Object-Oriented Programming, Part 2

e Packages
e Information hiding
e Access modifiers

= private
= protected
= public
= "friendly"
e Designing an email class

e Designing and implementing a debug message facility

OOP: Object-Oriented Programming, Part 2

Packages 1n Java

e A package 1s a collection of classes (a library).

 In a file the first line must specify the package, ¢.g.,
= package mypackage;

o Characteristic of a package

= QOrganized in a hierarchy
+ Uses the file system for implementing the hierarchy
+ A package corresponds to a directory (and typically subdirectories)

= Every package 1s a name space
e By default, classes belong to the unnamed package.
e Packages mtroduce new scope rules.

OOP: Object-Oriented Programming, Part 2

Packages 1n Java, cont.
o Typical problems with packages

= Tied to local directory structure
= (Case sensitive
= Default package in current directory.

e (Good design

= All classes should be 1n a explicit package, 1.e., do not use the unnamed
package (except for teaching :-))

OOP: Object-Oriented Programming, Part 2

Package Example

package com.mycompany.misc; // file Car.java

public class Car {
public Car () {
System.out.println("com.mycompany.misc.Car") ;

}

package com.mycompany.misc; // file Truck.java

public class Truck {
public Truck () {
System.out.println ("com.mycompany.misc.Truck") ;

}

OOP: Object-Oriented Programming, Part 2

Accessing Classes 1n Package

e A class MyClass in a package mypackage is accessed via
= mypackage.MyClass

e This can be nested to any level
= mypackagel .mypackage2 .mypackage3.MyOtherClass

e Naming convention package names all lower case and words run
together.

e To avoid too much doting packages can be imported, e.g.,

= Ina file import mypackagel .mypackage2.mypackage3.*,
then, MyOtherClass does not have to be qualified.

e If name clashes, 1.e., same class name 1n two imported packages,
then use fully qualified name.

e The package java. lang is always imported.

OOP: Object-Oriented Programming, Part 2

Accessing Classes, Example One

import java.lang.*; // not needed always done

public class Garagel {
com.mycompany.misc.Car carl;
com.mycompany .misc.Truck truckl;
public Garagel () {
carl = new com.mycompany.misc.Car();
truckl = new com.mycompany.misc.Truck() ;

}

public void toPrint() {
System.out.println ("A garage: " + Makh.PI);

}

from java. lang

OOP: Object-Oriented Programming, Part 2

Accessing Classes, Example Two

import com.mycompany.misc.¥*;
//import com.mycompany.*; // not possible

import java.lang.*; // not needed always done
public class Garage { from com.mycompany.misc
Car carl;
Truck truckl;
public Garage () {
carl = new Car () ;

truckl = new Truck() ;

}

public void toPrint() {
System.out.println ("A garage: " + Math.PI);

}

from java. lang

OOP: Object-Oriented Programming, Part 2

CLASSPATH

e Store misc package in /user/torp/java/com/mycompany/misc
directory, 1.€., the files Car.class and Truck.class.

 CLASSPATH = .;/user/torp/java;/user/torp/something.jar

e CLASSPATH = c:\java;c:\user\torp\something.jar
= Testecho %$CLASSPATHS$ on windows

e Compiler starts search at CLASSPATH

OOP: Object-Oriented Programming, Part 2

Information Hiding

e Separate mterface from implementation
= Also hide your own errors that you made in the implementation

e How much should a user of a class see?

e Rules of thumb

= Make instance variables private
= Make at least one constructor public
= Make part of the methods public

OOP: Object-Oriented Programming, Part 2

Access Modifiers on Variables/Methods

e private
= Variable/method is private to the class.
= "Visible to my self".

e protected

= Variable/method can be seen by the class, all subclasses, and other
classes 1in the same package.

= "Visible to the family" or "beware of dog".
e public

= Variable/method can be seen by all classes.
= "Visible to all".

OOP: Object-Oriented Programming, Part 2

10

Access Modifiers on Variables/Methods, cont.
“Friendly”

= Default access modifier, has no keyword.
= public to other members of the same package.

= private to anyone outside the package.

= Also called package access.
"Visible in the neighborhood"

OOP: Object-Oriented Programming, Part 2

11

Public/"Friendly" Example

package com.mycompany.misc;

public class Car{
public Car () {
System.out.println ("com.mycompany.misc.Car") ;
}
void foo () {
System.out.println("foo") ;

}

package mynewpackage; // in another package
import com.mycompany.misc.*;

public static void main(String[] args) {

Car carl = new Car|();
carl.foo(); // compile error "private" in this package

OOP: Object-Oriented Programming, Part 2

12

Private Example

class Singleton{
private int myData = 42;
private static Singleton s = new Singleton() ;

// make default constructor private
private Singleton () { }
public static Singleton getSingleton() {
return s;
}
public void singletonMethod() { /* do stuff */ };
public int getSingletonData() { return myData; }

public class UseSingleton ({
public static void main (String[] args) {
Singleton sl = new Singleton(); // compile error
Singleton s2 = Singleton.getSingleton() ;
s2 .singletonMethod() ;
// s2 and s3 are reference equal
Singleton s3 = Singleton.getSingleton();

}

OOP: Object-Oriented Programming, Part 2

13

Singleton Design Pattern

Singleton

static getInstance() e -+ return uniquelnstance;
singletonMethod()
getSingletonData()

static uniquelnstance
otherData

e Controlled access to one mstance

e Reduced name space (not a “global” variable)

e Permits refinement of operations and representation
e Permits a variable number of mstances

e More flexible than static methods

e Very good object-oriented design

OOP: Object-Oriented Programming, Part 2

Design an Email Class

e Instance variables

= from single email address, should provide a default
= to multiple email addresses, mandatory

= cC multiple email addresses, default empty

= becce multiple email addresses, default empty

= reply-to single email address, default empty
= subject string
= body large string

e Open questions

= What are the data types of the instance variables?
¢ Should subject and body be the same data type?
¢ Should email address be a class or simply a string?

= What should the access specifiers be for the instance variables?
= How to store list of multiple email addresses?
= Should subject and body be mandatory?

OOP: Object-Oriented Programming, Part 2

15

Design an Email Class, cont.

e Methods

setDefaultFrom(emailAddress), sets default from address
setFrom(emailAddress), sets from this email

getFrom() return emailAddress, get the from for this email
setTo (emailAddress), sets single to in to email address

setTo (emailAddress|[]), sets more than one email address 1n to
send (), sends the email

send (emailAddress), sends the email to the email address specified
send (emailAddress|[]), sends the email to the list specified
clean (), clean all the instance variables

show (), shows what 1s currently stored 1n the instance variables in a nice
human readable fashion

setSubjectMandatory (boolean), should a subject be specified
before the email can be send?

OOP: Object-Oriented Programming, Part 2 16

Design an Email Class, cont.

e (Constructors
= Email ()
Email (to, subject, body)

Email (to, cc, subject, body)

Email (to, cc, becec, subject, body)

Email (to, cc, becec, reply-to, subject, body)

e Open questions

= How many constructors are enough?
¢ There can be too few, however there can also be too many!
+ Pick the most simple and the most complete and add some in between!

= Should we automatically send the email when all mandatory instance
variables are supplied to the constructor?

OOP: Object-Oriented Programming, Part 2

17

Design an Email Class, cont.

e Missing, then we must reiterate the design!

= Must count the number of emails send
+ Simpel lets do it, to make the customer satisfied.

= Default at-address, e.g., torp means torp@cs.auc.dk

+ Semi complex, would be nice but not strictly needed! (postpone to the next
release?)

= Save draft of email that can be restored later!
¢ Complicated and is not in the original requirement specification!
+ Postpone delivery deadline or add to the price of the product!

e List of good 1dea for next release of Email class
= Adding attachements
= Setup to mail server

OOP: Object-Oriented Programming, Part 2

18

Evaluation of Design of an Email Class

e Open questions

Does the class do one and only one thing well?
Do we have a coherent and general class?
Are the method names saying and easy to understand and use?

Are the internal data structures encapsulated (information hiding)?
+ The correct access modifiers applied

Did we prepare for refinements of the class by other programmers?
¢ Inheritance (covered in next lectures)

Do we have good documentation for the clients?
Is 1t stored in the right package?

OOP: Object-Oriented Programming, Part 2 19

Access Moditfiers on Classes

e private
= Not supported in Java! (however, works for inner class)
= Default see the slide on friendly
e protected
= Not supported in Java!
e public
= Can be seen by all other classes 1n other packages
= Only one public class per file

e "Friendly"

= A class without an access modifier can be accessed from the classes
within the same package.

e Packages have no access modifiers
= What would it mean?

OOP: Object-Oriented Programming, Part 2 20

Class Properties

e A class variable 1s a variable that 1s common to all instances of
the same class.

e A class method 1s a method that operates on a class as 1t was an
object.

e (lasses are objects (meta objects)
= (lass variables are stored in meta objects

= Java supports meta object via the class Class. Further there is a set of
classes in the package java.lang.reflect. See Chapter 12 "Run-
Time Type Identification".

OOP: Object-Oriented Programming, Part 2 21

Class Properties, cont.

o Variables marked with static are class variables.
= public static float tax = 22.75;

e Methods marked with static are class methods
= public static void main (String[] args) {}

o The Math class consists entirely of static methods and variables.

= We never construct a Math object.
= In general this 1s not a good object-oriented design.

OOP: Object-Oriented Programming, Part 2

22

Design a Debug Message Facility

e Be able to produce output from method without having to
recompile.

public class TestDebug{
public void complicatedMethod() {
int i = (int) (Math.PI + 89 * 62); // complicated stuff
Debug.show("int debug", 1i);

char ¢ = 'x';
Debug.show ("char debug", c);
String s = "build " + "a " + "string";

Debug.show ("Object debug", s);

OOP: Object-Oriented Programming, Part 2

23

Design a Debug Message Facility, cont

e Methods

= enable/disable debugging

= show(int value)

= show(String message, int value)

= show(char value)

= show(String message, char value)

= show(Object value)

= show(String message, Object value)

= collect debug information and print all later, only when debugging
= showCollect(), prints the collected debug information

= clearCollect(), deletes all the collected debug information

e Open questions
= All methods are static, 1s this okay?

OOP: Object-Oriented Programming, Part 2

24

Implementation of Debug Message Facility

public class Debug{
/** Is debugging enabled, default it is off */
private static boolean debugging = false;
/** Is collecting debug information on, default is off */
private static boolean collecting = false;
/** Maximum no of String that can be collected */
public static final int MAX = 99;
/** Array to which messages are collected, fixed size */
private static String[] coll = new String[MAX];
/** index within coll array */
private static int counter = 0;

/** The method that actual displays the message */
private static void realShow (String msg) {
if (debugging) {
if (collecting) {coll[counter++] = msg; }
else { System.out.println(msqg) ;

}

}
}

OOP: Object-Oriented Programming, Part 2

Implementation of Debug Message Facility, cont

public class Debug{

/** Sets the debugging on. */

public static void on() { setDebug(true); }

/** Sets the debugging off. */

public static void off () { setDebug(false); }

/** Sets the debugging mode. */

public static void setDebug (boolean mode) {
debugging = mode;

}

/** Gets the debugging mode. */
public static boolean getDebug() { return debugging; }

/** Sets the collect mode. */
public static void setCollect (boolean mode) {

collecting = mode;
}
/** Gets the collecting mode. */
public static boolean getCollect() { return collecting; }

OOP: Object-Oriented Programming, Part 2 26

Evaluation of a Debug Message Facility

e All access to variables via methods.

e Only do one thing in one place, examples are
» setDebug () setCollect()

e Provided both on () /of£ () and setDebug () /getDebug ()
= on()/off () method used a lot, and very saying method names
= setDebug ()/getDebug () typical way to access private data

(class Debug)
on ()
setDebug (boolelan) -» debugging = mode
off () |
setCollect (boolean) » collecting = mode;
getCollect(l)\ ffffffffffffffffffffffff » return collecting;
J

OOP: Object-Oriented Programming, Part 2

Implementation of Debug Message Facility, cont

public class Debug{

/** Shows a debug message */
public static void show(char wvalue) {show("", value); }

/** Shows a debug message */
public static void show(String message, char wvalue) {

String msg = message + " " + value;
realShow (msq) ;

/** Shows a debug message */
public static void show(int wvalue) {show("", wvalue); }

/** Shows a debug message */
public static void show (String message, int wvalue) {

String msg = message + " " + value;
realShow (msq) ;

}
}
28

OOP: Object-Oriented Programming, Part 2

Evaluation of a Debug Message Facility, cont.

e Method with few parameters adds default parameters and call
similar method with more parameters.

e Many smmilar public show methods map to a single private
realShow method.

class Debug)

realShow (String) {
// do stuff
}

OOP: Object-Oriented Programming, Part 2

Evaluation of a Debug Message Facility, cont

o All vaniables and method are static, unusual but okay here

e The array that 1s collected to can easily be changed to a dynamic
structure when we learn about collections

= MAX should then be set to infinitive

e Open questions
= Easy to add show methods for all basic type?
= Can we write out to file or database instead of, must add functionality?

OOP: Object-Oriented Programming, Part 2

30

Summary

o Package, the library unit in Java.
* Access modifiers

= Tells clients what they can and cannot see.

e Separation of mterface from implementation.
= Very important in design (and implementation).

e Guidelme: Make elements as hidden as possible.

e Object-oriented design hard parts
= Decomposing system into objects.
= Defining the public interface of each object.
= Finding out what 1s likely to change.
= Finding out what 1s likely to stay the same.

OOP: Object-Oriented Programming, Part 2

31

Implementation of Debug Message Facility, cont

public class Debug{

/**
* Show the debug information collected
*/
public static void showCollect() {
for(int i = 0; i <= counter - 1; i++) {
// do NOT call real show here!
System.out.println(coll[i]) ;

}
clearCollect () ;

}

/**
* Clean the collected debug information
*/
public static void clearCollect() {
counter = 0;

}
}

OOP: Object-Oriented Programming, Part 2 32

