
OOP: Object-Oriented Programming, Part 1 1

Object-Oriented Programming, Part 1
• Classes
• Methods

 Argument and return value
 Overloading

• Object Creation and Destruction
• Equality

OOP: Object-Oriented Programming, Part 1 2

Classes in Java
• A class encapsulates a set of properties

 Some properties are hidden
 The remaining properties are the interface of the class

int x, y;
char c; Data declarationsData declarations

MethodsMethods

class ClassName {
dataDeclaration
constructors
methods

} ConstructorsConstructors

OOP: Object-Oriented Programming, Part 1 3

Example of a Class
public class Coin { // [Source Lewis and Loftus]
 public static final int HEADS = 0;

public static final int TAILS = 1;
 private int face;
 public Coin () { // constructor
 flip();
 }
 public void flip (){ // method “procedure”
 face = (int) (Math.random() * 2);
 }
 public int getFace (){ // method “function”
 return face;
 }
 public String toString(){ // method “function”
 String faceName;
 if (face == HEADS)
 faceName = "Heads";
 else
 faceName = "Tails";
 return faceName;
 }
}

OOP: Object-Oriented Programming, Part 1 4

Instance Variables
• An instance variable is a data declaration in a class. Every object

instantiated from the class has its own version of the instance
variables.

class Car {
private String make;
private String model;
private double price;

}

make: Ford
model: Taurus
price: 100

car1

make: Opel
model: Kadett
price: 2500

car2

make: BMW
Model: M1
price: 100

car3

OOP: Object-Oriented Programming, Part 1 5

Methods in Java

• A method is a function or procedure that reads and/or modifies
the state of the class.
 A function returns a value (a procedure does not).
 A procedure has side-effects, e.g., change the state of an object.

char calc (int num1, int num2, String message)

methodmethod
namename

returnreturn
typetype

Parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal argument

OOP: Object-Oriented Programming, Part 1 6

Methods in Java, cont.
• All methods have a return type

 void for procedures
 A primitive data type or a class for functions

• The return value
 Return stop the execution of a method and jumps out
 Return can be specified with or without an expression

• Parameter are pass-by-value
 Class parameter are passed as a reference

public double getPrice() {
return price;

}
public void increaseCounter() {

counter = counter + 1;
//return;

}

public double getError() {
double a = 0;
a++;
// compile-error

}

OOP: Object-Oriented Programming, Part 1 7

Method in Java, Example
public class Car{
 // snip
 /** Calculates the sales price of the car */
 public int salesPrice(){
 return (int)price;
 }
 /** Calculates the sales price of the car */
 public int salesPrice(int overhead){
 return (int)price + overhead;
 }
 /** Calculates the sales price of the car */
 public double salesPrice(double overheadPercent){
 return price + (overheadPercent * price);
 }
 /** Overwrites the toString method */
 public String toString(){
 return "make " + getMake() + " model "
 + getModel() + " price " + getPrice();
 }
}

OOP: Object-Oriented Programming, Part 1 8

Method in Java, Example, cont

public class Car{
 // snip
 /** Calculates the integer sales price of the car */
 public int salesPrice(){
 return (int)price;
 }
 /** Calculates the double sales price of the car */
 public double salesPrice(){
 return (double)price;
 }

public static void main(String[] args){
 Car vw = new Car(“VW”, “Golf”, 1000);
 vw.salesPrice();
 }
}

• What is wrong here?

OOP: Object-Oriented Programming, Part 1 9

Scope

• The redefinition of x in scope 2 is allowed in C/C++

public int myFunction (){ // start scope 1
int x = 34;
// x is now available
{ // start scope 2

int y = 98;
// both x and y are available
// cannot redefine x here compile-time error

} // end scope 2
// now only x is available
// y is out-of-scope
return x;

} // end scope 1

OOP: Object-Oriented Programming, Part 1 10

Object Creation in General
• Object can be created by

 Instantiating a class
 Copying an existing object

• Instantiating
 Static: Objects are constructed and destructed at the same time as the

surrounding object.
 Dynamic: Objects are created by executing a specific command.

• Copying
 Often called cloning

OOP: Object-Oriented Programming, Part 1 11

Object Destruction in General
• Object can be destructed in two way.

 Explicit, e.g., by calling a special method or operator (C++).
 Implicit, when the object is no longer needed by the program (Java).

• Explicit
 An object in use can be destructed.
 Not handling destruction can cause memory leaks.

• Implicit
 Objects are destructed automatically by a garbage collector.
 There is a performance overhead in starting the garbage collector.
 There is a scheduling problem in when to start the garbage collector.

OOP: Object-Oriented Programming, Part 1 12

Object Creation in Java
• Instantiazion: A process where storage is allocated for an

“empty” object.
• Initialization: A process where instances variables are assigned a

start value.

• Dynamic instantiazion in Java by calling the new operator.
• Static instantiazion is not supported in Java.
• Cloning implemented in Java via the method clone() in class
java.lang.Object.

• Initialization is done in constructors in Java
 Very similar to the way it is done in C++

OOP: Object-Oriented Programming, Part 1 13

Object Destruction in Java
• Object destruction in Java is implicit an done via a garbage

collector.
 Can be called explicitely via System.gc().

• A special method finalize is called immediately before

garbage collection.
 Method in class Object, that can be redefined.
 Takes no parameters and returns void.
 Used for releasing resources, e.g., close file handles.
 Rarely necessary, e.g., “dead-conditions” for error dection purposes.

OOP: Object-Oriented Programming, Part 1 14

Objects and References
• Variables of non-primitive types that are not initialized have the

special value null.
 Test: var1 == null
 Assignment: var2 = null

Object have identity but no name,
 i.e., not possible to identify an object O1 by the name of the variable

referring to O1.

• Aliasing: Many variables referring to the same object

make: BMW
model: M1
engine: ref

car3

cylinders: 6
KW: 130

engine1

var1

var2

var3

OOP: Object-Oriented Programming, Part 1 15

Constructors in Java
• A constructor is a special method where the instance variables of

a newly created object are initialized with “reasonable” start
values.

• A class must have a constructor
 A default is provided implicitly (no-arg constructor).

• A constructor must have the same name as the class.
• A constructor has no return value.

 That's why it is as special method

• A constructor can be overloaded.
• A constructor can call other methods (but not vice-versa).
• A constructor can call other constructors (via this).

OOP: Object-Oriented Programming, Part 1 16

Constructors in Java, cont.
• Every class should have a programmer defined constructor, that

explicitly guarantees correct initialization of new objects.

// redefined Coin class
public class Coin {
 public static final int HEADS = 0;

public static final int TAILS = 1;
 private int face;
 // the constructor
 public Coin () {

face = TAILS;
// method in object

 flip();
// method on other object
otherObject.doMoreInitialization();

 }
}

OOP: Object-Oriented Programming, Part 1 17

Constructors and Cloning in Java
public class Car {
 // instance variables
 private String make;
 private String model;
 private double price;
 /** The default constructor */
 public Car() {
 this("", "", 0.0); // must be the first thing
 }
 /** Construtor that assigns values to instance vars */
 public Car(String make, String model, double price) {
 this.make = make;
 this.model = model;
 this.price = price;
 }
 /** Cloning in Java overwrites the Object.clone() */
 public Object clone() { // note the return type
 return new Car(make, model, price);
 }
}

OOP: Object-Oriented Programming, Part 1 18

Constructor Initialization
public class Garage {

Car car1 = new Car();
static Car car2 = new Car(); // created on first access

}

public class Garage1 {
Car car1;
static Car car2;
// Explicit static initialization
static {

car2 = new Car();
}

}

OOP: Object-Oriented Programming, Part 1 19

Constructor vs. Method
Similarities
• Can take arguments

 all pass-by-value

• Can be overloaded
• Access modifiers can be

specified (e.g., private or
public)

• Can be final (covered later)

Dissimilarties
• Has fixed name (same as the

class)
• No return value

 “returns” a reference to object

• Special call via new operator
 new Car()
 Cannot be called by methods

• Default constructor can by
synthesised by the system

• Cannot be declared static
 it is in fact a static method!

OOP: Object-Oriented Programming, Part 1 20

Object Descrution in Java, cont.
class MemoryUsage{ /** Dummy class to take up mem */

int id; /** Id of object */
String name; /** Name of object */

 MemoryUsage(int id){ /** Constructor */
this.id = id;
this.name = "Name: " + id;

}
/** Overwrite the finalize method */
public void finalize(){

System.out.println("Goodbye cruel world " + this.id);
}

}
public class Cleanup{

public static void main(String[] args){
for (int i = 0; i < 999; i++){

// allocate and discard
MemoryUsage m = new MemoryUsage(i);
if (i % 100 == 0){ System.gc(); }

}
}

}

OOP: Object-Oriented Programming, Part 1 21

Value vs. Object
• A value is a data element without identity that cannot change

state.
• An object is an encapsulated data element with identity, state, and

behavior.

• An object can behave like value (or record). Is it a good idea?

• Values in Java are of the primitive type byte, short, int,
long, float, double, boolean, and char.

• Wrapper classes exists in Java for make the primitive type act as
objects.

OOP: Object-Oriented Programming, Part 1 22

Strings in Java
• Strings in Java are of the class String.
• Objects of class String behave like values.

• Characteristics of Strings
 The notation "fly" instantiates the class String and initialize it with the

values "f"', "l", and "y".
 The class String has many different constructors.
 Values in a string cannot be modified (use StringBuffer instead).
 Class String redefines the method equals() from class Object.

OOP: Object-Oriented Programming, Part 1 23

Equality
• Are the references a and b equal?

• Reference Equality
 Returns whether a and b points to the same object.

• Shallow Equality
 Returns whether a and b are structurally similar.
 One level of objects are compared.

• Deep Equality
 Returns where a and b have object-networks that are structurally similar.
 Multiple level of objects are compared recursively.

• Reference Equality Shallow Equality Deep Equality

OOP: Object-Oriented Programming, Part 1 24

Equality Examples

make: BMW
model: M1
engine: ref

var1

var2

make: BMW
model: M1

engine: ref
var1

var2
make: BMW
model: M1

engine: ref

cylinders: 6
KW: 130

cylinders: 6
KW: 130

reference equal

shallow equal

OOP: Object-Oriented Programming, Part 1 25

Equality Examples, cont.

make: BMW
model: M1

engine: ref
var1

var2
make: BMW
model: M1

engine: ref

cylinders: 6
KW: 130

cylinders: 6
KW: 130

deep equal

OOP: Object-Oriented Programming, Part 1 26

Types of Equality in Java
• ==

 Equality on primitive data types
 8 == 7
 'b' == 'c'

 Reference equality on object references
 onePoint == anotherPoint

 Strings are special
 String s1 = "hello"; String s2 = "hello";
 if (s1 == s2){

System.out.println(s1 + " equals" + s2);}
• equals

 Method on the class java.lang.Object.
 Default works like reference equality.
 Can be refined in subclass

 onePoint.equals(anotherPoint)

OOP: Object-Oriented Programming, Part 1 27

equals example
public class Car {
 // snip
 /** Gets the make inst variable(helper function). */
 public String getMake() {
 return make;
 }
 // snip

 /**
 * Implements the equals method
 * @see java.lang.Object#equals(java.lang.Object)
 */
 public boolean equals(Object o) {
 return o instanceof Car // is it a Car object?
 && ((Car) o).getMake() == this.make
 && ((Car) o).getModel() == this.model
 && ((Car) o).getPrice() == this.price;
 // relies on “short circuiting”
 }

OOP: Object-Oriented Programming, Part 1 28

Summary
• Instance variables
• Strings are treated specially in Java
• Methods

 All computation should be done in methods
 Overloading is generally a good thing

• Initialization is critical for objects
 Java guarantees proper initialization using constructors
 Source of many errors in C

• Java helps clean-up with garbage collection
 Only memory is clean, close those file handles explicitly!
 No memory leaks, "show stopper" in a C/C++ project!

• Equality (three types of equality)

OOP: Object-Oriented Programming, Part 1 29

Arrays in Java
• Not pointers like in C,
• Bounds checking at run-time
• int[] numbers; // equivalent
int number[];

• int[] numbers = {1, 2, 3, 4, 5, 6, 7};
 The size is fixed at compile-time!

• int[] numbers = new Integer[getSize()];
 The size is fixed at run-time!
 Cannot be resized

for (int i = 0; i < numbers.length; i++){
System.out.println(numbers[i]);

}

