
OOP: The Interface Concept 1

The Interface Concept
• Multiple inheritance
• Interfaces
• Four often used Java interfaces

 Iterator
 Cloneable
 Serializable
 Comparable

OOP: The Interface Concept 2

Multiple Inheritance, Example
• For the teaching assistant when

want the properties from both
Employee and Student.

Employee
 salary()
 degree()

Student
gpa()
courses()

Person
name()
cpr()

Teaching A.

OOP: The Interface Concept 3

Problems with Multiple Inheritance

• Name clash problem: Which
department does ta refers
to?

• Combination problem: Can
department from Employee
and Student be combined in
Teaching Assistant?

• Selection problem: Can you
select between department
from Employee and
department from Student?

• Replication problem: Should
there be two departments
in TeachingAssistent?

Employee

 department
Student

 department

Person
name()
cpr()

TeachingA.

ta = new TeachingAssistant();
ta.department;

OOP: The Interface Concept 4

Multiple Classifications

Object

Serializable CloneableRunnableComparable

Y

• Multiple and overlapping classification for the classes X and Y,
i.e.,
 class X is Runnable and Comparable
 class Y is Runnable, Serializable, and Cloneable

X

OOP: The Interface Concept 5

Java's interface Concept

Shape
 draw()
 resize()

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()

Square
 draw()
 resize()

implements

extends

Interface

OOP: The Interface Concept 6

Java's interface Concept, cont.

public interface Shape {
 double PI = 3.14; // static and final => upper case
 void draw(); // automatic public
 void resize(); // automatic public
}

public class Rectangle implements Shape {
 public void draw() {System.out.println ("Rectangle"); }
 public void resize() { /* do stuff */ }
}

public class Square extends Rectangle {
 public void draw() {System.out.println ("Square"); }
 public void resize() { /* do stuff */ }
}

OOP: The Interface Concept 7

Java's interface Concept
• An interface is a collection of method declarations.

 An interface is a class-like concept.
 An interface has no variable declarations or method bodies.

• Describes a set of methods that a class can be forced to
implement.

• An interface can be used to define a set of “constant”.
• An interface can be used as a type concept.

 Variable and parameter can be of interface types.

• Interfaces can be used to implement multiple inheritance like
hierarchies.

OOP: The Interface Concept 8

Java's interface Concept, cont.
interface InterfaceName {

// "constant" declarations
// method declarations

}

// inheritance between interfaces
interface InterfaceName extends InterfaceName {
 ...
}

// not possible
interface InterfaceName extends ClassName { ... }

// not possible
interface InterfaceName extends InterfaceName1, InterfaceName2
{
 ...
}

OOP: The Interface Concept 9

Java's interface Concept, cont.
// implements instead of extends
class ClassName implements InterfaceName {

...
}

// combine inheritance and interface implementation
class ClassName extends SuperClass implements InterfaceName
{

...
}
// multiple inheritance like again
class ClassName extends SuperClass

implements InterfaceName1, InterfaceName2 {
...

}

// multiple inheritance like
class ClassName implements InterfaceName1, InterfaceName2
{

...
}

OOP: The Interface Concept 10

Semantic Rules for Interfaces
• Type

 An interface can be used as a type, like classes
 A variable or parameter declared of an interface type is polymorph

 Any object of a class that implements the interface can be referred by the
variable

• Instantiation
 Does not make sense on an interface.

• Access modifiers
 An interface can be public or “friendly” (the default).
 All methods in an interface are default abstract and public.

 Static, final, private, and protected cannot be used.
 All variables (“constants”) are public static final by default

 Private, protected cannot be used.

OOP: The Interface Concept 11

Some of Java's Most used Interfaces
• Iterator

 To run through a collection of objects without knowing how the objects
are stored, e.g., in array, list, bag, or set.

 More on this in the lecture on the Java collection library.

• Cloneable
 To make a copy of an existing object via the clone() method on the

class Object.
 More on this topic in todays lecture.

• Serializable
 Pack a web of objects such that it can be send over a network or stored

to disk. An naturally later be restored as a web of objects.
 More on this in the lecture on Java's I/O system

• Comparable
 To make a total order on objects, e.g., 3, 56, 67, 879, 3422, 34234
 More on this topic in todays lecture.

OOP: The Interface Concept 12

The Iterator Interface
• The Iterator interface in the package java.util is a basic

iterator that works on collections.
package java.util;
public interface Iterator {
 // the full meaning is public abstract boolean hasNext()

boolean hasNext();
 Object next();

void remove(); // optional throws exception
}

// use an iterator
myShapes = getSomeCollectionOfShapes();
Iterator iter = myShapes.iterator();
while (iter.hasNext()) {
 Shape s = (Shape)iter.next(); // downcast
 s.draw();
}

OOP: The Interface Concept 13

The Cloneable Interface
• A class X that implements the Cloneable interface tells clients

that X objects can be cloned.
• The interface is empty, i.e., has no methods.
• Returns an identical copy of an object.

 A shallow copy, by default.
 A deep copy is often preferable.

• Prevention of cloning
 Necessary if unique attribute, e.g., database lock or open file reference.
 Not sufficient to omit to implement Cloneable.

 Subclasses might implement it.
 clone method should throw an exception:

 CloneNotSupportedException

OOP: The Interface Concept 14

The Cloneable Interface, Example
// Car example revisited
public class Car implements Cloneable{
 private String make;
 private String model;
 private double price;
 // default constructor
 public Car() {
 this("", "", 0.0);
 }
 // give reasonable values to instance variables
 public Car(String make, String model, double price){
 this.make = make;
 this.model = model;
 this.price = price;
 }
 // the Cloneable interface
 public Object clone(){
 return new Car(this.make, this.model, this.price);
 }
}

OOP: The Interface Concept 15

The Serializable Interface
• A class X that implements the Serializable interface tells

clients that X objects can be stored on file or other persistent
media.

• The interface is empty, i.e., has no methods.
public class Car implements Serializable {
 // rest of class unaltered
 snip
}
// write to and read from disk
import java.io.*;
public class SerializeDemo{
 Car myToyota, anotherToyota;
 myToyota = new Car("Toyota", "Carina", 42312);
 ObjectOutputStream out = getOutput();
 out.writeObject(myToyota);
 ObjectInputStream in = getInput();
 anotherToyota = (Car)in.readObject();
}

OOP: The Interface Concept 16

The Comparable Interface
• In the package java.lang.
• Returns a negative integer, zero, or a positive integer as this object

is less than, equal to, or greater than the specified object.

package java.lang;
public interface Comparable {
 int compareTo(Object o);
}

OOP: The Interface Concept 17

The Comparable Interface, Example
// IPAddress example revisited
public class IPAddress implements Comparable{

private int[] n; // here IP stored, e.g., 125.255.231.123
/** The Comparable interface */
public int compareTo(Object o){

IPAddress other = (IPAddress) o; // downcast
int result = 0;
for(int i = 0; i < n.length; i++){

if (this.getNum(i) < other.getNum(i)){
result = -1;
break;

}
if (this.getNum(i) > other.getNum(i)){

result = 1;
break;

}
}
return result;

}
}

OOP: The Interface Concept 18

Interface vs. Abstract Class
Interface
• Methods can be declared
• No method bodies
• “Constants” can be declared

• Has no constructors
• Multiple inheritance possible

• Has no top interface
• Multiple “parent” interfaces

Abstract Class
• Methods can be declared
• Method bodies can be defined
• All types of variables can be

declared
• Can have constructors
• Multiple inheritance not

possible
• Always inherits from Object
• Only one “parent” class

OOP: The Interface Concept 19

Interfaces and Classes Combined
• By using interfaces objects do not reveal which classes the belong

to.
 With an interface it is possible to send a message to an object without

knowing which class(es) it belongs. The client only know that certain
methods are accessible.

 By implementing multiple interfaces it is possible for an object to change
role during its life span.

• Design guidelines
 Use classes for specialization and generalization
 Use interfaces to add properties to classes.

OOP: The Interface Concept 20

Multiple Inheritance vs. Interface
Multiple Inheritance
• Declaration and definition is

inherited.
• Little coding to implement

subclass.
• Hard conflict can exist.
• Very hard to understand (C++

close to impossible).
• Flexible

Interface
• Only declaration is inherited.

• Must coding to implement an
interface.

• No hard conflicts.
• Fairly easy to understand.

• Very flexible. Interface totally
separated from
implementation.

OOP: The Interface Concept 21

Summary
• Purpose: Interfaces and abstract classes can be used for program

design, not just program implementation [Meyer pp 239 ff].
• Java only supports single inheritance.
• Java “fakes” multiple inheritance via interfaces.

 Very flexible because the object interface is totally separated from the
objects implementation.

OOP: The Interface Concept 22

The Cloneable Interface, Example 2
package geometric; // [Source: java.sun.com]
/** A cloneable Point */
public class Point extends java.awt.Point implements Cloneable
{

// the Cloneable interface
public Object clone(){

try {
return (super.clone()); // protected in Object

}
// must catch exception will be covered later
catch (CloneNotSupportedException e){

return null;
}

 }
 public Point(int x, int y){
 super(x,y);
 }
}

