
OOP: Software Engineering Techniques 1

Software Engineering Techniques
• Low level design issues for programming-in-the-large.

• Software Quality
• Design by contract

 Pre- and post conditions
 Class invariants

• Ten do
• Ten do nots

• Another type of summary

OOP: Software Engineering Techniques 2

Software Quality
• Correctness: Is the ability of software to exactly perform their tasks,

as defined by the requirements and specifications.

• Robustness: Is the ability of software to function even in abnormal
conditions.

• Extendibility: Is the ease with which software may be adapted to
changes of specifications.

• Reusability: Is the ability of software to be reused, in whole or in
part for new applications.

• Compatible: Is the ease with which software may be combined with
others software.

OOP: Software Engineering Techniques 3

Other Software Quality
• Efficiency: Is the good use of hardware resources.

• Portability: Is the ease with which software may be transferred to
various hardware and software environments.

• Verifiability: Is the ease of preparing acceptance procedures, e.g.,
test data and methods for finding bugs and tracing the bugs.

• Integrity: Is the ability of software to protect its components against
unauthorized access and modification.

• Ease of use: Is the ease of learning how to use the software,
operating it, preparing input data, interpreting results and
recovering from errors.

OOP: Software Engineering Techniques 4

Design By Contract
• Purpose: To increase software quality by giving each part of a

software product certain obligations and benefits.

• Without contract
 All parts of a program take a huge responsibility
 All parts of a program check for all possible error possibilities (called

defensive programming).
 This makes a large program larger and more complicated

• With contracts
 Methods can make assumptions
 Fewer checks for errors possibilities
 This makes a large program simpler.

OOP: Software Engineering Techniques 5

Design By Contract, Example
• A stack example the push method.

• Client programmer
 Obligation: Only call push(x) on a non-full stack
 Benefit: Gets x added on top of stack.

• Class programmer
 Obligation: Make sure that x is pushed on the stack.
 Benefit: No need to check for the case that the stack is already full

• Think Win-Win!

OOP: Software Engineering Techniques 6

Pre and Postconditions
• A precondition expresses the constraints under which a method

will function properly.
 The responsibility of the caller to fulfill the precondition.

• A postcondition expresses properties of the state resulting from a
method's execution.
 The responsibility of the method to fulfill the postcondition

• Both preconditions and postconditions are expressed using
logical expressions also called assertions.

• Other issues
 Class invariants
 Loop invariants

OOP: Software Engineering Techniques 7

Java 1.4's assert Keyword
• An assertion is a boolean expression that a developer specifically

proclaims to be true during program runtime execution [Source:
java.sun.com].

• New to Java 1.4.
• Used for expressing both pre- and postconditions.

• Syntax:
assert expression1;
assert expression1 : expression2;

OOP: Software Engineering Techniques 8

Java 1.4's assert Keyword, cont.
• Evaluation of an assert statement.

Evaluate expression1
if true

no further action
else

if expression2 exists
Evaluate expression2 and use the result in a
single-parameter form of the AssertionError
constructor

else
Use the default AssertionError constructor

OOP: Software Engineering Techniques 9

assert, Examples

assert 0 <= value;
assert 0 <= value : "Value must be positive " + value;
assert ref != null;
assert ref != null : "Ref is null in myFunc";

assert newCount == (oldCount + 1);
assert myObject.myFunc(myParam1, myParam1);

OOP: Software Engineering Techniques 10

Pre- and Postcondition, Example
import java.util.*;
public class AStack{
 private LinkedList stck = new LinkedList();
 private final int no = 42;
 public boolean full() {
 if (stck.size() >= no) return true;
 else return false;
 }
 public boolean empty() {
 return !full();
 }

 public void push(Object v) {
 // precondition
 assert !full(): "Stack is full";
 stck.addFirst(v);
 // postconditions
 assert !empty();
 assert top().equals(v);
 // check no of elements increase by one
 }

OOP: Software Engineering Techniques 11

Pre- and Postcondition, Example
 public Object top() {
 // precondition
 assert !empty();
 return stck.getFirst();

 // no post conditions
 }
 public Object pop() {
 // precondition
 assert !empty();
 return stck.removeFirst();
 assert !full();
 // check no of elements decrease by one
 }
 public static void main(String[] args) {
 AStack as = new AStack();
 }
}

OOP: Software Engineering Techniques 12

assert and Inheritance
class Base {
 public void myMethod (boolean val){
 assert val : "Assertion failed: val is " + val;
 System.out.println ("OK");
 }
}

public class Derived extends Base {
 public void myMethod (boolean val){
 assert val : "Assertion failed: val is " + val;
 System.out.println ("OK");
 }
 public static void main (String[] args){
 try {
 Derived derived = new Derived();
 //...
 }
}

OOP: Software Engineering Techniques 13

assert and Inheritance, cont
• Preconditions cannot be strengthened in subclasses.
• Postconditions cannot be weakened in subclasses.

• Any good reasons for these requirements?

OOP: Software Engineering Techniques 14

Class Invariants
• A class invariant is an expression that must be fulfilled by all

objects of the class at all stable times in the lifespan of an object
 After object creation
 Before execution a public method
 After execution of a public method

• A class invariant is extra requirement on the pre and
postconditions of methods.

• Class invariants can be used to express consistency checks
between the data representation and the method of a class, e.g.,
after if a stack is empty then size of the linked list is zero.

• Class invariants cannot be weakened in subclasses.

• Supported in Eiffel, not supported in Java.

OOP: Software Engineering Techniques 15

Class Invariants, Example
public class Person{

/** @invariant age >= 0 */
protected int age;
/**
 * Constructor for objects of class Person
 * @post age = 0
 */
public Person(){ age = 0; }
/**
 * Constructor for objects of class Person
 * @pre age >= 0
 * @post age = the age provided
 */
public Person(int age){
 assert age >= 0: "Age must be positive it is " + age;
 this.age = age;
 assert this.age == age;
}

 //snip

OOP: Software Engineering Techniques 16

Class Invariants, Example, cont.
public class Person{ // snip

/**
 * Gets the age of a person
 * @return age of person
 * @post return value >= 0
 */
public int getAge(){

 assert age >= 0;
return age;

}
/**
 * Sets the age of a person
 * @param newAge the new age of the person
 * @pre newAge >= 0
 * @post age = newAge
 */

 public void setAge(int newAge){
 assert newAge >= 0: "Age must be positive it is " +

age;
 age = newAge;
 assert age == newAge;

OOP: Software Engineering Techniques 17

Ten Dos
• Logical naming

 Class name p3452 vs. class name Vehicle.
 The foundation for reuse!

• Symmetry
 If a get() method then also a set() method.
 If an insert() method then also a delete() method.
 If id2number() method then also number2id() method
 Makes testing easier.
 To avoid “surprises” for the clients.

• Add extra parameters to increase flexibility
 split(string str) vs.
split(string str, char ch default ' ')

 To anticipate “small” changes.

OOP: Software Engineering Techniques 18

Ten Dos, cont.
• Set a maximum line size (80-100 characters)

 To avoid more the one thing being done in the same line of code
 To be able to print the code with out wrapping. For code reviews

• Set the maximum of lines for a method
 What can be shown on a screen (30-60 lines)
 To increase readability
 To increase modularity

• Indent your code
 Increases readability

• Avoid side-effects
 If a method refers to an object in a database and the object does not exist

then raise and error do not create the object.
 Make program logic impossible to understand

OOP: Software Engineering Techniques 19

Ten Dos, cont.
• Add comments in methods

 Comment where you are puzzled yourself or is puzzled the day after you
wrote the code

 Do not comment the obvious!

• Look at (and comment on) other peoples code
 Code reviews are a good investment
 Increases readability of code
 A good way to learn from each other

• Be consistent
 Can automate global changes with scripts

OOP: Software Engineering Techniques 20

Ten Do Nots
• Make a method do more than one thing

 split_and_store(string str, char ch) vs.
split(string str, char ch) and
store(string_array)

 Makes the method more complicated
 Decreases reuse

• Make a method take more than 7±2 parameters
 Can parameters be clustered in objects?

• Make more than 4 level of nesting in a method
 if {if{if{if{if }}}}}
 Decreases readability

• Make use of “magic” numbers
 if (employee.status == '1'){} vs
if (employee.status == global.open) {}

OOP: Software Engineering Techniques 21

Ten Do Nots
• Make use of Copy-and-Paste facilities

 Redundant code
 Make a new method or use inheritance

• Become mad and aggressive if some one suggest changes to your
code.

• Have more than one return statement in a method
 May be needed in highly optimized code

• Skip exception handling
• Skip testing
• Assume the requirement specification is stable

OOP: Software Engineering Techniques 22

Bad Object-Oriented Programs
• Not following the coding conventions
• Not use javadoc for documenting the code
• Constructors

 No default constructor
 Only default constructors

• Too many static methods
• Too many static variables
• Does not remember to close connections that have been opened

(database connection, network connection and files).
• Not using the exception handling mechanism
• Not using composition (possible also inheritance)
• Not using standard class libraries, e.g., Java's huge library

OOP: Software Engineering Techniques 23

Summary
• Any fool can write code that a computer can understand. Good

programmers write code that humans can understand. (Fowler)
• Debug only code - comments can lie.
• If you have too many special cases, you are doing it wrong.
• Get your data structures correct first, and the rest of the program

will write itself.
• Testing can show the presence of bugs, but not their absence.
• The first step in fixing a broken program is getting it to fail

repeatedly.
• The fastest algorithm can frequently be replaced by one that is

almost as fast and much easier to understand.

OOP: Software Engineering Techniques 24

Summary, cont.
• The cheapest, fastest, and most reliable components of a

computer system are those that are not there.
• Good judgment comes from experience, and experience comes

from bad judgment
• Do not use the computer to do things that can be done efficiently

by hand.
• It is faster to make a four-inch mirror then a six-inch mirror than

to make a six-inch mirror.
[Thompson's Rule for first-time telescope makers]

• If you lie to the computer, it will get you.
• Inside of every large program is a small program struggling to get

out.

