The Interface Concept

e Multiple mheritance
e Interfaces

e Four often used Java interfaces
= Jterator
= Cloneable
= Serializable
= Comparable

OOP: The Interface Concept

Multiple Inheritance, Example

Person

name ()

cpr ()
A

Employee

Student

salary ()
degree ()

gpa ()

courses ()

*

*

Teaching A.

OOP: The Interface Concept

e For the teaching assistant when
want the properties from both
Employee and Student.

Problems with Multiple Inheritance

e Name clash problem: Which

Person
name () department does ta refers
CPrA() to?

\ | e Combination problem: Can
Employee | | Student department from Employee
department | department and Student be combined in

t } Teaching Assistant?

TeachingA. e Selection problem: Can you

select between department
from Employee and

ta = new TeachingAssistant(); department from Student?
ta.department;

e Replication problem: Should
there be two departments
in TeachingAssistent?

OOP: The Interface Concept

Multiple Classifications

Object
Comparable Runnable Serializable Cloneable
T A A ?
X Y

e Multiple and overlapping classification for the classes X and Y,
1.e.,
= class X 1s Runnable and Comparable
= class Y 1s Runnable, Serializable, and Cloneable

OOP: The Interface Concept

Java's interface Concept

Shape
draw () .
resize () Interface
A
implements
Circle Line Rectangle
draw () draw () draw ()
resize () resize () resize ()
ext%nds
Square
draw ()
resize ()

OOP: The Interface Concept

Java's interface Concept, cont.

public interface Shape {
double PI = 3.14; // static and final => upper case
void draw () ; // automatic public
void resize() ; // automatic public

public class Rectangle implements Shape ({
public void draw() {System.out.println ("Rectangle"); }
public void resize() { /* do stuff */ }

public class Square extends Rectangle {
public void draw() {System.out.println ("Square"),; }
public void resize() { /* do stuff */ }

OOP: The Interface Concept

Java's interface Concept

e An interface is a collection of method declarations.
= An interface is a class-like concept.
= An interface has no variable declarations or method bodies.

e Describes a set of methods that a class can be forced to
implement.

e An interface can be used to define a set of “constant”.

e An interface can be used as a type concept.
= Variable and parameter can be of interface types.

 Interfaces can be used to implement multiple inheritance like
hierarchies.

OOP: The Interface Concept

Java's interface Concept, cont.

interface InterfaceName {
// "constant" declarations
// method declarations

// inheritance between interfaces
interface InterfaceName extends InterfaceName {

}

// not possible
interface InterfaceName extends InterfaceNamel, InterfaceNameZ’Z

{
}

// not possible
interface InterfaceName extends ClassName { ... }

OOP: The Interface Concept

Java's interface Concept, cont.

// implements instead of extends
class ClassName implements InterfaceName {

}

// multiple inheritance like
class ClassName implements InterfaceNamel, InterfaceNameZ

{
}

// combine inheritance and interface implementation
class ClassName extends SuperClass implements InterfaceName

{
}

// multiple inheritance like again
class ClassName extends SuperClass
implements InterfaceNamel, InterfaceNamelZ {

}

OOP: The Interface Concept

Semantic Rules for Interfaces
o Type

= An interface can be used as a type, like classes

= A variable or parameter declared of an interface type 1s polymorph

* Any object of a class that implements the interface can be referred by the
variable

e Instantiation
= Does not make sense on an interface.

e Access modifiers
= An interface can be public or “friendly” (the default).
= All methods in an interface are default abstract and public.
¢ Static, final, private, and protected cannot be used.

= All variables (“constants”) are public static final by default
+ Private, protected cannot be used.

OOP: The Interface Concept

10

Some of Java's Most used Interfaces

e ITterator

= To run through a collection of objects without knowing how the objects
are stored, e.g., in array, list, bag, or set.

= More on this 1n the lecture on the Java collection library.
e Cloneable

= To make a copy of an existing object via the clone () method on the
class Object.

= More on this topic in todays lecture.
e Serializable

= Pack a web of objects such that it can be send over a network or stored
to disk. An naturally later be restored as a web of objects.

= More on this in the lecture on Java's I/O system
o Comparable

= To make a total order on objects, e.g., 3, 56, 67, 879, 3422, 34234
= More on this topic in todays lecture.

OOP: The Interface Concept 11

The Iterator Interface

e The Iterator mterface n the package java.util is a basic

iterator that works on collections.

package java.util;
public interface Iterator {
// the full meaning is public abstract boolean hasNext ()

boolean hasNext () ;

Object next();
void remove(); // optional throws exception

// use an iterator
myShapes = getSomeCollectionOfShapes() ;

Iterator iter = myShapes.iterator();

while (iter.hasNext()) {
Shape s = (Shape)iter.next(); // downcast

s.draw () ;

}

OOP: The Interface Concept

12

The Cloneable Interface
o A class X that implements the Cloneable interface tells clients
that X objects can be cloned.

e The interface 1s empty, 1.e., has no methods.

e Returns an 1dentical copy of an object.
= A shallow copy, by default.
= A deep copy 1s often preferable.

e Prevention of cloning
= Necessary 1f unique attribute, e.g., database lock or open file reference.
= Not sufficient to omit to implement Cloneable.

¢ Subclasses might implement it.

= clone method should throw an exception:
¢ CloneNotSupportedException

OOP: The Interface Concept

13

The Cloneable Interface, Example

// Car example revisited
public class Car implements Cloneable({
private String make;
private String model;
private double price;
// default constructor
public Car () {
this("", "", 0.0);
}
// give reasonable values to instance variables
public Car (String make, String model, double price) {
this.make = make;
this.model = model;
this.price = price;
}
// the Cloneable interface
public Object clone() {
return new Car (this.make, this.model, this.price);

}
}

OOP: The Interface Concept 14

The Serializable Interface

e A class X that implements the Serializable interface tells

clients that X objects can be stored on file or other persistent
media.

e The interface 1s empty, 1.e., has no methods.

public class Car implements Serializable {
// rest of class unaltered

}

// write to and read from disk
import java.io.¥*;
public class SerializeDemo{

Car myToyota, anotherToyota;

myToyota = new Car("Toyota", "Carina", 42312);

ObjectOutputStream out = getOutput() ;
out.writeObject (myToyota) ;

ObjectInputStream in = getInput();
anotherToyota = (Car)in.readObject()

}

OOP: The Interface Concept

15

The Comparable Interface

e In the package java.lang.

e Returns a negative mteger, zero, or a positive mteger as this object
is less than, equal to, or greater than the specified object.

package java.lang;
public interface Comparable ({
int compareTo (Object o) ;

}

OOP: The Interface Concept

16

The Comparable Interface, Example

// IPAddress example revisited
public class IPAddress implements Comparable{
private int[] n; // here IP stored, e.g., 125.255.231.123

/** The Comparable interface */
public int compareTo (Object o) {
IPAddress other = (IPAddress) o; // downcast
int result = 0;
for(int i = 0; i < n.length; i++) {
if (this.getNum(i) < other.getNum(i)) {
result = -1;
break;
}
if (this.getNum(i) > other.getNum(i)) {
result = 1;
break;

}
}

return result;

}

OOF}: The Interface Concept

17

Interface vs

Interface

Methods can be declared
No method bodies
“Constants” can be declared

Has no constructors
Multiple inheritance possible

Has no top interface
Multiple “parent” interfaces

OOP: The Interface Concept

. Abstract Class
Abstract Class

Methods can be declared
Method bodies can be defined

All types of variables can be
declared

Can have constructors

Multiple inheritance not
possible

Always mherits from Object
Only one “parent” class

18

Interfaces and Classes Combined

* By using mterfaces objects do not reveal which classes the belong
to.

= With an interface it 1s possible to send a message to an object without
knowing which class(es) 1t belongs. The client only know that certain
methods are accessible.

= By implementing multiple interfaces it is possible for an object to change
role during its life span.

e Design guidelines
= Use classes for specialization and generalization
= Use interfaces to add properties to classes.

OOP: The Interface Concept

19

Multiple Inheritance vs. Interface

Multiple Inheritance

e Declaration and definition 1s
mherited.

e Little coding to implement
subclass.

e Hard conflict can exist.

e Very hard to understand (C++
close to impossible).

e Flexible

OOP: The Interface Concept

Interface

Only declaration 1s mherited.

Must coding to implement an
Iinterface.

No hard conflicts.
Fairly easy to understand.

Very flexible. Interface totally
separated from
implementation.

20

Summary

e Purpose: Interfaces and abstract classes can be used for program
design, not just program mimplementation [Meyer pp 239 ff].

e Java only supports single inheritance.

o Java “fakes” multiple mheritance via interfaces.

= Very flexible because the object interface 1s totally separated from the
objects implementation.

OOP: The Interface Concept

21

The Cloneable Interface, Example 2

package geometric; // [Source: java.sun.com]

/** A cloneable Point */
public class Point extends java.awt.Point implements Cloneable

{
// the Cloneable interface
public Object clone() {

try {
return (super.clone()); // protected in Object

}

// must catch exception will be covered later
catch (CloneNotSupportedException e) {

return null;
}

}
public Point(int x, int y) {

super (x,y) ;

}

22

OOP: The Interface Concept

