
OOP: Concurrency 1

Concurrency
• Advantages and disadvantages of threads
• Java threads

 Class java.lang.Thread
 Interface java.lang.Runnable

• Also called multithreaded programming

MyThread
 run()

Thread

MyThread2
 run()

Runnable

OOP: Concurrency 2

Thread
• Definition: A thread is a single sequential flow of

control within a program (also called lightweight
process).

• Each thread acts like its own sequential program
 Underlying mechanism divides up CPU between multiple

threads.

• Two types of multithreaded applications
 Make many threads that do many tasks in parallel, i.e., no

communication between the threads (GUI).
 Make many threads that do many tasks concurrently, i.e.,

communication between the threads (data access).

OOP: Concurrency 3

• Advantages
 Responsiveness, e.g., of user interfaces
 Resource sharing
 Economy
 Utilization of multiprocessor hardware architectures

• Disadvantages
 More complicated code
 Deadlocks (very hard to debug logical program errors)

Advantages and disadvanteages

OOP: Concurrency 4

Single and Multithreaded Processes

code data files code data files

single-threaded multi-threaded

thread

OOP: Concurrency 5

User and Kernel Threads
• Thread management done by user-level threads library.

 Examples
◆ POSIX Pthreads (e.g., Linux and NT)
◆ Mach C-threads (e.g., MacOS and NeXT)
◆ Solaris threads

• Supported by the kernel
 Examples

◆ Windows 95/98/NT/2000/XP
◆ Solaris
◆ TRU64 (one of HP's UNIX)

OOP: Concurrency 6

Java Threads
• Java threads may be created by

 Extending Thread class
 Implementing the Runnable interface

OOP: Concurrency 7

Class Thread
• The simplest way to make a thread
• Treats a thread as an object
• Override the run() method, i.e., the thread’s “main”

 Typically a loop
 Continues for the life of the thread

• Create Thread object, call method start()
• Performs initialization, call method run()
• Thread terminates when run() exits.

OOP: Concurrency 8

Extending the Thread Class
class Worker extends Thread {

public void run() {
System.out.println(“I\’m a worker thread”);

 } // thread is dead
}

public class First{
public static void main (String args[]){

Worker runner = new Worker();
runner.start();
System.out.println(“I\’m the main thread”);

} // main thread alive until all children are dead
}

OOP: Concurrency 9

Extending the Thread Class, cont.
class SimpleThread extends Thread {

public SimpleThread(String str) {
 super(str);
 }
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.println(i + " " + getName());
 try {
 sleep((long)(Math.random() * 1000));
 } catch (InterruptedException e) {}
 }
 System.out.println("DONE! " + getName());
 }
}
public class TwoThreadsDemo {

public static void main (String[] args) {
new SimpleThread("Jamaica").start();
new SimpleThread("Fiji").start();

}}
[Source: java.sun.com]

OOP: Concurrency 10

Sharing Resources
• Single threaded programming: you own everything, no

problem with sharing
• Multi-threaded programming: more than one thread

may try to use a shared resource at the same time
 Add and withdraw from a bank account
 Using the speakers at the same time, etc.

• Java provides locks, i.e., monitors, for objects, so you can
wrap an object around a ressource
 First thread that acquires the lock gains control of the object,

and the other threads cannot call synchronized methods for
that object.

OOP: Concurrency 11

Locks
• One lock pr. object for the object’s methods.
• One lock pr. class for the class’ static methods.

• Typically data is private, only accessed through methods.
 Must be private to be protected against concurrent access

• If a method is synchronized, entering that method
acquires the lock.
 No other thread can call any synchronized method for that

object until the lock is released.

OOP: Concurrency 12

Sharing Resources, cont.
• Only one synchronized method can be called at any time

for a particular object
synchronized void foo() {/*..*/}
synchronized void bar() {/*..*/}

• Efficiency
 Memory: Each object has a lock implemented in Object
 Speed: JavaSoft: 6x method call overhead. Theoretical

minimum 4x overhead
◆ Older standard Java libraries used synchronized a lot, did not

provide any alternatives.

OOP: Concurrency 13

Sharing Resources, Example

Producer

Thread

Producer

CubbyHole
sync get()
sync put()

The shared resource

OOP: Concurrency 14

Sharing Resources, Example cont.
public class CubbyHole {

private int contents;
private boolean available = false;
public synchronized int get() {

while (available == false) {
try { wait(); } ... }

available = false;
 notifyAll();

return contents;
}
public synchronized void put(int value) {

while (available == true) {
try { wait(); ...} }

contents = value;
available = true;
notifyAll();

}
}

OOP: Concurrency 15

Sharing Resources, Example cont.
public class Producer extends Thread {

private CubbyHole cubbyhole;
private int number;
public Producer(CubbyHole c, int number) {

cubbyhole = c;
this.number = number; }

public void run() {
for (int i = 0; i < 10; i++) {
 cubbyhole.put(i);
System.out.println(
"Producer #" + this.number + " put: " + i);
try {sleep((int)(Math.random() * 100));

 } catch (InterruptedException e) { } }
}

}

OOP: Concurrency 16

Sharing Resources, Example cont.
public class Consumer extends Thread {

private CubbyHole cubbyhole;
private int number;
public Consumer(CubbyHole c, int number) {

cubbyhole = c;
this.number = number;

}
public void run() {

int value = 0;
for (int i = 0; i < 10; i++) {
 value = cubbyhole.get();
 System.out.println(
 "Consumer #" + this.number + " got: " + value);
}

}
}

OOP: Concurrency 17

Sharing Resources, Example cont.
public class ProducerConsumerTest {

public static void main(String[] args) {
CubbyHole c = new CubbyHole();
Producer p1 = new Producer(c, 1);

 Consumer c1 = new Consumer(c, 1);
 p1.start();

c1.start();
}

}

OOP: Concurrency 18

The Runnable Interface

public interface Runnable{
public abstract void run();

}

• To inherit from an exising object and make it a thread,
implement the Runnable interface.

• A more classical, function-oriented way to use threads.

• Rule of Thumb: If your class must subclass some other
class (the most common example being Applet), you
should use Runnable.

OOP: Concurrency 19

The Runnable Interface, cont.
class Worker implements Runnable{

public void run(){
System.out.println(“I\’m a worker thread”);

}
}

public class Second{
public static void main(String args[]) {

Runnable runner = new Worker();
Thread thrd = new Thread(runner);
thrd.start();
System.out.println(“I\’m the main thread”);

}
}

OOP: Concurrency 20

The Runnable Interface, cont.
class SimpleRunnable implements Runnable {

private String myName; private Thread t;
SimpleRunnable (String name) {

myName = name; t = new Thread(this); t.start();
}
public void run() {

for (int i = 0; i < 10; i++) {
 System.out.println(i + " " + myName);
 try {

 t.sleep((long)(Math.random() * 1000));
 } catch (InterruptedException e) {}
 }
 System.out.println("DONE! " + myName);
 }
}
public class TwoRunnableDemo {

public static void main (String[] args)
{ SimpleRunnable runner1 = new SimpleRunnable
("Jamaica"); SimpleRunnable runner2 = new
SimpleRunnable("Fiji"); }

}

OOP: Concurrency 21

Java Thread Management
• suspend() – suspends execution of the currently running

thread.
• sleep() – puts the currently running thread to sleep for a

specified amount of time.
• resume() – resumes execution of a suspended thread.
• stop() – stops execution of a thread.

new dead

runnable

blocked

new

start()

sleep()
suspend()
wait()

return/stop()

resume()
notify()

OOP: Concurrency 22

Synchronized Fields and Constructors
• Class or object fields cannot be synchronized.
public class DataFields{
 /** A synchronized object field not allowed */
 private synchronized int x;
 /** A synchronized class field not allowed */
 public static synchronized int y;
}
• Constructors cannot be synchronized.
public class DataFields{
 public synchronized DataFields(){// not allowed }
 public static synchronized void staticMethod(){
 System.out.println("I'm in sync"); // allowed
 }
}

OOP: Concurrency 23

Other Issues
• Thread priority
• Thread groups
• Daemon (unix term)

 similar to a service (on Win32)

• Deadlock
 Very hard to detect logical errors in programs

OOP: Concurrency 24

Deadlocks
public class TwoResources {

private int contentsA = 10;
 private int contentsB = 20;
 private boolean availableA = true;
 private boolean availableB = true;
 public synchronized int getA() {

while (availableA == false) {
try { wait(); } ... }

 // snip see CubbyHole
}

public synchronized void putA(int value) {
while (availableA == true) {

try { wait(); ...} }
 // snip see CubbyHole
}

 // ditto for B resource
}

OOP: Concurrency 25

Deadlocks, cont.
public class TRConsumer extends Thread {
 // start thread in constructor
 private TwoResources tr;
 public void getAthenB(){
 int a = tr.getA(); sleepy(2000);
 int b = tr.getB();
 }
 public void getBthenA(){
 int b = tr.getB(); sleepy(2000);
 int a = tr.getA();
 }
 public static void createDeadlock(){
 TwoResources tr = new TwoResources();
 TRConsumer one = new TRConsumer(tr, "A"); // A B
 TRConsumer two = new TRConsumer(tr, "B"); // B A
 }
}

OOP: Concurrency 26

Summary
• Single-threaded programming: live by all by your self,

own everything, no contention for resources.

• Multithreading programming: suddenly ”others” can
have collisions and destroy information, get locked up
over the use of resources.

• Multithreading is built-into the Java programming
language.

• Multithreading makes Java programs complicated
 Multithreading is by nature difficult, e.g., deadlocks.

OOP: Concurrency 27

Solaris 2 Threads

kernel

task 1 task 2 task 3

cpu cpu cpu cpu

kernel threads

user threads

light weight
process

