
OOP: Introduction 1

Introduction to Object-Oriented Programming
• Objects and classes
• Abstract Data Types (ADT)
• Encapsulation and information hiding
• Aggregation
• Inheritance and polymorphism

OOP: Introduction 2

Pure Object-Oriented Languages
Five rules [Source: Alan Kay]:

• Everything in an object.
• A program is a set of objects telling each other what to do by

sending messages.
• Each object has its own memory (made up by other objects).
• Every object has a type.
• All objects of a specific type can receive the same messages.

Java breaks some of these rules in the name of efficiency.

OOP: Introduction 3

The Object Concept
• An object is an encapsulation of data.

• An object has
 identity (a unique reference),
 state, also called characteristics
 behavior

• An object is an instance of an abstract data type.
• An abstract data type is implemented via a class.

OOP: Introduction 4

Abstract Data Type (ADT)
• An ADT is a collection of objects (or values) and a

corresponding set of methods.
• An ADT encapsulates the data representation and makes data

access possible at a higher level of abstraction.

• Example 1: A set of vehicles with operations for starting,
stopping, driving, get km/liter, etc..

• Example 2: A time interval, start time, end time, duration,
overlapping intervals, etc.

OOP: Introduction 5

Encapsulation and Information Hiding
• Data can be encapsulated such that it is invisible to the "outside

world".
• Data can only be accessed via methods.

Data

Function

Function

Function

Data

Method

Method

Method

ADTProcedural

send
message

OOP: Introduction 6

Encapsulation and Information Hiding, cont.
• What the "outside world" cannot see it cannot depend on!
• The object is a "fire-wall" between the object and the "outside

world".
• The hidden data and methods can be changed without affecting

the "outside world".

Hidden data and methods

Client interface

Visible data and methodsAn object

OOP: Introduction 7

Class vs. Object
Class
• A description of the

common properties of a
set of objects.

• A concept.
• A class is a part of a

program.

• Example 1: Person

• Example 2: Album

Object
• A representation of the

properties of a single
instance.

• A phenomenon.
• An object is part of data

and a program execution.

• Example 1: Bill Clinton,
Bono, Viggo Jensen.

• Example 2: A Hard Day's
Night, Joshua Tree, Rickie
Lee Jones.

OOP: Introduction 8

Type and Interface
• An object has type and an interface.

Account
 balance()
 withdraw()
 deposit()

Type

Interface

• To get an object Account a = new Account()
• To send a message a.withdraw()

OOP: Introduction 9

Instantiating Classes
• An instantiation is a mechanism where objects are created from

a class.
• Always involves storage allocation for the object.
• A mechanism where objects are given an initial state.

Static Instantiating
• In the declaration part of a

program.
• A static instance is implicitly

created

Dynamic Instantiating
• In the method part of a

program.
• A dynamic instance is

created explicitly with a
special command.

OOP: Introduction 10

Interaction between Objects
• Interaction between objects happens by messages being send.
• A message activates a method on the calling object.

• An object O1 interacts with another object O2 by calling a
method on O2 (must be part of the client interface).
 “O1 sends O2 a message”

• O1 and O2 must be related to communicate.
• The call of a method corresponds to a procedure call in a non-

object-oriented language such as C or Pascal.

O1 O2

O3

message

messagemessage

OOP: Introduction 11

Phenomenon and Concept
• A phenomenon is a thing in the “real” world that has individual

existence.
• A concept is a generalization, derived from a set of phenomena

and based on the common properties of these phenomena.

• Characteristics of a concept
 A name
 Intension, the set of properties of the phenomenon
 Extension, the set of phenomena covered by the concept.

OOP: Introduction 12

Classification and Exemplification
• A classification is a description of which phenomena that

belongs to a concept.
• An exemplification is a phenomenon that covers the concept

Concept

Phenomenon

classification exemplification

OOP: Introduction 13

Aggregation and Decomposition
• An aggregation consists of a number of (sub-)concepts which

collectively is considered a new concept.
• A decomposition splits a single concept into a number of

(sub-)concepts.

Concept

Concept ConceptConcept
decomposition

Concept ConceptConcept

Concept
aggregation

OOP: Introduction 14

Aggregation and Decomposition, Example
• Idea: make new objects by combining existing objects.
• Reusing the implementation!

Car
start()
drive()
Engine
Gearbox
Doors[4]

Engine
start()
stop()
Gearbox
up()
down()
Door

open()
close()

new class existing classes

OOP: Introduction 15

Generalization and Specialization
• Generalization creates a concept with a broader scope.
• Specialization creates a concept with a narrower scope.
• Reusing the interface!

Concept A

Concept B

specialization

Concept C

Concept D

generalization

Vehicle

Car Truck

Hatchback Station car Sedan Pickup

OOP: Introduction 16

Generalization and Specialization, Example
• Inheritance: get the interface from the general class.
• Objects related by inheritance are all of the same type.

Shape
 draw()
 resize()

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()

Square
 draw()
 resize()

OOP: Introduction 17

Code Example

• Polymorphism: One piece of code works with all shape objects.
• Dynamic binding: How polymorphism is implemented.

void doSomething(Shape s){
 s.draw(); // “magically” calls on specific class
 s.resize();
}
Circle c = new Circle();
Line l = new Line();
Rectangle r = new Rectangle();

doSomething(c); // dynamic binding
doSomething(l);
doSomething(r);

OOP: Introduction 18

Structuring by Program or Data?
• What are the actions of the program vs. which data does the

program act on.
• Top-down: Stepwise program refinement
• Bottom-up: Focus on the stable data parts then add methods

• Object-oriented programming is bottom-up. Programs are
structure with outset in the data.
 C and Pascal programs are typically implemented in a more top-down

fashion.

OOP: Introduction 19

Java Program Structure

method body

method header

// comment on the class
public class MyProg {
 String s = ”Viggo”;

 /**
 * The main method (comment on method)
 */
 public static void main (String[] args){
 // just write some stuff
 System.out.println ("Hello World"); }
}

variable

OOP: Introduction 20

Java Class Example Car
/** A simple class modeling a car. */
public class Car {
 // instance variables
 private String make; private String model;
 private double price;
 // String representation of the car
 public Car(String m, String mo, double p) {
 make = m; model = mo; price = p;
 }
 // String representation of the car
 public String toString() {
 return "make: " + make + " model: "
 + model + " price: " + price;
 }
}

OOP: Introduction 21

Byte Code vs. Executable

MyProg.java

Java Virtual Machine

Operating System

Java Class File
MyProg.class

Portable Byte Code

MyProg.cpp

Operating System

Executable myprog.exe

javac MyProg.java
gcc MyProg.cpp
-o myprog.exe

OOP: Introduction 22

History of Java
• 1990 Oak (interactive television, big failure)
• 1994 Java (for the Internet)

 Main feature: "Write Once, Run Any Where"
 => wrap the operating system so they all look the same

Designed for
• A fresh start (no backward compatibility)
• "Pure" OOP: C++ Syntax, Smalltalk style
• Improvements over C++ much harder to write a bad program
• Internet programming

 Very hard to create a virus
 Run in a web browser (and at the server)

• There is a speed issue (from Java 1.3 and up much better)

OOP: Introduction 23

Difference from C/C++
• Everything resides in a class

 variables and methods

• Garbage collection
• Error and exception handling handling
• No global variables or methods
• No local static variables
• No separation of declaration and implementation (no header

files).
• No explicit pointer operations (uses references)
• No preprocessor (but something similar)
• Has fewer "dark corners"
• Has a much larger standard library

OOP: Introduction 24

Summary
• Classes are "recipes" for creating objects
• All objects are instances of classes
• An ADT is implemented in a class

• Aggregation and decomposition
 “has-a” relationship

• Generalization and specialization
 “is-a” or “is-like-a” relationship

• Encapsulation
 Key feature of object-oriented programming
 Separation of interface from implementation
 It is not possible to access the private parts of an object

