
OOP: The Java I/O System 1

The Java I/O System
• Binary I/O streams (ascii, 8 bits)

 InputStream
 OutputStream

• The decorator design pattern
• Character I/O streams (Unicode, 16 bits)

 Reader
 Writer

• Comparing Binary I/O to Character I/O
• Files and directories

 The class File
• Object Serialization

 Light-weight persistence

• Will only look at the package java.io not java.nio.

OOP: The Java I/O System 2

Overview of The Java I/O System
• Goal: To provide an abstraction of all types of I/O

 Memory
 File
 Directory
 Network

• Express all configurations
 Character, binary, buffered, etc.

• Different kinds of operations
 Sequential, random access, by line, by word, etc.

OOP: The Java I/O System 3

The Stream Concept
• A stream is a sequential source of information used to transfer

information from one source to another.

[Source: java.sun.com]

OOP: The Java I/O System 4

Streams in Java
• There is a huge (and complicated) hierarchy of stream classes in

Java.

• Overview of the stream hierarchy
 Reader, root in unicode input hierarchy
 Writer, root in unicode output hierarchy
 InputStream, root in binary input hierarchy
 OutputStream, root in binary output hierarchy

• All abstract classes.

OOP: The Java I/O System 5

The Decorator Design Pattern

Decorator
 operation()

Component
 operation()

ConcretComponent
 operation()

component

//addOpr();
component.operation()

ConcreteDecorator2
 operation()
 addOpr()

ConcreteDecorator1
 operation()
 addState

• Wrap classes in “decorators” to add functionality.

OOP: The Java I/O System 6

Decorator Pattern and Java I/O
• Two issues with I/O

 What are you talking to (n).
 The way you are talking to it (m).

• Solution no. 1
 Make a class for every combination
 n * m classes, not flexible, hard to extend

• Solutions no. 2
 Java filter streams (decorators) are added dynamically to create the

functionality needed.
 n + m classes
 Input decorator: FilterInputStream
 Output decorator: FilterOutputStream

OOP: The Java I/O System 7

InputStream Hierarchy

[Source: java.sun.com]

• InputStream, the abstract component root in decorator pattern
• FileInputStream, etc. the concrete components
• FilterInputStream, the abstract decorator
• LineNumberInputStream, DataInputStream, etc.

concrete decorators

OOP: The Java I/O System 8

OutputStream Hierarchy

[Source: java.sun.com]

• OutputStream, the abstract component root in decorator pattern
• FileOutputStream, etc. the concrete components
• FilterOutputStream, the abstract decorator
• PrintStream, DataOutputStream, etc. concrete decorators

OOP: The Java I/O System 9

InputStream Types
Type of InputStream

• ByteArrayInputStream
• StringBufferInputStream

• PipedInputStream
• FileInputStream
• SequencedInputStream
• ObjectInputStream

Reads From
• Block of memory
• String (note not
StringBuffer)

• Pipe (in another thread)
• File
• Combines InputStreams
• Objects from an
InputStream

Concrete Components

OOP: The Java I/O System 10

OutputStream Types
Type of OutputStream

• ByteArrayOutputStream
• PipedOutputStream
• FileOutputStream
• ObjectOutputStream

Reads From
• Block of memory
• Pipe (in another thread)
• File
• Objects to a OutputStream

Concrete Components

OOP: The Java I/O System 11

FilterInputStream
• DataInputStream

 Full interface for reading built-in types
 For portable reading of data between different OS platforms

• BufferedInputStream
 Adds buffering to the stream (do this by default)

• LineNumberInputStream
 Only adds line numbers

• PushbackInputStream
 One-character push pack for scanners (lexers)

Concrete Decorators

OOP: The Java I/O System 12

FilterOutputStream
• DataOutputStream

 Full interface for writing built-in types
 For portable writing of data between different OS platforms
 Example: System.out.println

• PrintStream
 Allows primitive formatting of data for display (not printf!)
 Not for storage use DataOutputStream for this

• BufferedOutputStream
 Adds buffering to output (do this by default!)

Concrete Decorators

OOP: The Java I/O System 13

OutputStream, Example
import java.io.*; // [Source: java.sun.com]
public class DataIODemo {
 public static void main(String[] args) throws IOException {
 // where to write to
 DataOutputStream out =
 new DataOutputStream(
 new FileOutputStream("invoice1.txt"));

 // alternative also using a buffer decorator
 DataOutputStream out =
 new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream("invoice1.txt")));

OOP: The Java I/O System 14

OutputStream, Example, cont.
import java.io.*; // [Source: java.sun.com]
public class DataIODemo {
 public static void main(String[] args) throws IOException {

snip
 double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
 int[] units = { 12, 8, 13, 29, 50 };
 String[] descs = { "Java T-shirt",
 "Java Mug",

 "Duke Juggling Dolls",
 "Java Pin",

 "Java Key Chain" };
 for (int i = 0; i < prices.length; i ++) {
 out.writeDouble(prices[i]);
 out.writeChar('\t'); // add a tab
 out.writeInt(units[i]);
 out.writeChar('\t'); // add a tab
 out.writeChars(descs[i]);
 out.writeChar('\n'); // add a newline
 }
 out.close();

OOP: The Java I/O System 15

InputStream, Example
// read it in again
DataInputStream in =

 new DataInputStream(
 new FileInputStream("invoice1.txt"));

// alternative also using a buffer decorator
 DataInputStream in =
 new DataInputStream(

new BufferedInputStream (
new FileInputStream("invoice1.txt")));

 double price;
int unit;

 StringBuffer desc;
double total = 0.0;

OOP: The Java I/O System 16

InputStream, Example, cont.
try {
 while (true) {
 price = in.readDouble();
 in.readChar(); // throws out the tab
 unit = in.readInt();
 in.readChar(); // throws out the tab

char chr;
desc = new StringBuffer(20);
char lineSep =

System.getProperty("line.separator").charAt(0);
while ((chr = in.readChar()) != lineSep)
 desc.append(chr);

 System.out.println("You've ordered " +
 unit + " units of " +
 desc + " at $" + price);

 total = total + unit * price;
 }
 } catch (EOFException e) {
 }
 System.out.println("For a TOTAL of: $" + total);
 in.close();
}

OOP: The Java I/O System 17

Reader and Writer Classes
• Added in Java 1.1
• Not meant to replace InputStream and OutputStream
• Internationalization Unicode support
• Efficiency, designed to solved efficiency problems

• Structured in class hierarchies similar to the InputStream and
OutputStream hierarchies
 Are also using the decorator design pattern

OOP: The Java I/O System 18

Reader Class Hierarchy

[Source: java.sun.com]

• Reader, the abstract component root in decorator pattern
• BufferedReader, etc. the concrete components
• FilterReader, the abstract decorator
• PushbackReader, concrete decorators

OOP: The Java I/O System 19

Writer Class Hierarchy

[Source: java.sun.com]

• Writer, the abstract component root in decorator pattern
• BufferedWriter, etc. the concrete components
• FilterWriter, the abstract decorator
• No concrete decorators

OOP: The Java I/O System 20

Reader and Writer Types
• Transport to and from main memory

 CharArrayReader, CharArrayWriter
 StringReader, StringWriter

• Transport to and from pipelines (networking)
 PipedReader, PipedWriter

• Transport to and from files
 FileReader, FileWriter

• DataOutputStream unaltered from Java 1.0 to 1.1

OOP: The Java I/O System 21

Character Based Streams
• InputStreamReader

 Reads platform characters and delivers Unicode characters to the Java
program.

• OutputStreamWriter
 Writes Unicode characters to platform dependent characters.

• PrintWriter
 Writes Java primitive data types to file.

OOP: The Java I/O System 22

FileReader and FileWriter, Example
import java.io.*;
public class Copy {

public static void main(String[] args) throws IOException
{

FileReader in = new FileReader(new File(args[0]));
FileWriter out = new FileWriter(new File(args[1]));
int c;

 do{
c = in.read();
if(c != -1) {

 out.write(c);
}

} while (c != -1);
 in.close();
 out.close();
 }
}

OOP: The Java I/O System 23

Binary vs. Character Based I/O Overview
• InputStream

• OutputStream

• FileInputStream
• FileOutputStream
• StringBufferedInputStream
• N/A
• ByteArrayInputStream
• ByteArrayOutputStream
• PipedInputStream
• PipedOutputStream

• Reader
convert: InputStreamReader

• Writer
convert: OutputStreamWriter

• FileReader
• FileWriter
• StringReader (better name)
• StringWriter
• CharArrayReader
• CharArrayWriter
• PipedReader
• PipedWriter

OOP: The Java I/O System 24

Binary vs. Character Filter Overview
• FilterInputStream
• FilterOutputStream
• BufferedInputStream

• BufferedOutputStream
• DataInputStream

• PrintStream
• LineNumberInputStream
• PushbackInputStream

• FilterReader
• FilterWriter (abstract class)
• BufferedReader

(has a readline())
• BufferedWriter
• Use DataInputStream or

BufferedReader
• PrintWriter
• LineNumberReader
• PushbackReader

OOP: The Java I/O System 25

Representing the File System
• File systems varies between operating system, i.e.,

 Path separators
 Permissions in Unix
 Directories on the Mac
 Drive letters on Windows

• Needs an abstraction to hide the differences
 To make Java program platform independent.

OOP: The Java I/O System 26

The File Class
• Refers to one or more file names, i.e., not a handle to a file

 Composite design pattern

• To get an array of file names. Call the list() method.

OOP: The Java I/O System 27

The Composite Pattern, Again

Composite
 operation()
 add()
 remove()
 getChild()

Component
 operation()
 add()
 remove()
 getChild()

Leaf
 operation()

children

for all c in children
c.operation();

OOP: The Java I/O System 28

The File Class, Example

import java.io.*;
public class DirectoryList {
 public static void main(String[] args) throws IOException{

File dir = new File(args[0]);
if(dir.isDirectory() == false) {

if (dir.exists() == false)
System.out.println("There is no such dir!");

else
System.out.println("That file is not a dir.");

}
else {

String[] files = dir.list();
System.out.println

("Files in dir \"" + dir + "\":");
for (int i = 0; i < files.length; i++)

System.out.println(" " + files[i]);
}

}
}

OOP: The Java I/O System 29

Object Serialization
• Very hard to do in other programming languages!!!
• Class must implement the Serializable interface
• Uses

 Output: ObjectOutputStream
 writeObject()

 Input: ObjectInputStream
 readObject()

• All relevant parts (the web of object) are serialized.
• Lightweight persistence

 used in RMI (send objects across a network)
 used in JavaBeans

OOP: The Java I/O System 30

Object Serialization, Example

// Write an object to disk
ObjectOutputStream out =

new ObjectOutputStream(
new FileOutputStream("mycars.dat"));

Car myToyota = new Car();
out.writeObject(myToyota);

// Read an object from disk
ObjectInputStream in =

new ObjectInputStream(
new FileInputStream("mycars.dat"));

Car myToyota = (Car)in.readObject();

OOP: The Java I/O System 31

Summary
• Streams a large class hierarchy for input and output.

 The decorator pattern is the key to understanding it

• The decorator design pattern may seem strange
 Very flexible, but requires extra coding in clients.

• There is no C-like printf functionality
 This is annoying

• For objects to live between program invocations use the
Serializable interface.

• java.nio packages goal speed
 Look at it if you needed it in your projects

OOP: The Java I/O System 32

FilterStream, Example

import java.io.*;
class StreamFilterExample{
 public static void main(String[] args) throws IOException {
 DataInputStream din = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream(
 new File("numbers.dat"))));
 int i;
 boolean b;
 i = din.readInt();
 b = din.readBoolean();
 System.out.println("i = " + i + ". b = " + b);
 din.close();
 }
}

