
OOP: Inheritance 1

Inheritance
• Reuse
• Extension and intension
• Class specialization and class extension
• Inheritance
• Inheritance and methods
• Method redefinition
• The final keyword
• An widely used inheritance example the composite design pattern

OOP: Inheritance 2

How to Reuse Code?
• Write the class completely from scratch (one extreme).

 What some programmers always want to do!

• Find an existing class that exactly match your requirements
(another extreme).
 The easiest for the programmer!

• Built it from well-tested, well-documented existing classes.
 A very typical reuse, called composition reuse!

• Reuse an existing class with inheritance
 Requires more knowledge than composition reuse.
 Today's main topic.

OOP: Inheritance 3

Class Specialization
• In specialization a class is considered an Abstract Data Type

(ADT).
• The ADT is defined as a set of coherent values on which a set of

operations are defined.

• A specialization of a class C1 is a new class C2 where
 The instances of C2 are a subset of the instances of C1.
 Operations defined of C1 are also defined on C2.
 Operations defined on C1 can be redefined in C2.

OOP: Inheritance 4

• The extension of a specialized class C2 is a subset of the
extension of the general class C1.

• “is-a” Relationship
 A C2 object is a C1 object (but not vice-versa).
 There is an “is-a” relationship between C1 and C2.
 We will later discuss a has-a relationship

Extension of C1

Extension of C2

Extension

OOP: Inheritance 5

Class Specialization, Example
Shape

 draw()
 resize()

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()

Square
 draw()
 resize()

Shape

Circle Line

Rectangle
Square

Should the extensions
be overlapping?

OOP: Inheritance 6

Class Extension
• In class extension a class is considered a module.
• A module is a syntactical frame where a number of variables and

method are defined, found in, e.g., Modula-2 and PL/SQL.
• Class extension is important in the context of reuse. Class

extension makes it possible for several modules to share code, i.e.,
avoid to have to copy code between modules.

• A class extension of a class C3 is a new class C4
 In C4 new properties (variables and methods) are added.
 The properties of C3 are also properties of C4.

OOP: Inheritance 7

Intension
• The intension of an extended class C4 is a superset of the

intension of C3.

Intension of C4

Intension of C3

OOP: Inheritance 8

Inheritance
• Inheritance is a way to derive a new class from an existing class.

• Inheritance can be used for
 Specializing an ADT (i.e., class specialization).
 Extending an existing class (i.e., class extension).
 Often both class specialization and class extension takes place when a

class inherits from an existing class.

OOP: Inheritance 9

Module Based vs. Object Oriented

• Class C4 is created by copying C3.
• There are C3 and C4 instances.
• Instance of C4 have all C3 properties.
• C3 and C4 are totally separated.
• Maintenance of C3 properties must be

done two places
• Languages, e.g., Ada, Modula2,

PL/SQL

C3

C4

C3

C4

• Class C4 inherits from C3.
• There are C3 and C4 instances.
• Instance of C4 have all C3 properties.
• C3 and C4 are closely related.
• Maintenance of C3 properties must be

done in one place.
• Languages, C++, C#, Java, Smalltalk

Module based Object oriented

OOP: Inheritance 10

Composition vs. Inheritance
Shape

 draw()
 resize()

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()
Square

 draw()
 resize()

Car
 start()
 drive()
 Engine
 Gearbox
 Doors[4]

X
a()
b()

Y
c()
d()
e()

Pure Composition

Pure Inheritance
(substitution)

Class extension

OOP: Inheritance 11

Inheritance in Java

Subclass
 method1()
 method3()

Superclass
 method1()
 method2()

class Subclass extends Superclass {
// <class body>

}

OOP: Inheritance 12

public class Vehicle {
private String make;
private String model;
public Vehicle() { make = ""; model = "";}

 public String toString() {
 return "Make: " + make + " Model: " + model;
 }

public String getMake(){ return make; }
public String getModel() { return model; }

}
public class Car extends Vehicle {

private double price;
 public Car() {

super(); // called implicitly can be left outs
price = 0.0;

}
public String toString() { // method overwrites

return "Make: " + getMake() + " Model: " + getModel()
+ " Price: " + price;

}
public double getPrice(){ return price; }

}

Inheritance Example

Car
 getPrice()

Vehicle
toString()
getMake()
getModel()

OOP: Inheritance 13

Class Specialization and Class Extension
• The Car type with respect to extension and intension

Class Extension
• Car is a class extension of
Vehicle.

• The intension of Car is
increased with the variable
price.

Class Specialization
• Car is a class specialization

of Vehicle.
• The extension of Car is

decreased compared to the
class Vehicle.

OOP: Inheritance 14

Instatianting and Initialization

• The Square, that inherits from Rectangle, that inherits from Shape
is instantiated as a single object, with properties from the three
classes Square, Rectangle, and Shape.

Shape

Circle Line Rectangle

Square

Shape
Properties

Rectangle
Properties

Square
Properties

Square Instance

OOP: Inheritance 15

Inheritance and Constructors
• Constructors are not inherited.
• A constructor in a subclass must initialize variables in the class

and variables in the superclass.
 What about private fields in the superclass?

• It is possible to call the superclass' constructor in a subclass.
 Default superclass constructor called if exists
public class Vehicle{

private String make, model;
public Vehicle(String ma, String mo) {

make = ma; model = mo;
}

}
public class Car extends Vehicle{

private double price;
 public Car() {
 // System.out.println("Start"); // not allowed

super(“”, “”); // must be called
price = 0.0;

}
}

OOP: Inheritance 16

Order of Instantiation and Initialization
• The storage allocated for the object is initialized to binary zero

before anything else happens.
• Static initialization in the base class then the derived classes.
• The base-class constructor is called. (all the way up to Object).
• Member initializers are called in the order of declaration.
• The body of the derived-class constructor is called.

OOP: Inheritance 17

Inheritance and Constructors, cont.
class A {

public A(){
System.out.println("A()");
// when called from B the B.doStuff() is called
doStuff();

}
public void doStuff(){System.out.println("A.doStuff()"); }

}
class B extends A{

int i = 7;
public B(){System.out.println("B()");}
public void doStuff(){System.out.println("B.doStuff() " + i);
}

}
public class Base{

public static void main(String[] args){
B b = new B();
b.doStuff();

}
}

//prints
A()
B.doStuff() 0
B()
B.doStuff() 7

OOP: Inheritance 18

Interface to Subclasses and Clients

1. The properties of C3 that clients
can use.

2. The properties of C3 that C4 can
use.

3. The properties of C4 that clients
can use.

4. The properties of C4 that
subclasses of C4 can use.

C3

C4

1

3
2

4

OOP: Inheritance 19

protected, Revisited
• It must be possible for a subclass to access properties in a

superclass.
 private will not do, it is to restrictive
 public will not do, it is to generous

• A protected variable or method in a class can be accessed by
subclasses but not by clients.

• Which is more restrictive protected or package access?

• Change access modifiers when inheriting
 Properties can be made “more public”.
 Properties cannot be made “more private”.

OOP: Inheritance 20

protected, Revisited

Shape

Circle Line Rectangle

Square

private
protectedClient

public

OOP: Inheritance 21

protected, Example
public class Vehicle1 {

protected String make;
protected String model;
public Vehicle1() { make = ""; model = "";}

 public String toString() {
 return "Make: " + make + " Model: " + model;
 }

public String getMake(){ return make;}
public String getModel() { return model;}

}
public class Car1 extends Vehicle1 {

private double price;
 public Car1() {

price = 0.0;
}
public String toString() {

return "Make: " + make + " Model: " + model
+ " Price: " + price;

}
public double getPrice(){ return price; }

}

Car
 getPrice()

Vehicle
toString()
getMake()
getModel()

OOP: Inheritance 22

Class Hierarchies in General
• Class hierarchy: a set of classes related by inheritance.

• Possibilities with inheritance
 Cycles in the inheritance hierarchy is not allowed.
 Inheritance from multiple superclass may be allowed.
 Inheritance from the same superclass more than once may be allowed.

A

B

C D

A

B

C

A

D

B C

A

B C

• “Multiple and repeated inheritance is a basic feature of Eiffel.”
[Meyer pp. 62].

OOP: Inheritance 23

Class Hierarchies in Java
• Class Object is the root of the inheritance hierarchy in Java.
• If no superclass is specified a class inherits implicitly from
Object.

• If a superclass is specified explicitly the subclass will inherit
Object.

Shape

Circle Line Rectangle

Square

Object

OOP: Inheritance 24

Method/Variable Redefinition
• Redefinition: A method/variable in a subclass has the same as a

method/variable in the superclass.
• Redefinition should change the implementation of a method, not

its semantics.
• Redefinition in Java class B inherits from class A if

 Method: Both versions of the method is available in instances of B. Can
be accessed in B via super.

 Variable: Both versions of the variable is available in instances of B. Can
be accessed in B via super.

• “There are no language support in Java that checks that a method
redefinition does not change the semantics of the method. In the
programming language Eiffel assertions (pre- and post conditions)
and invariants are inherited.” [Meyer pp. 228].

OOP: Inheritance 25

Upcasting
• Treat a subclass as its superclass

Car
 getPrice()

Vehicle
toString()
getMake()
getModel()

U
pc

as
t

// example
Car c = new Car();
Vehicle v;
v = c; // upcast
v.toString(); // okay
v.getMake(); // okay
//v.getPrice(); // not okay

• Central feature in object-oriented program (covered in next
lecture)

• Should be obvious that a method/field cannot be made more
“private” in a subclass when redefining method/field.
 However it can be made more public.

OOP: Inheritance 26

The Ikea Component List Problem
• A part can be just the part itself (a brick).
• A part can consists of part that can consists of parts and so on. As

an example a garden house consists of the following parts
 Garden house

 walls
 door

▴ knob
▴ window

– frame
– glass

 window
▴ frame
▴ glass

 floor

• Regardless whether it is a simple or composite part we just want
to print the list.

OOP: Inheritance 27

Design of The Ikea Component List

List

Component
 print()
 add()
 remove()

Single
 print()

components

for all components c
c.print() print()

 add()
 remove()

Client

use

• The composite design pattern
 Used extensively when buidling Java GUIs (AWT/Swing)

OOP: Inheritance 28

 Implementation of The Ikea Component List
public class Component{

public void print(){
 System.out.println("Do not call print on me!");}

public void add(Component c){
System.out.println("Do not call add on me!");}

}
public class Single extends Component{

private String name;
public Single(String n){ name = n; }
public void print(){System.out.println(name);}

}
public class List extends Component{

private Component[] comp; private int count;// uses parent class
public List(){ comp = new Component[100]; count = 0; }
public void print(){ for(int i = 0; i <= count - 1; i++){

comp[i].print();
 }

}
public void add(Component c){ comp[count++] = c;}

}

OOP: Inheritance 29

 Implementation of The Ikea Component List
public class ComponentClient{ // Ikea
 public Component makeWindow(){ // helper function

Component win = new List();
win.add(new Single("frame")); win.add(new Single("glass"));
return win;

 }
 public Component makeDoor(){ // helper function

Component door = new List();
door.add(new Single("knob")); door.add(makeWindow());
return door;

 }
 public Component makeGardenHouse(){ // helper function

Component h = new List();
h.add(makeDoor()); h.add(makeWindow()); // etc
return h;

 }
 public static void main(String[] args){

ComponentClient c = new ComponentClient();
Component brick = new Single("brick");
Component myHouse = c.makeGardenHouse();
brick.print();
myHouse.print();

}

OOP: Inheritance 30

Evaluation of The Ikea Component List
• Made List and Single classes look alike when printing from

the client's point of view.
 The main objective!

• Can make instances of Component class, not the intension
 Can call dummy add/remove methods on these instances

• Can call add/remove method of Single objects, not the
intension.

• Fixed length, not the intension.
• Nice design!

OOP: Inheritance 31

The final Keyword
• Fields

 Compile time constant (very useful)
final static double PI = 3.14

 Run-time constant (useful)
final int RAND = (int) Math.random * 10

• Arguments (not very useful)
double foo (final int i)

• Methods
 Prevents overwriting in a subclass (use this very carefully)
 Private methods are implicitly final

• Final class (use this very carefully)
 Cannot inherit from the class

• Many details on the impacts of final, see the book.

OOP: Inheritance 32

Summary
• Reuse

 Use composition when ever possible more flexible and easier to
understand than inheritance.

• Java supports specialization and extension via inheritance
 Specialization and extension can be combined.

• A subclass automatically gets the fields and method from the
superclass.
 They can be redefined in the subclass

• Java supports single inheritance, all have Object as superclass
• Designing good reusable classes is (very) hard!

 while(!goodDesign()){ reiterateTheDesign(); }

OOP: Inheritance 33

Method Combination
Different method combination
• It is programmatically controlled

 Method doStuff on A controls the activation of doStuff on B
 Method doStuff on B controls the activation of doStuff on A
 Imperative method combination

• There is an overall framework in the run-time environment that
controls the activation of doStuff on A and B.
 doStuff on A should not activate doStuff on B, and vice versa
 Declarative method combination

• Java support imperative method combination.

OOP: Inheritance 34

Changing Parameter and Return Types
A

 doStuff(S x)

B
 doStuff(T x)

S
 sMethod()

T
 tMethod()

class B extends A {
void doStuff (T x){

x.tMethod();
}

}

A a1 = new A();
B b1 = new B();
S s1 = new S();
a1 = b1;
a1.doStuff (s1); // can we use an S object here?

OOP: Inheritance 35

Covarians and Contravarians
• Covarians: The type of the parameters to a method varies in the

same way as the classes on which the method is defined.
• Constravarians: The type of the parameters to a method varies in

the opposite way as the classes on which the method is defined.

