()
| resize ()

Square
» draw ()
resize ()

OOP: Polymorphism

Overloading vs. Polymorphism (6)

class Circle {

void draw() { System.out.println("Circle"); }}
class Line {

void draw() { System.out.println("Line"); 1}}
class Rectangle {

void draw() { System.out.println("Rectangle"); 1}}
class Square ({

void draw() { System.out.println("Square"); }}

public class OverloadClient({
// make a flexible interface by overload and hard work
public void doStuff (Circle c¢){ c.draw(), }
public void doStuff (Line 1){ 1l.draw(); }
public void doStuff (Rectangle r){ r.draw(); }
public void doStuff (Square s){ s.draw(); }

public static void main(String[] args) {

// nice encapsulation from client
oc.doStuff(ci); oc.doStuff(li); oc.doStuff (re);

}

OOP: Pllymorphism

Overloading vs. Polymorphism (7)

e Must extend with a new class Square that 1s a subclass to
Rectangle.

Shape
PolymorphClient——v » draw()
resize ()
A
Circle Line Rectangle
draw () draw () draw ()
resize () resize() resize()

T

Square
draw ()
resize ()

OOP: Polymorphism

Overloading vs. Polymorphism (8)

class Shape {
void draw() { System.out.println("Shape"); }}

class Circle extends Shape {

void draw() { System.out.println("Circle"); }}
class Line extends Shape ({

void draw() { System.out.println("Line"); 1}}
class Rectangle extends Shape {

void draw() { System.out.println("Rectangle"); }}
class Square extends Rectangle ({

void draw() { System.out.println("Square"); }}

public class PolymorphClient{
// make a really flexible interface by using polymorphism
public void doStuff (Shape s){ s.draw(); }

public static void main (String[] args) {

// still nice encapsulation from client
pc.doStuff(ci); pc.doStuff(li); pc.doStuff (re);

}

OOP: Polymorphism 21

The Opened/Closed Principle
e Open

= The class hierarchy can be extended with new specialized classes.

e Closed

= The new classes added do not affect old clients.
= The superclass interface of the new classes can be used by old clients.

e This 1s made possible via
= Polymorphism
= Dynamic binding
¢ Try to do this in C or Pascals!

OOP: Polymorphism

22

A Polymorph Field

e A scientist does three very different things
= Writes paper (and drinking coffee)

= Teaches classes (and drinking water)

= Administration (and drinking tea)

e The mplementation of each is assumed very complex

e Must be able to change dynamically between these modes

OOP: Polymorphism

Scientist

mode

Mode
ff work ()
drink ()
A
WriteMode | TeachMode | AdmMode
work () work () work ()
drink () drink () drink ()

23

Implementing a Polymorph Field

public class Mode({
public void work () { System.out.println("");}
public void drink () { System.out.println("");}

}

public class WriteMode extends Mode{
public void work () { System.out.println("write") ;}
public void drink () { System.out.println("coffee") ;}

}

public class TeachMode extends Mode{
public void work () { System.out.println("teach");}
public void drink () { System.out.println("water") ;}

}

public class AdmMode extends Mode({
public void work () { System.out.println("administrate") ;}
public void drink () { System.out.println("tea") ;}

OOP: Polymorphism

24

Implementing a Polymorph Field, cont.

public class Scientist({
private Mode mode;

public Scientist () {
mode = new WriteMode(); /* default mode */

}

// what scientist does

public void doing () { mode.work() ;}
public void drink () { mode.drink () ;}

// change modes methods

public void setWrite() { mode = new WriteMode() ;}
public void setTeach () { mode = new TeachMode() ;}
public void setAdministrate() { mode = new AdmMode() ;}

public static void main (String[] args) {
Scientist einstein = new Scientist();

einstein.doing() ;
einstein.setTeach() ;
einstein.doing() ;

}

OOP: Polymorphism

25

Evaluation of the Polymorph Field

e (Can change modes dynamically
= Main purpose!

o Different modes are 1solated m separate classes
= Complexity 1s reduced (nice side-effect)

e Client of the Scientist class can see the Mode class (and its
supclasses).
= This may unecessarily confuse these clients.

e Scientist class cannot change mode added after it has been
compiled, e.g., SleepMode.

o Can make mstances of Mode class. This should be prevented.

e The state design pattern
= Nice design!

OOP: Polymorphism 26

Abstract Class and Method

e An abstract class 1s a class with an abstract method.

e An abstract method 1s method with out a body, 1.e., only declared
but not defined.

o It 1s not possible to make mstances of abstract classes.
e Abstract method are defined in subclasses of the abstract class.

OOP: Polymorphism

27

Abstract Class and Method, Example

Cl p

C2

C3

OOP: Polymorphism

Abstract class C1 with
abstract methods A and B

Abstract class C2. Defines
method A but not method B.
Adds data elements d3 and d4

Concrete class C3. Defines
method B. Adds the methods D

and E and the data element d5.

28

Abstract Classes 1n Java

abstract class ClassName {
// <class body>

}

e (lasses with abstract methods must declared abstract.

e (lasses without abstract methods can be declared abstract.

» A subclass to a concrete superclass can be abstract.
e (Constructors can be defined on abstract classes.
e Instances of abstract classes cannot be made.

o Abstract fields not possible.

OOP: Polymorphism

29

OOP: Polymorphism

Abstract Class 1n Java, Example

// [Source: Kurt Ngrmark]
public abstract class Stack{

abstract public void push (Object el);
abstract public void pop(); // note no return value
abstract public Object top() ;
abstract public boolean full() ;
abstract public boolean empty () ;
abstract public int size();
public void toggleTop () {
if (size() >= 2){
Object topEll = top(); pop():
Object topEl2 = top(); pop():
push (topEll) ; push (topEl2) ;
}

}
public String toString() {

return "Stack";

}

30

Abstract Methods 1n Java

abstract [access modifier] return type
methodName ([parameters]) ;

* A method body does not have be defined.
e Abstract method are overwritten in subclasses.

e Idea taken directly from C++
= pure virtual function

e You are saying: “The object should have this properties I just do
not know how to implement the property at this level of
abstraction.”

OOP: Polymorphism

31

The Composite Design Pattern

components

Client =+
use
C omponen t
print ()
add ()
remove ()
‘ \
Single List
print () print ()
add ()
remove ()

for all components c
c.print ()

e Component class in italic means abstract class
e Single typically called leaf

e List typically called composite

OOP: Polymorphism

32

Implementation of The Compsite Pattern

public abstract class Component {
public abstract void print(); // no body
public void add(Component c){ // still concrete!
System.out.println("Do not call add on me!") ;}
public void remove (Component c){ // still concrete!
System.out.println("Do not call add on me!") ;}

}

public class Single extends Component {

private String name;

public Single(String n){ name = n; }

public void print() { System.out.println(name); }
}

public class List extends Component{
private Component|[] comp; private int count;
public List(){ comp = new Component[100]; count = 0; }
public void print(){ for(int i = 0; i <= count - 1; i++) {
comp[i] .print(); // polymorphism
}
}
public void add (Component c){ comp[count++] = c;}

}

OOP: Polymorphism

33

Evaluation of the Composite Design Pattern

e Made List and Single classes look alike when printing from
the client's pomt of view.
= The main objective!

e Can make mstances of Component class, not the mtension

" Can call dummy add/remove methods on these instances (FIXED)
e (Can call add/remove method of Single objects, not the

intension. (CANNOT BE FIXED).

e Fixed length, not the intension.
e Nice design!

e The Mode class from the Science example should also be an
abstract class.

OOP: Polymorphism 34

Summary

e Polymorphism an object-oriented “switch” statement.

e Polymorphism should strongly be prefered over overloading
= Must simpler for the class programmer
= [dentical (almost) to the client programmer

e Polymorphism 1s a prerequest for dynamic binding and central to
the object-oriented programming paradigm.

= Sometimes polymorphism and dynamic binding are described as the
same concept (this 1s inaccurate).

e Abstract classes

= Complete abstract class no methods are abstract but instatiation does not
make sense.

= Incomplete abstract class, some method are abstract.

OOP: Polymorphism 35

Abstract Methods 1n Java, Example

public abstract class Number {

public abstract int intValue() ;
public abstract long longValue() ;
public abstract double doubleValue() ;
public abstract float floatValue() ;
public byte byteValue () {

// method body
}
public short shortValue () {

// method body

}

OOP: Polymorphism

36

