
OOP: The Interface Concept 1

The Interface Concept
• Multiple inheritance
• Interfaces
• Four often used Java interfaces

 Iterator
 Cloneable
 Serializable
 Comparable

OOP: The Interface Concept 2

Multiple Inheritance, Example
• For the teaching assistant when

want the properties from both
Employee and Student.

Employee
 salary()
 degree()

Student
gpa()
courses()

Person
name()
cpr()

Teaching A.

OOP: The Interface Concept 3

Problems with Multiple Inheritance

• Name clash problem: Which
department does ta refers
to?

• Combination problem: Can
department from Employee
and Student be combined in
Teaching Assistant?

• Selection problem: Can you
select between department
from Employee and
department from Student?

• Replication problem: Should
there be two departments
in TeachingAssistent?

Employee

 department
Student

 department

Person
name()
cpr()

TeachingA.

ta = new TeachingAssistant();
ta.department;

OOP: The Interface Concept 4

Multiple Classifications

Object

Serializable CloneableRunnableComparable

Y

• Multiple and overlapping classification for the classes X and Y,
i.e.,
 class X is Runnable and Comparable
 class Y is Runnable, Serializable, and Cloneable

X

OOP: The Interface Concept 5

Java's interface Concept

Shape
 draw()
 resize()

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()

Square
 draw()
 resize()

implements

extends

Interface

OOP: The Interface Concept 6

Java's interface Concept, cont.

public interface Shape {
 double PI = 3.14; // static and final => upper case
 void draw(); // automatic public
 void resize(); // automatic public
}

public class Rectangle implements Shape {
 public void draw() {System.out.println ("Rectangle"); }
 public void resize() { /* do stuff */ }
}

public class Square extends Rectangle {
 public void draw() {System.out.println ("Square"); }
 public void resize() { /* do stuff */ }
}

OOP: The Interface Concept 7

Java's interface Concept
• An interface is a collection of method declarations.

 An interface is a class-like concept.
 An interface has no variable declarations or method bodies.

• Describes a set of methods that a class can be forced to
implement.

• An interface can be used to define a set of “constant”.
• An interface can be used as a type concept.

 Variable and parameter can be of interface types.

• Interfaces can be used to implement multiple inheritance like
hierarchies.

OOP: The Interface Concept 8

Java's interface Concept, cont.
interface InterfaceName {

// "constant" declarations
// method declarations

}

// inheritance between interfaces
interface InterfaceName extends InterfaceName {
 ...
}

// not possible
interface InterfaceName extends ClassName { ... }

// not possible
interface InterfaceName extends InterfaceName1, InterfaceName2
{
 ...
}

OOP: The Interface Concept 9

Java's interface Concept, cont.
// implements instead of extends
class ClassName implements InterfaceName {

...
}

// combine inheritance and interface implementation
class ClassName extends SuperClass implements InterfaceName
{

...
}
// multiple inheritance like again
class ClassName extends SuperClass

implements InterfaceName1, InterfaceName2 {
...

}

// multiple inheritance like
class ClassName implements InterfaceName1, InterfaceName2
{

...
}

OOP: The Interface Concept 10

Semantic Rules for Interfaces
• Type

 An interface can be used as a type, like classes
 A variable or parameter declared of an interface type is polymorph

 Any object of a class that implements the interface can be referred by the
variable

• Instantiation
 Does not make sense on an interface.

• Access modifiers
 An interface can be public or “friendly” (the default).
 All methods in an interface are default abstract and public.

 Static, final, private, and protected cannot be used.
 All variables (“constants”) are public static final by default

 Private, protected cannot be used.

OOP: The Interface Concept 11

Some of Java's Most used Interfaces
• Iterator

 To run through a collection of objects without knowing how the objects
are stored, e.g., in array, list, bag, or set.

 More on this in the lecture on the Java collection library.

• Cloneable
 To make a copy of an existing object via the clone() method on the

class Object.
 More on this topic in todays lecture.

• Serializable
 Pack a web of objects such that it can be send over a network or stored

to disk. An naturally later be restored as a web of objects.
 More on this in the lecture on Java's I/O system

• Comparable
 To make a total order on objects, e.g., 3, 56, 67, 879, 3422, 34234
 More on this topic in todays lecture.

OOP: The Interface Concept 12

The Iterator Interface
• The Iterator interface in the package java.util is a basic

iterator that works on collections.
package java.util;
public interface Iterator {
 // the full meaning is public abstract boolean hasNext()

boolean hasNext();
 Object next();

void remove(); // optional throws exception
}

// use an iterator
myShapes = getSomeCollectionOfShapes();
Iterator iter = myShapes.iterator();
while (iter.hasNext()) {
 Shape s = (Shape)iter.next(); // downcast
 s.draw();
}

OOP: The Interface Concept 13

The Cloneable Interface
• A class X that implements the Cloneable interface tells clients

that X objects can be cloned.
• The interface is empty, i.e., has no methods.
• Returns an identical copy of an object.

 A shallow copy, by default.
 A deep copy is often preferable.

• Prevention of cloning
 Necessary if unique attribute, e.g., database lock or open file reference.
 Not sufficient to omit to implement Cloneable.

 Subclasses might implement it.
 clone method should throw an exception:

 CloneNotSupportedException

OOP: The Interface Concept 14

The Cloneable Interface, Example
// Car example revisited
public class Car implements Cloneable{
 private String make;
 private String model;
 private double price;
 // default constructor
 public Car() {
 this("", "", 0.0);
 }
 // give reasonable values to instance variables
 public Car(String make, String model, double price){
 this.make = make;
 this.model = model;
 this.price = price;
 }
 // the Cloneable interface
 public Object clone(){
 return new Car(this.make, this.model, this.price);
 }
}

OOP: The Interface Concept 15

The Serializable Interface
• A class X that implements the Serializable interface tells

clients that X objects can be stored on file or other persistent
media.

• The interface is empty, i.e., has no methods.
public class Car implements Serializable {
 // rest of class unaltered
 snip
}
// write to and read from disk
import java.io.*;
public class SerializeDemo{
 Car myToyota, anotherToyota;
 myToyota = new Car("Toyota", "Carina", 42312);
 ObjectOutputStream out = getOutput();
 out.writeObject(myToyota);
 ObjectInputStream in = getInput();
 anotherToyota = (Car)in.readObject();
}

OOP: The Interface Concept 16

The Comparable Interface
• In the package java.lang.
• Returns a negative integer, zero, or a positive integer as this object

is less than, equal to, or greater than the specified object.

package java.lang;
public interface Comparable {
 int compareTo(Object o);
}

OOP: The Interface Concept 17

The Comparable Interface, Example
// IPAddress example revisited
public class IPAddress implements Comparable{

private int[] n; // here IP stored, e.g., 125.255.231.123
/** The Comparable interface */
public int compareTo(Object o){

IPAddress other = (IPAddress) o; // downcast
int result = 0;
for(int i = 0; i < n.length; i++){

if (this.getNum(i) < other.getNum(i)){
result = -1;
break;

}
if (this.getNum(i) > other.getNum(i)){

result = 1;
break;

}
}
return result;

}
}

OOP: The Interface Concept 18

Interface vs. Abstract Class
Interface
• Methods can be declared
• No method bodies
• “Constants” can be declared

• Has no constructors
• Multiple inheritance possible

• Has no top interface
• Multiple “parent” interfaces

Abstract Class
• Methods can be declared
• Method bodies can be defined
• All types of variables can be

declared
• Can have constructors
• Multiple inheritance not

possible
• Always inherits from Object
• Only one “parent” class

OOP: The Interface Concept 19

Interfaces and Classes Combined
• By using interfaces objects do not reveal which classes the belong

to.
 With an interface it is possible to send a message to an object without

knowing which class(es) it belongs. The client only know that certain
methods are accessible.

 By implementing multiple interfaces it is possible for an object to change
role during its life span.

• Design guidelines
 Use classes for specialization and generalization
 Use interfaces to add properties to classes.

OOP: The Interface Concept 20

Multiple Inheritance vs. Interface
Multiple Inheritance
• Declaration and definition is

inherited.
• Little coding to implement

subclass.
• Hard conflict can exist.
• Very hard to understand (C++

close to impossible).
• Flexible

Interface
• Only declaration is inherited.

• Must coding to implement an
interface.

• No hard conflicts.
• Fairly easy to understand.

• Very flexible. Interface totally
separated from
implementation.

OOP: The Interface Concept 21

Summary
• Purpose: Interfaces and abstract classes can be used for program

design, not just program implementation [Meyer pp 239 ff].
• Java only supports single inheritance.
• Java “fakes” multiple inheritance via interfaces.

 Very flexible because the object interface is totally separated from the
objects implementation.

OOP: The Interface Concept 22

The Cloneable Interface, Example 2
package geometric; // [Source: java.sun.com]
/** A cloneable Point */
public class Point extends java.awt.Point implements Cloneable
{

// the Cloneable interface
public Object clone(){

try {
return (super.clone()); // protected in Object

}
// must catch exception will be covered later
catch (CloneNotSupportedException e){

return null;
}

 }
 public Point(int x, int y){
 super(x,y);
 }
}

