The Java I/O System

e Bmary I/O streams (ascii, 8 bits)
= InputStream
= QutputStream

e The decorator design pattern

e Character I/O streams (Unicode, 16 bits)
= Reader
= Writer

e Comparmg Binary I/O to Character I/O

e Files and directories
= TheclassFile

e Object Serialization
= Light-weight persistence

o Will only look at the package java.ionot java.nio.

OOP: The Java I/O System

Overview of The Java I/O System

e Goal: To provide an abstraction of all types of I/O
= Memory
= File
= Directory
= Network

e Express all configurations
= Character, binary, buffered, etc.

e Different kinds of operations
= Sequential, random access, by line, by word, etc.

OOP: The Java I/O System

The Stream Concept

e A stream 1s a sequential source of mformation used to transfer
information from one source to another.

it A stream
SR
[T dest
3 i
i g N
A stream

Source Nt o "

=

[Source: java.sun.com]
OOP: The Java I/O System 3

Streams 1n Java

e There 1s a huge (and complicated) hierarchy of stream classes 1n
Java.

e Overview of the stream hierarchy
= Reader, root in unicode input hierarchy
= Writer, root in unicode output hierarchy
= TnputStream, root in binary input hierarchy
= QutputStream, root in binary output hierarchy

e All abstract classes.

OOP: The Java I/O System

The Decorator Design Pattern

e Wrap classes m “decorators” to add functionality.

Component «
operation ()

}

component
ConcretComponent Decorator — //addOpr() ——
operation () operation () 777 component operatlon ()
ConcreteDecoratorl ConcreteDecorator2
operation () operation ()
addOpr ()
addState

OOP: The Java I/O System

Decorator Pattern and Java I/O

e Two 1ssues with I/O
= What are you talking to (n).
= The way you are talking to it (m).

e Solution no. 1
= Make a class for every combination
= n * m classes, not flexible, hard to extend

e Solutions no. 2

= Java filter streams (decorators) are added dynamically to create the
functionality needed.

" n+ m classes
= Input decorator: FilterInputStream

= Qutput decorator: FilterOutputStream

OOP: The Java I/O System

InputStream Hierarchy

FileInputStreanm
f_) {LmeﬂumberlnpUtStream j
- PipedInputStrean i

_-;i DatdInputsTredn j-

@nputStream)_—(- Filterinputstrean }_{Eufferedlnpuﬂtream j.

—{ ByreArrayInputstrean)-{Pushbacklnpuﬂtream)

—(_SEquenceInpUtSt rear j:.

— StringBufferInputStrean '

—C ObjectInputStrean }

[Source: java.sun.com]
e« InputStream, the abstract component root in decorator pattern
e FileInputStream, ctc. the concrete components
e FilterInputStream, the abstract decorator

e LineNumberInputStream DataInputStream, ctc.
concrete decorators

OOP: The Java I/O System

OutputStream Hierarchy

—{ FileQutputStrean '
— PipeddutputStream ' —'.': Datalutputstrean _j'

_C FilterQutputStream _'::,__{ BufferedOutputStream }

— BytedrrayOutputstrean '—{— Printatrean }

—(ObjectOutputstrean _}

Q:IutputSt rearn ;}—

[Source: java.sun.com]

e OutputStream, the abstract component root in decorator pattern
e FileOutputStream, ctc. the concrete components

e FilterOutputStream, the abstract decorator

e PrintStream, DataOutputStream, etc. concrete decorators

OOP: The Java I/O System

InputStream lypes

Type of InputStream
e ByteArrayInputStream o
e StringBufferInputStreame

e PipedInputStream o
e FileInputStream o
e SequencedInputStream o
e ObjectInputStream

Concrete Components

OOP: The Java I/O System

Reads From
Block of memory

String (note not
StringBuffer)

Pipe (in another thread)
File
Combines InputStreams

Objects from an
InputStream

OutputStream Types

Type of OutputStream

e ByteArrayOutputStream

e PipedOutputStream

e FileOutputStream

e ObjectOutputStream

OOP: The Java I/O System

Concrete Components

Reads From
Block of memory

Pipe (in another thread)
File
Objects to a OutputStream

10

FilterInputStream

e DataInputStream

= Full interface for reading built-in types
= For portable reading of data between different OS platforms

e BufferedInputStream

= Adds buffering to the stream (do this by default)
e LineNumberInputStream

= Only adds line numbers
e PushbackInputStream

= One-character push pack for scanners (lexers)

Concrete Decorators

OOP: The Java I/O System

11

FilterOutputStream

e DataOutputStream
= Full interface for writing built-in types
= For portable writing of data between different OS platforms
= Example: System.out.println

e PrintStream

= Allows primitive formatting of data for display (not printf!)
= Not for storage use DataOutputStream for this

e BufferedOutputStream
= Adds buffering to output (do this by default!)

Concrete Decorators

OOP: The Java I/O System

12

OutputStream, Example

import java.io.*; // [Source: java.sun.com]
public class DataIODemo ({
public static void main(String[] args) throws IOException {
// where to write to
DataOutputStream out =
new DataOutputStream (
new FileOutputStream("invoicel.txt"))

// alternative also using a buffer decorator
DataOutputStream out =
new DataOutputStream(
new BufferedOutputStream (
new FileOutputStream("invoicel.txt")))

OOP: The Java I/O System 13

OutputStream, Example, cont.

import java.io.*; // [Source: java.sun.com]
public class DataIODemo ({
public static void main(String[] args) throws IOException {

double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };
int[] units = { 12, 8, 13, 29, 50 };
String[] descs = { "Java T-shirt",
"Java Mug",
"Duke Juggling Dolls",
"Java Pin",
"Java Key Chain" };
for (int 1 = 0; i < prices.length; i ++) {
out.writeDouble (prices|[i])

out.writeChar('\t'); // add a tab
out.writeInt (units[i]) ;
out.writeChar('\t'); // add a tab
out.writeChars (descs|[i]) ;
out.writeChar('\n') ; // add a newline

}

out.close() ;

OOP: The Java I/O System

InputStream, Example

// read it in again
DataInputStream in =
new DataInputStream (
new FileInputStream("invoicel.txt"));

// alternative also using a buffer decorator
DataInputStream in =
new DataInputStream (
new BufferedInputStream (
new FileInputStream("invoicel.txt")))

double price;

int unit;
StringBuffer desc;
double total = 0.0;

OOP: The Java I/O System 15

InputStream, Example, cont.

try {
while (true) {
price = in.readDouble() ;

in.readChar () ; // throws out the tab
unit = in.readInt();

in.readChar() ; // throws out the tab
char chr;

desc = new StringBuffer (20) ;
char lineSep =
System.getProperty("line.separator") .charAt(0) ;
while ((chr = in.readChar()) '= lineSep)
desc. append (chr) ;
System.out.println("You've ordered " +
unit + " units of " +
desc + " at $" + price);
total = total + unit * price;

}
} catch (EOFException e) {

}
System.out.println("For a TOTAL of: $" + total);

in.close() ;

OOP: The Java I/O System 16

Reader and Writer Classes

e Added in Java 1.1

e Not meant to replace InputStream and OutputStream
 Internationalization Unicode support

o Efficiency, designed to solved efficiency problems

e Structured m class hierarchies similar to the InputStream and
OutputStream hierarchies

= Are also using the decorator design pattern

OOP: The Java I/O System

17

Reader Class Hierarchy

—(_ BufferedReader H LineMumberReader ::-

— CharArravReader '

InputhtreamBeader — FileReader i
C Reader)—_C
—(FilterReddsr H PushbaLkRedader }

— PipedReader '
- StringReader i

e Reader, the abstract component root in decorator pattern
e BufferedReader, ctc. the concrete components

e FilterReader, the abstract decorator

e PushbackReader, concrete decorators

[Source: java.sun.com]
OOP: The Java I/O System

Writer Class Hierarchy

—[Bufferedwriter }

—. CharArraywriter ',
{- " -, —(: OuputStreamBeader FileWriter
riter 3 C_)

—(Filterwriter :'J

—. Pipedariter i

— Stringwriter i
—(: Filterwriter :‘;

[Source: java.sun.com]

e Writer, the abstract component root in decorator pattern
e BufferedWriter, etc. the concrete components

e FilterWriter, the abstract decorator

e No concrete decorators

OOP: The Java I/O System

Reader and Writer Types

e Transport to and from mam memory
= CharArrayReader, CharArrayWriter
= StringReader, StringWriter

e Transport to and from pipelines (networking)
= PipedReader, PipedWriter

e Transport to and from files
= FileReader, FileWriter

e DataOutputStream unaltered from Java 1.0 to 1.1

OOP: The Java I/O System

20

Character Based Streams

e InputStreamReader

= Reads platform characters and delivers Unicode characters to the Java
program.

e OutputStreamWriter
= Writes Unicode characters to platform dependent characters.

e PrintWriter

= Writes Java primitive data types to file.

OOP: The Java I/O System

21

FileReader and FileWriter, Example

import java.io.¥*;

public class Copy {
public static void main(String[] args) throws IOException

{

FileReader in = new FileReader (new File(args[0])) ;s
FileWriter out = new FileWriter (new File (args[1l]));
int c;

do{
c = in.read() ;
if(c '= -1) {
out.write(c) ;
}
} while (c '= -1);

in.close() ;
out.close() ;

OOP: The Java I/O System 22

Binary vs. Character Based I/O Overview

e InputStream
e OutputStream

e FilelnputStream

e FileOutputStream

o StringBufferedInputStream
e N/A

e ByteArraylnputStream

e ByteArrayOutputStream

e PipedInputStream

e PipedOutputStream

OOP: The Java I/O System

Reader
convert: InputStreamReader

Writer
convert: OutputStreamWriter

FileReader

FileWriter

StringReader (better name)
StringWriter
CharArrayReader
CharArrayWriter
PipedReader

PipedWriter

23

Binary vs. Character Filter Overview

e FilterlnputStream
e FilterOutputStream
o BufferedInputStream

e BufferedOutputStream
e DatalnputStream

e PrintStream
e LmeNumberlnputStream
e PushbackInputStream

OOP: The Java I/O System

FilterReader
FilterWriter (abstract class)

BufferedReader
(has a readle())

BufteredWriter

Use DatalnputStream or
BufferedReader

PrintWriter

LineNumberReader
PushbackReader

24

Representing the File System

e File systems varies between operating system, 1.€.,
= Path separators
= Permissions in Unix
= Directories on the Mac
= Drive letters on Windows

e Needs an abstraction to hide the differences
= To make Java program platform independent.

OOP: The Java I/O System

25

The File Class

o Refers to one or more file names, 1.€., not a handle to a file
= Composite design pattern

e To get an array of file names. Call the 1ist () method.

OOP: The Java I/O System

26

The Composite Pattern, Again

Component «

operation ()
add ()
remove ()
getChild()

*

Leaf Composite —~

operation () operation() for all c l? children§
c.operation() ;

add ()
remove ()

getChild()

children

OOP: The Java I/O System

The File Class, Example

import java.io.¥*;
public class DirectoryList {
public static void main(String[] args) throws IOException({
File dir = new File(args[0]);

if (dir.isDirectory () == false) {
if (dir.exists () == false)
System.out.println ("There is no such dir!");
else

System.out.println("That file is not a dir.");
}
else {
String[] files = dir.list();
System.out.println
("Files in dir \"" 4+ dir + "\":");
for (int 1 = 0; i < files.length; i++)
System.out.println(" " + files[i]) ;

}

OOP: The Java I/O System

28

Object Serialization

e Very hard to do m other programming languages!!!
e Class must implement the Serializable interface

e Uses

= QOutput: ObjectOutputStream
¢ writeObject ()

= Input: ObjectInputStream
¢ readObject ()

o All relevant parts (the web of object) are serialized.

o Lightweight persistence
= used 1n RMI (send objects across a network)
= used 1in JavaBeans

OOP: The Java I/O System

29

Object Serialization, Example

// Write an object to disk
ObjectOutputStream out =
new ObjectOutputStream (
new FileOutputStream("mycars.dat")) ;

Car myToyota = new Car();
out.writeObject (myToyota) ;

// Read an object from disk
ObjectInputStream in =
new ObjectInputStream (
new FileInputStream('"mycars.dat"))
Car myToyota = (Car)in.readObject() ;

OOP: The Java I/O System

30

Summary

e Streams a large class hierarchy for mput and output.
= The decorator pattern 1s the key to understanding it

e The decorator design pattern may seem strange
= Very flexible, but requires extra coding in clients.

e There 1s no C-like printf functionality
= This is annoying

e For objects to live between program mvocations use the
Serializable mterface.

e java.nio packages goal speed
= Look at 1t 1f you needed 1t 1n your projects

OOP: The Java I/O System

31

FilterStream, Example

import java.io.¥*;

class StreamFilterExample{
public static void main(String[] args) throws IOException {
DataInputStream din = new DatalInputStream (
new BufferedInputStream (
new FileInputStream(
new File ("numbers.dat"))))

int 1i;

boolean b;

i = din.readInt|();

b = din.readBoolean() ;

System.out.println("1 =" + 1 + ". b=" + b);
din.close() ;

OOP: The Java I/O System

32

