
OOP: Object-Oriented Programming, Part 2 1

Object-Oriented Programming, Part 2
• Packages
• Information hiding
• Access modifiers

 private
 protected
 public
 "friendly"

• Designing an email class
• Designing and implementing a debug message facility

OOP: Object-Oriented Programming, Part 2 2

Packages in Java
• A package is a collection of classes (a library).

• In a file the first line must specify the package, e.g.,
 package mypackage;

• Characteristic of a package
 Organized in a hierarchy

 Uses the file system for implementing the hierarchy
 A package corresponds to a directory (and typically subdirectories)

 Every package is a name space

• By default, classes belong to the unnamed package.
• Packages introduce new scope rules.

OOP: Object-Oriented Programming, Part 2 3

Packages in Java, cont.
• Typical problems with packages

 Tied to local directory structure
 Case sensitive
 Default package in current directory.

• Good design
 All classes should be in a explicit package, i.e., do not use the unnamed

package (except for teaching :-))

OOP: Object-Oriented Programming, Part 2 4

Package Example
package com.mycompany.misc; // file Car.java
public class Car {

public Car(){
System.out.println("com.mycompany.misc.Car");

}
}

package com.mycompany.misc; // file Truck.java
public class Truck {

public Truck(){
System.out.println("com.mycompany.misc.Truck");

}
}

OOP: Object-Oriented Programming, Part 2 5

Accessing Classes in Package
• A class MyClass in a package mypackage is accessed via

 mypackage.MyClass
• This can be nested to any level

 mypackage1.mypackage2.mypackage3.MyOtherClass
• Naming convention package names all lower case and words run

together.

• To avoid too much doting packages can be imported, e.g.,
 In a file import mypackage1.mypackage2.mypackage3.*,

then, MyOtherClass does not have to be qualified.

• If name clashes, i.e., same class name in two imported packages,
then use fully qualified name.

• The package java.lang is always imported.

OOP: Object-Oriented Programming, Part 2 6

Accessing Classes, Example One
import java.lang.*; // not needed always done
public class Garage1 {

com.mycompany.misc.Car car1;
com.mycompany.misc.Truck truck1;
public Garage1(){

car1 = new com.mycompany.misc.Car();
truck1 = new com.mycompany.misc.Truck();

}
public void toPrint(){

System.out.println ("A garage: " + Math.PI);
}

}

from java.lang

OOP: Object-Oriented Programming, Part 2 7

Accessing Classes, Example Two
import com.mycompany.misc.*;
//import com.mycompany.*; // not possible
import java.lang.*; // not needed always done
public class Garage {

Car car1;
Truck truck1;
public Garage(){

car1 = new Car();
truck1 = new Truck();

}
public void toPrint(){

System.out.println ("A garage: " + Math.PI);
}

}

from com.mycompany.misc

from java.lang

OOP: Object-Oriented Programming, Part 2 8

CLASSPATH
• Store misc package in /user/torp/java/com/mycompany/misc

directory, i.e., the files Car.class and Truck.class.

• CLASSPATH = .;/user/torp/java;/user/torp/something.jar

• CLASSPATH = c:\java;c:\user\torp\something.jar
 Test echo %CLASSPATH% on windows

• Compiler starts search at CLASSPATH
•

OOP: Object-Oriented Programming, Part 2 9

Information Hiding
• Separate interface from implementation

 Also hide your own errors that you made in the implementation

• How much should a user of a class see?
• Rules of thumb

 Make instance variables private
 Make at least one constructor public
 Make part of the methods public

OOP: Object-Oriented Programming, Part 2 10

Access Modifiers on Variables/Methods
• private

 Variable/method is private to the class.
 "Visible to my self".

• protected
 Variable/method can be seen by the class, all subclasses, and other

classes in the same package.
 "Visible to the family" or "beware of dog".

• public
 Variable/method can be seen by all classes.
 "Visible to all".

OOP: Object-Oriented Programming, Part 2 11

Access Modifiers on Variables/Methods, cont.
• “Friendly”

 Default access modifier, has no keyword.
 public to other members of the same package.
 private to anyone outside the package.
 Also called package access.
 "Visible in the neighborhood"

OOP: Object-Oriented Programming, Part 2 12

Public/"Friendly" Example

package mynewpackage; // in another package
import com.mycompany.misc.*;
public static void main(String[] args){

Car car1 = new Car();
car1.foo(); // compile error "private" in this package

}

package com.mycompany.misc;
public class Car{

public Car(){
System.out.println("com.mycompany.misc.Car");

}
void foo () {

System.out.println("foo");
}

}

OOP: Object-Oriented Programming, Part 2 13

Private Example

public class UseSingleton {
public static void main (String[] args){

Singleton s1 = new Singleton(); // compile error
Singleton s2 = Singleton.getSingleton();
s2.singletonMethod();

 // s2 and s3 are reference equal
Singleton s3 = Singleton.getSingleton();

}

class Singleton{
 private int myData = 42;

private static Singleton s = new Singleton();
// make default constructor private
private Singleton(){ }
public static Singleton getSingleton(){

return s;
}
public void singletonMethod() { /* do stuff */ };
public int getSingletonData() { return myData; }

}

OOP: Object-Oriented Programming, Part 2 14

Singleton Design Pattern

• Controlled access to one instance
• Reduced name space (not a “global” variable)
• Permits refinement of operations and representation
• Permits a variable number of instances
• More flexible than static methods
• Very good object-oriented design

Singleton

static getInstance()
singletonMethod()
getSingletonData()

static uniqueInstance
otherData

return uniqueInstance;

OOP: Object-Oriented Programming, Part 2 15

Design an Email Class
• Instance variables

 from single email address, should provide a default
 to multiple email addresses, mandatory
 cc multiple email addresses, default empty
 bcc multiple email addresses, default empty
 reply-to single email address, default empty
 subject string
 body large string

• Open questions
 What are the data types of the instance variables?

 Should subject and body be the same data type?
 Should email address be a class or simply a string?

 What should the access specifiers be for the instance variables?
 How to store list of multiple email addresses?
 Should subject and body be mandatory?

OOP: Object-Oriented Programming, Part 2 16

Design an Email Class, cont.
• Methods

 setDefaultFrom(emailAddress), sets default from address
 setFrom(emailAddress), sets from this email
 getFrom() return emailAddress, get the from for this email
 setTo(emailAddress), sets single to in to email address
 setTo(emailAddress[]), sets more than one email address in to
 send(), sends the email
 send(emailAddress), sends the email to the email address specified
 send(emailAddress[]), sends the email to the list specified
 clean(), clean all the instance variables
 show(), shows what is currently stored in the instance variables in a nice

human readable fashion
 setSubjectMandatory(boolean), should a subject be specified

before the email can be send?

OOP: Object-Oriented Programming, Part 2 17

Design an Email Class, cont.
• Constructors

 Email()
 Email(to, subject, body)
 Email(to, cc, subject, body)
 Email(to, cc, bcc, subject, body)
 Email(to, cc, bcc, reply-to, subject, body)

• Open questions
 How many constructors are enough?

 There can be too few, however there can also be too many!
 Pick the most simple and the most complete and add some in between!

 Should we automatically send the email when all mandatory instance
variables are supplied to the constructor?

OOP: Object-Oriented Programming, Part 2 18

Design an Email Class, cont.
• Missing, then we must reiterate the design!

 Must count the number of emails send
 Simpel lets do it, to make the customer satisfied.

 Default at-address, e.g., torp means torp@cs.auc.dk
 Semi complex, would be nice but not strictly needed! (postpone to the next

release?)
 Save draft of email that can be restored later!

 Complicated and is not in the original requirement specification!
 Postpone delivery deadline or add to the price of the product!

• List of good idea for next release of Email class
 Adding attachements
 Setup to mail server

OOP: Object-Oriented Programming, Part 2 19

Evaluation of Design of an Email Class
• Open questions

 Does the class do one and only one thing well?
 Do we have a coherent and general class?
 Are the method names saying and easy to understand and use?
 Are the internal data structures encapsulated (information hiding)?

 The correct access modifiers applied
 Did we prepare for refinements of the class by other programmers?

 Inheritance (covered in next lectures)
 Do we have good documentation for the clients?
 Is it stored in the right package?

OOP: Object-Oriented Programming, Part 2 20

Access Modifiers on Classes
• private

 Not supported in Java! (however, works for inner class)
 Default see the slide on friendly

• protected
 Not supported in Java!

• public
 Can be seen by all other classes in other packages
 Only one public class per file

• "Friendly"
 A class without an access modifier can be accessed from the classes

within the same package.

• Packages have no access modifiers
 What would it mean?

OOP: Object-Oriented Programming, Part 2 21

Class Properties
• A class variable is a variable that is common to all instances of

the same class.
• A class method is a method that operates on a class as it was an

object.

• Classes are objects (meta objects)
 Class variables are stored in meta objects
 Java supports meta object via the class Class. Further there is a set of

classes in the package java.lang.reflect. See Chapter 12 "Run-
Time Type Identification".

OOP: Object-Oriented Programming, Part 2 22

Class Properties, cont.
• Variables marked with static are class variables.

 public static float tax = 22.75;

• Methods marked with static are class methods
 public static void main (String[] args){}

• The Math class consists entirely of static methods and variables.
 We never construct a Math object.
 In general this is not a good object-oriented design.

OOP: Object-Oriented Programming, Part 2 23

Design a Debug Message Facility
• Be able to produce output from method without having to

recompile.

public class TestDebug{
 public void complicatedMethod(){
 int i = (int)(Math.PI + 89 * 62); // complicated stuff
 Debug.show("int debug", i);
 char c = 'x';
 Debug.show("char debug", c);
 String s = "build " + "a " + "string";
 Debug.show("Object debug", s);
 }
}

OOP: Object-Oriented Programming, Part 2 24

Design a Debug Message Facility, cont
• Methods

 enable/disable debugging
 show(int value)
 show(String message, int value)
 show(char value)
 show(String message, char value)
 show(Object value)
 show(String message, Object value)
 collect debug information and print all later, only when debugging
 showCollect(), prints the collected debug information
 clearCollect(), deletes all the collected debug information

• Open questions
 All methods are static, is this okay?

OOP: Object-Oriented Programming, Part 2 25

Implementation of Debug Message Facility
public class Debug{
 /** Is debugging enabled, default it is off */
 private static boolean debugging = false;
 /** Is collecting debug information on, default is off */
 private static boolean collecting = false;
 /** Maximum no of String that can be collected */
 public static final int MAX = 99;
 /** Array to which messages are collected, fixed size */
 private static String[] coll = new String[MAX];
 /** index within coll array */
 private static int counter = 0;
 /** The method that actual displays the message */
 private static void realShow(String msg){
 if (debugging){
 if (collecting) {coll[counter++] = msg; }
 else { System.out.println(msg);
 }
 }
 }
}

OOP: Object-Oriented Programming, Part 2 26

Implementation of Debug Message Facility, cont
public class Debug{
 // snip
 /** Sets the debugging on. */
 public static void on(){ setDebug(true); }
 /** Sets the debugging off. */
 public static void off(){ setDebug(false); }
 /** Sets the debugging mode. */
 public static void setDebug(boolean mode){
 debugging = mode;
 }
 /** Gets the debugging mode. */
 public static boolean getDebug(){ return debugging; }

 /** Sets the collect mode. */
 public static void setCollect(boolean mode){
 collecting = mode;
 }
 /** Gets the collecting mode. */
 public static boolean getCollect(){ return collecting; }
}

OOP: Object-Oriented Programming, Part 2 27

Evaluation of a Debug Message Facility

 class Debug
on()

off()
setDebug(boolean)

setCollect(boolean)

debugging = mode

• All access to variables via methods.
• Only do one thing in one place, examples are

 setDebug() setCollect()
• Provided both on()/off() and setDebug()/getDebug()

 on()/off() method used a lot, and very saying method names
 setDebug()/getDebug() typical way to access private data

collecting = mode;
getCollect() return collecting;

OOP: Object-Oriented Programming, Part 2 28

Implementation of Debug Message Facility, cont
public class Debug{
 // snip
 /** Shows a debug message */
 public static void show(char value){show("", value); }

/** Shows a debug message */
 public static void show(String message, char value){
 String msg = message + " " + value;
 realShow(msg);
 }

/** Shows a debug message */
 public static void show(int value){show("", value); }

/** Shows a debug message */
public static void show(String message, int value){

 String msg = message + " " + value;
 realShow(msg);
 }
}

OOP: Object-Oriented Programming, Part 2 29

Evaluation of a Debug Message Facility, cont.
• Method with few parameters adds default parameters and call

similar method with more parameters.
• Many similar public show methods map to a single private
realShow method.

 class Debug
show(char)

show(int)

show(String,char)

show(String,int)

realShow(String){
 // do stuff
}

OOP: Object-Oriented Programming, Part 2 30

Evaluation of a Debug Message Facility, cont
• All variables and method are static, unusual but okay here
• The array that is collected to can easily be changed to a dynamic

structure when we learn about collections
 MAX should then be set to infinitive

• Open questions
 Easy to add show methods for all basic type?
 Can we write out to file or database instead of, must add functionality?

OOP: Object-Oriented Programming, Part 2 31

Summary
• Package, the library unit in Java.
• Access modifiers

 Tells clients what they can and cannot see.

• Separation of interface from implementation.
 Very important in design (and implementation).

• Guideline: Make elements as hidden as possible.

• Object-oriented design hard parts
 Decomposing system into objects.
 Defining the public interface of each object.
 Finding out what is likely to change.
 Finding out what is likely to stay the same.

OOP: Object-Oriented Programming, Part 2 32

Implementation of Debug Message Facility, cont
public class Debug{
 // snip
 /**
 * Show the debug information collected
 */
 public static void showCollect(){
 for(int i = 0; i <= counter - 1; i++){

// do NOT call real show here!
 System.out.println(coll[i]);
 }
 clearCollect();
 }

 /**
 * Clean the collected debug information
 */
 public static void clearCollect(){
 counter = 0;
 }
}

