Object-Oriented Programming, Part 1

e (lasses
e Methods

= Argument and return value
= Overloading

e Object Creation and Destruction
e Equality

OOP: Object-Oriented Programming, Part 1

Classes 1n Java

o A class encapsulates a set of properties
= Some properties are hidden

= The remaining properties are the interface of the class

class ClassName
dataDeclaration
constructors
methods

OOP: Object-Oriented Programming, Part 1

// int x, y; \\

char c;

AN

> Data declarations

s- Constructors

> Methods

Example of a Class

public class Coin { // [Source Lewis and Loftus]
public static final int HEADS = 0;
public static final int TAILS = 1;
private int face;

public Coin () { // constructor
flip() ;

}

public void flip () { // method “procedure”

face = (int) (Math.random() * 2);

}

public int getFace () { // method “function”
return face;

}

public String toString(){ // method “function”
String faceName;

if (face == HEADS)
faceName = "Heads";
else
faceName = "Tails";

return faceName;

}

OOP: Obje}ct-On'ented Programming, Part 1

Instance Variables

e An instance variable 1s a data declaration m a class. Every object
mstantiated from the class has its own version of the instance
variables.

class Car {
private String make;
private String model;
private double price;

4) 4) 4)
make: Ford make: Opel make: BMW
model: Taurus model: Kadett Model: Ml
price: 100 price: 2500 price: 100

. J . J . J

carl car?2 car3

OOP: Object-Oriented Programming, Part 1

Methods 1n Java

e A method 1s a function or procedure that reads and/or modifies
the state of the class.

= A function returns a value (a procedure does not).
= A procedure has side-effects, e.g., change the state of an object.

char calc (int numl, int num2, String message)

A T ~— _
V
method Parameter list
name
The parameter list specifies the type

return and name of each parameter
type
The name of a parameter in the method
declaration 1s called a formal argument

OOP: Object-Oriented Programming, Part 1

Methods 1n Java, cont.
o All methods have a return type

= void for procedures
= A primitive data type or a class for functions
e The return value

= Return stop the execution of a method and jumps out
= Return can be specified with or without an expression

e Parameter are pass-by-value
= (lass parameter are passed as a reference

public double getPrice() { public double getError () ({
return price; double a = 0;

} at++;

public void increaseCounter () { // compile-error
counter = counter + 1; }

//return;

}

OOP: Object-Oriented Programming, Part 1

Method 1n Java, Example

public class Car{
// snip
/** Calculates the sales price of the car */
public int salesPrice () {
return (int)price;
}
/** Calculates the sales price of the car */
public int salesPrice(int overhead) {
return (int)price + overhead;
}
/** Calculates the sales price of the car */
public double salesPrice (double overheadPercent) {
return price + (overheadPercent * price);

}

/** Overwrites the toString method */
public String toString() {
return "make " + getMake() + " model "
+ getModel () + " price " + getPrice();

}
}

OOP: Object-Oriented Programming, Part 1

Method 1n Java, Example, cont

e What is wrong here?

public class Car{
// snip
/** Calculates the integer sales price of the car */
public int salesPrice () {
return (int)price;
}
/** Calculates the double sales price of the car */
public double salesPrice() {
return (double)price;

}

public static void main(String[] args) {
Car vw = new Car (“VW”, “Golf”, 1000);
vw.salesPrice() ;

OOP: Object-Oriented Programming, Part 1

Scope

public int myFunction () { // start scope 1
int x = 34;
// x is now available
{ // start scope 2
int y = 98;

// both x and y are available
// cannot redefine x here compile-time error
} // end scope 2
// now only x is available
// y is out-of-scope
return x;
} // end scope 1

e The redefinition of x m scope 2 1s allowed m C/C++

OOP: Object-Oriented Programming, Part 1

Object Creation 1n General

e Object can be created by
= [nstantiating a class
= Copying an existing object

e Instantiating

= Static: Objects are constructed and destructed at the same time as the
surrounding object.

= Dynamic: Objects are created by executing a specific command.

e Copying
= Often called cloning

OOP: Object-Oriented Programming, Part 1

10

Object Destruction in General

e Object can be destructed in two way.
= Explicit, e.g., by calling a special method or operator (C++).
= Implicit, when the object 1s no longer needed by the program (Java).

o Explicit
= An object 1n use can be destructed.
= Not handling destruction can cause memory leaks.
e Implicit
= (Objects are destructed automatically by a garbage collector.

= There 1s a performance overhead in starting the garbage collector.
= There 1s a scheduling problem 1n when to start the garbage collector.

OOP: Object-Oriented Programming, Part 1

11

Object Creation 1n Java

o Instantiazion: A process where storage 1s allocated for an
“empty”’ object.

e [nitialization: A process where instances variables are assigned a
start value.

e Dynamic instantiazion m Java by calling the new operator.
e Static mstantiazion is not supported in Java.

e Clonmg mplemented in Java via the method clone () in class
java.lang.Object.

e Initialization 1s done m constructors n Java
= Very similar to the way it 1s done in C++

OOP: Object-Oriented Programming, Part 1

12

Object Destruction 1n Java

e Object destruction in Java 1s implicit an done via a garbage
collector.
= (Can be called explicitely via System.gc ().

o A special method £inalize is called immediately before
garbage collection.
= Method in class Object, that can be redefined.
= Takes no parameters and returns void.
= Used for releasing resources, e.g., close file handles.

= Rarely necessary, e.g., “dead-conditions” for error dection purposes.

OOP: Object-Oriented Programming, Part 1

13

Objects and References

e Variables of non-primitive types that are not mitialized have the
special value null.

= Test: varl == null
= Assignment: var2 = null

Object have identity but no name,

= 1.e., not possible to identify an object O1 by the name of the variable
referring to O1.

o Aliasing: Many variables referring to the same object

varl 4 ™ 4)

make: BMW
cylinders: 6

ar2 .
v model: M1 / KH: 130

engine: ref
var3 \ J \. J

car3 enginel

OOP: Object-Oriented Programming, Part 1 14

Constructors 1n Java

A constructor 1s a special method where the mstance variables of
a newly created object are initialized with “reasonable” start
values.

A class must have a constructor
= A default 1s provided implicitly (no-arg constructor).

A constructor must have the same name as the class.

A constructor has no return value.
= That's why 1t 1s as special method

A constructor can be overloaded.
A constructor can call other methods (but not vice-versa).
A constructor can call other constructors (via this).

OOP: Object-Oriented Programming, Part 1

15

Constructors 1n Java, cont.

e Every class should have a programmer defined constructor, that
explicitly guarantees correct initialization of new objects.

// redefined Coin class
public class Coin {
public static final int HEADS
public static final int TAILS =
private int face;
// the constructor
public Coin () {
face = TAILS;
// method in object
£flip();
// method on other object
otherObject.doMoreInitialization() ;

I
=

OOP: Object-Oriented Programming, Part 1

Constructors and Cloning 1n Java

public class Car {
// instance variables
private String make;
private String model;
private double price;
/** The default constructor */

public Car () {
this("", "", 0.0); // must be the first thing

}
/** Construtor that assigns values to instance vars */
public Car (String make, String model, double price) {

this.make = make;

this.model model;

this.price = price;

}

/** Cloning in Java overwrites the Object.clone() */

public Object clone() { // note the return type
return new Car (make, model, price);

}
}

OOP: Object-Oriented Programming, Part 1

17

Constructor Initialization

public class Garage ({
Car carl = new Car|();

static Car car2 = new Car(); // created on first access

public class Garagel {
Car carl;

static Car car?2;

// Explicit static initialization
static {

car2 = new Car|();

}

OOP: Object-Oriented Programming, Part 1

18

Constructor vs. Method

Stmilarities

e (Can take arguments
= all pass-by-value

e Can be overloaded

e Access modifiers can be
specified (e.g., private or
public)

e Can be £inal (covered later)

OOP: Object-Oriented Programming, Part 1

Dissimilarties

Has fixed name (same as the
class)

No return value
= “returns” a reference to object

Special call via new operator
= new Car ()

= (Cannot be called by methods

Default constructor can by
synthesised by the system

Cannot be declared static

= 1t 1S 1n fact a static method!

19

Object Descrution 1n Java, cont.

class MemoryUsage{ /** Dummy class to take up mem */
int id; /** Id of object */
String name; /** Name of object */
MemoryUsage (int id) { /** Constructor */
this.id = id;
this.name = "Name: " + 1id;

}

/** Overwrite the finalize method */
public void finalize () {
System.out.println("Goodbye cruel world " + this.id);

}
}

public class Cleanup{
public static void main(String[] args) {
for (int 1 = 0; 1 < 999; i++){
// allocate and discard
MemoryUsage m = new MemoryUsage (i) ;
if (1 $ 100 == 0){ System.gc(); }
}
}

OOP: ébject-On'ented Programming, Part 1

20

Value vs. Object

e Avalue 1s a data element without identity that cannot change
state.

e An object 1s an encapsulated data element with 1dentity, state, and
behavior.

e An object can behave like value (or record). Is 1t a good 1dea?

e Values in Java are of the primitive type byte, short, int,
long, float, double, boolean, and char.

o Wrapper classes exists in Java for make the primitive type act as
objects.

OOP: Object-Oriented Programming, Part 1 21

Strings 1n Java

o Strings in Java are of the class String.
e Objects of class String behave like values.

e (Characteristics of Strings

= The notation "fly" instantiates the class String and 1nitialize it with the
values "f'"', "1", and "y".

= The class String has many different constructors.
= Values in a string cannot be modified (use StringBuffer instead).
= (lass String redefines the method equals () from class Object.

OOP: Object-Oriented Programming, Part 1

22

Equality

e Are the references a and b equal?

e Reference Equality

= Returns whether a and b points to the same object.

o Shallow Equality
= Returns whether a and b are structurally similar.
= One level of objects are compared.

e Deep Equality
= Returns where a and b have object-networks that are structurally similar.
= Multiple level of objects are compared recursively.

* Reference Equality = Shallow Equality = Deep Equality

OOP: Object-Oriented Programming, Part 1

23

Equality Examples

varl ~ ~N -
make: BMW
cylinders: 6
model: Ml
KWw: 130
engine: ref
var2 9 y L
reference equal
4 N
make: BMW
varl model: Ml
-
engine: ref
\ cylinders: 6
r~ ™ KWw: 130
make: BMW
.
var2 model: Ml
engine: ref
\ J

shallow equal
OOP: Object-Oriented Programming, Part 1

24

Equality Examples, cont.

varl

cylinders:

KWw: 130

var2

deep equal

OOP: Object-Oriented Programming, Part 1

cylinders:

make: BMW
model: Ml
engine: ref
make: BMW
model: Ml
engine: ref

KWw: 130

25

Types of Equality in Java
o pr——
= Equality on primitive data types
¢ 8 ==
e 'b' == "¢’
= Reference equality on object references
¢+ onePoint == anotherPoint

= Strings are special

String sl = "hello"; String s2 = "hello";
if (sl == s2) {
System.out.println(sl + " equals" + s2);}

e equals
= Method on the class java.lang.Object.

= Default works like reference equality.

= (Can be refined in subclass
¢ onePoint.equals (anotherPoint)

OOP: Object-Oriented Programming, Part 1

26

equals example

public class Car {

// snip
/** Gets the make inst variable (helper function). */

public String getMake() {
return make;

}
// snip

/**
* Implements the equals method
* @see java.lang.Objecti#equals(java.lang.Object)
*/
public boolean equals (Object o) ({
return o instanceof Car // is it a Car object?

&& ((Car) o) .getMake() == this.make
&& ((Car) o) .getModel () == this.model
&& ((Car) o) .getPrice() == this.price;

// relies on “short circuiting”

OOP: Object-Oriented Programming, Part 1

27

Summary

e Instance variables

o Strings are treated specially in Java
e Methods

= All computation should be done in methods
= QOverloading is generally a good thing

 Initialization 1s critical for objects
= Java guarantees proper 1nitialization using constructors
= Source of many errors in C

» Java helps clean-up with garbage collection
= Only memory 1s clean, close those file handles explicitly!
= No memory leaks, "show stopper"” in a C/C++ project!

o Equality (three types of equality)

OOP: Object-Oriented Programming, Part 1

28

Arrays 1n Java

Not pomters like in C,
Bounds checking at run-time

int[] numbers; // equivalent
int number|[];

int[] numbers = {1, 2, 3, 4, 5, 6, 7};

= The size 1s fixed at compile-time!

int[] numbers = new Integer[getSize()];

= The size 1s fixed at run-time!
= (Cannot be resized

for (int 1 = 0; i < numbers.length; i++) {
System.out.println (numbers[i]) ;
}

OOP: Object-Oriented Programming, Part 1

29

