
OOP: Basic Parts of Java 1

The Basic Parts of Java
• Data Types

 Primitive
 int, float, double, etc.

 Composite
 array (will also be covered in the lecture on Collections)

• Lexical Rules
• Expressions and operators
• Methods

 Parameter list
 Argument parsing

• Control Structures
• Branching

• Examples in http://www.cs.auc.dk/~torp/Teaching/E03/OOP/Examples/

OOP: Basic Parts of Java 2

• Boolean {true, false}
• byte 8-bit
• short 16-bit
• int 32-bit
• long 64-bit
• float 32-bit
• double 64-bit
• char 16-bit Uni-code

• Also called built-in types
• Have fixed size on all platforms

Primitive Data Types

Natural numbers

Floating points

OOP: Basic Parts of Java 3

Declarations
• A declaration is the introduction of a new name in a program.
• All variables must declared in advance.
• The is no dedicated variable declaration part of a Java program.
• General forms

 type variableName1, variableName2, variableName3;

 type variableName1 = value1,
 variableName2 = value2,

 variableName3 = value3;

• Constants are declared as final static variables

OOP: Basic Parts of Java 4

Primitive Data Types, Example
// create some integers
int x, y;
x = 1234; y = 3;

// or similar
double v = 3.14e-23,

 w = 5.5;

// create som chars
char c1 = 'a';
Character c2;

// use a wrapper class
c2 = new Character ('b'); // read only

// A well-known constant
final static double PI = 3.14;

OOP: Basic Parts of Java 5

Array: A Composite Data Type
• An array is an indexed sequence of values of the same type.
• Arrays are defined as classes in Java.

• Example:
boolean[] boolTable = new boolean[MAXSIZE]

 Elements are all of type boolean
 The index type is always integer
 Index limits from 0 to MAXSIZE-1

• Bound-check at run-time.
• Arrays are first class objects (not pointers like in C)

• There are no record or enumaration types in Java.

OOP: Basic Parts of Java 6

Lexical Rules
• A name in Java consists of [0-9][a-z][A-Z][_$]

 name cannot start with a number
 national language letters can be used, e.g., æ, ø , and å.
 no maximum length thisIsAVeryLongVariableName

• All resevered word in Java are lower case, e.g., if.
• Case matters myVariable, myvariable

OOP: Basic Parts of Java 7

Naming Conventions
• Words run together, no underscore
• Intermediate words capitalized.

 Okay: noOfDays, capacity, noInSequence
 Not okay no_of_days, noofdays

• Name of classes: first letter upper case
 Okay: Person, Pet, Car, SiteMap
 Not okay: vehicle, site_map, siteMap

• Name of method or variable: first letter lower case
• Name of constants: all upper case, separated by underscore

• Part of JavaSoft programming standard
Java's Naming convention (link)

OOP: Basic Parts of Java 8

Commands in Java
• Assignment

 variable = <expression>

• Method call
 Various parameter mechanisms

• Control Structures
 sequential
 selective
 iterative

OOP: Basic Parts of Java 9

Block Statement
• Several statements can be grouped together into a block

statement.
• A block is delimited by braces { <statement list> }
• Variables can be declared in a block.
• A block statement can be used wherever a statement is called for

in the Java syntax.
 For example, in an if-else statement, the if portion, or the else portion,

or both, could be block statements

OOP: Basic Parts of Java 10

Expresions and Operators
• An expression is a program fragment that evaluates to a single

value.
 double d = v + 9 * getSalary() % Math.PI;
 e = e + 1; (here e is used both as an rvalue and a lvalue)

• Arithmetic operators
 Additive +, -, ++, -- i = i + 1, i++, --i
 Multicative *, /, % (mod operator) 9%2 = 1, 7%4 = 3

• Relational Operators
 Equality == (two '=' symbols) i = i, i == i
 Inequality != i != j
 Greater-than >, >= i > j, i >= j
 Less-than <, <= i < j, i <= j

OOP: Basic Parts of Java 11

Expresions and Operators, cont.
• Logical operators

 and && bool1 && bool2
 or || bool1 || bool2 || bool3
 not ! !(bool1)
 All are short-circuit

• Bitwise operators
 and & 255 & 5 = 5 15 & 128 = 0
 or | 255 | 5 = 255 8 & 2 = 10
 xor ^ 3 ^ 8 = 11 16 ^ 31 = 15
 shift left << 16 << 2 = 64 7 << 3 = 56
 shift right >> 16 >> 2 = 4 7 >> 2 = 1

OOP: Basic Parts of Java 12

Expresions and Operators, cont.
• Assignement Operators

 can be combined with other binary operators
 +=, -=, *=, /=, %=, >>=, <<=, &=, ^=, !=

• Conditional Operator
 Ternary operator
 ?:
 int max = n > m ? n : m;

• Precendence rules similar to C for Java operators
• Associtivity rules similar to C for Java operators

OOP: Basic Parts of Java 13

Methods in Java
• All procedures and functions in Java are methods on classes.
• The difference between a procedure and a function is the return

type
 void myProcedure()
 int myFunction() or MyClass myFunction1()

• Methods cannot be nested.

• Returning
 Implicit: When the last command is executed (for procedures).
 Explicit: By using the return command.

 Good design: only to have one return command each method

OOP: Basic Parts of Java 14

Methods in Java, cont.
• General format

ReturnType methodName (/* <argument list> */){
// <method body>

}

• Examples calling methods
double y = getAverageSalary(); // returns double
boolean b = exists (/*args*/); // returns boolean
Person p = getPerson (/*args*/); // returns Person

OOP: Basic Parts of Java 15

Class IPAddress Example
public class IPAddress{
 public static final String DOT = ".";

private int[] n; // example 127.0.0.1
private String logical; // example localhost

 /* Constructor */
public IPAddress(){n = new int[4]; logical = null;}

 /* Sets the logical name */
public void setName(String name){logical = name;}
/* Gets the logical name */
public String getName(){ return logical; }
/* Sets numerical name */
public void setNum(int one, int two, int three, int four){

 n[0] = one; n[1] = two; n[2] = three; n[3] = four;}
/* Sets numerical name */

 public void setNum(int[] num){
 for (int i = 0; i < 4; i++){n[i] = num[i];} }

/* Gets the numerical name as a string */
 public String getNum(){
 return "" + n[0] + DOT + n[1] + DOT + n[2] + DOT + n[3]; }

OOP: Basic Parts of Java 16

Class IPAddress Example, cont.
public static void main (String[] args){

// create a new IPAddress
IPAddress luke = new IPAddress();

 luke.setName("luke.cs.auc.dk");
 System.out.println(luke.getName());
 luke.setNum(130, 225, 194, 177);
 String no = luke.getNum();
 System.out.println(no);

// create another IPAddress
IPAddress localHost = new IPAddress();

 localHost.setName("localhost");
 int[] lNum = {127, 0, 0, 0}; // array initialization
 localHost.setNum(lNum);
 System.out.print(localHost.getName());
 System.out.print(" ");
 System.out.println(localHost.getNum());
}

OOP: Basic Parts of Java 17

Parameter Mechanism
• All parameters in Java are pass-by-value.

 The value of the actual parameter is copied to the formal parameter.

• A variable number of arguments in not supported
 public static void main (String[] args)

• Passing Objects
 Objects are accessed via a reference.
 References are pass-by-value.

 The refernce is copied
 The object itself is not copied

 Via a formal parameter it is possible to modify the object "directly".
 The reference to the object can however not be modified.

OOP: Basic Parts of Java 18

Actual and Formal Parameters

• Each time a method is called, the actual parameters in the
invocation are copied into the formal parameters.

String calc(int num1, int num2, String message){
 int sum = num1 + num2;
 String result = message + sum
 return result;
}

String s = obj.calc(25, 44, "The sum is ");

OOP: Basic Parts of Java 19

Class IPAddress Example, cont.
public class IPAddress{
 /* Call by value */

public int callByValue(int i){ i += 100; return i; }
/* Call by value */
public String callByValue(String s){s = "modified string"; return s; }
/* Call by ref like method */
public int callByRefLike(int[] a){

int sum = 0;
 for(int j = 0; j < a.length; j++){ sum += a[j]; a[j] = 255;}
 return sum;
}
// in main
IPAddress random = new IPAddress()
int dummy = 2;
random.callByValue(dummy); // dummy unchanged
String str = "not using new";
random.callByValue(str); // str unchanged
int[] ranIPNum = new int[4];
random.setNum(ranIPNum); // ranIPNUM changed to 255.255.255.255

OOP: Basic Parts of Java 20

The static Keyword
• For data elements

 Are shared between all the instances of a class
 public static int i;
 public static ArrayList = new ArrayList();
 public static final char DOT = '.';

• For method
 Can be access without using an object
 public static void main(String args[]){}
 public static int getCount(){}

OOP: Basic Parts of Java 21

Class IPAddress Example, cont.
public static void main (String[] args){

private static int count = 0;
public static final String DOT = ".";
<snip>
/* Constructor */
public IPAddress(){
 n = new int[4]; logical = null;
 count++;}
/* Get the number of objects created */
public static int getCount() { return count;}
<snip>
/* Handy helper method */
public static void show(IPAddress ip){

System.out.print(ip.getName()); System.out.print(" ");
System.out.println(ip.getNum());

}
}

OOP: Basic Parts of Java 22

The if Statement
• The if statement has the following syntax:

if (condition){
 statement;
}

if is a Java is a Java
reserved wordreserved word

The condition must be a boolean expression.
It must evaluate to either true or false.

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

OOP: Basic Parts of Java 23

Logic of an if Statement

condition

statement

 true

false

next statement

// example 1
if (weight < 20000)
 doStuffMethod();
// same thing
if (weight < 20000){
 doStuffMethod();
}

// example 2
if (weight < 20000)
 doStuffMethod();
 doMoreStuff();
// NOT the same thing
if (weight < 20000){
 doStuffMethod();
 doMoreStuff();
}

OOP: Basic Parts of Java 24

The if-else Statement
• An else clause can be added to an if statement to make it an if-

else statement
if (condition){

 statement1;
}
else{
 statement2;

}

• If the condition is true, statement1 is executed; if the condition
is false, statement2 is executed

• One or the other will be executed, but not both
• An else clause is matched to the last unmatched if (no matter

what the indentation implies)

OOP: Basic Parts of Java 25

Logic of an if-else Statement

condition

 true

statement1 statement2

false

next statement

if (income < 20000)
 System.out.println ("pour");
else if (income < 40000)
 System.out.println ("not so pour")
else if (income < 60000)
 System.out.println ("rich")
else
 System.out.println ("really rich")

OOP: Basic Parts of Java 26

The switch Statement
• The general syntax of a switch statement is

switch (expression)
{
 case value1 :
 statement-list1
 case value2 :
 statement-list2
 case value3 :
 statement-list3
}

switch and
case are reserved
words

If expression
matches value2,
control jumps
to here

enumerable

● enumerables can appear in any order
● enumerables do not need to be consecutive
● several case constant may select the same substatement
● enumerables must be distinct
● enumerable cannot case 1..9

OOP: Basic Parts of Java 27

The switch Statement, cont.
• Often a break statement is used as the last statement in each

case's statement list
• A break statement causes control to transfer to the end of the

switch statement
• If a break statement is not used, the flow of control will continue

into the next case
switch (expression)
{
 case value1 :
 statement1
 break;
 case value2 :
 statement2
 break;
 case value3 :
 statement3
 break;
}

break exits
the innermost
enclosing loop or
switch

OOP: Basic Parts of Java 28

Logic of an switch Statement

expression

statement-list2 statement-list3

next statement

statement-list1
value1 value 2 value3

other values

switch (expression){
 case value1 :
 statement-list1
 break;
 case value2 :
 statement-list2
 break;
 case value3 :
 statement-list3
 break;
}
// next statement

OOP: Basic Parts of Java 29

The switch Statement, cont.
• A switch statement can have an optional default case.
• The default case has no associated value and simply uses the

reserved word default.
• If the default case is present, control will transfer to it if no other

case value matches.
• Though the default case can be positioned anywhere in the

switch, it is usually placed at the end.
• If there is no default case, and no other value matches, control

falls through to the statement after the switch.

OOP: Basic Parts of Java 30

The switch Statement, cont.
• The expression of a switch statement must result in an integral

data type, like an integer or character; it cannot be a floating
point value.

• Note that the implicit boolean condition in a switch statement is
equality - it tries to match the expression with a value.

• You cannot perform relational checks with a switch statement,
e.g..

switch (i < 7)
{
 case true :
 statement1
 break;
 case “Hello“ :
 statement2
 break;
}

illegal, relationalillegal, relational
checkingchecking

not integral typenot integral type
checkingchecking

OOP: Basic Parts of Java 31

The switch Statement, Example

int salary = getSalary(); // gets a salary
switch(salary/20000) {

case 0:
 System.out.println("pour");

break;
case 1:
 System.out.println("not so pour");

break;
case 2:
 System.out.println("rich");

break;
case 3:
 System.out.println("really rich");

break;
default:
 System.out.println("Hi, Bill Gates");

}

OOP: Basic Parts of Java 32

The while Statement

• Note, if the condition of a while statement is false initially, the
statement is never executed
 Therefore, the body of a while loop will execute zero or more times

while (condition)
 statement;while is a

reserved word

If the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repetitively
until the condition becomes false.

• The while statement has the following syntax

OOP: Basic Parts of Java 33

Logic of the while Statement

statement

condition

true
false

next statement

// Count from 1 to 10
int n = 10;
int i = 1;
while (i <= n) {

System.out.println(i);
i = i + 1;

}
// next statement

// what is wrong here?
int i = 0;
while(i < 10){
 System.out.println(i);
 // do stuff
}

OOP: Basic Parts of Java 34

The while Statement, cont.
• The body of a while loop must eventually make the condition

false.
• If not, it is an infinite loop, which will execute until the user

interrupts the program.
 This is a common type of logical error.
 You should always double check to ensure that your loops will

terminate normally.

• The while statement can be nested
 That is, the body of a while could contain another loop
 Each time through the outer while, the inner while will go through its

entire set of iterations

OOP: Basic Parts of Java 35

The do Statement
• The do statement has the following syntax

do
{
 statement;
}
while (condition)

Uses both
the do and
while
reserved
words

The statement is executed once initially, then the condition is evaluated.

The statement is executed until the condition becomes false.

• A do loop is similar to a while loop, except that the
condition is evaluated after the body of the loop is
executed.
 Therefore the body of a do loop will execute at least one time.

OOP: Basic Parts of Java 36

Logic of the do Statement

condition

statement

next statement

 true

// Count from 1 to 10
int n = 10;
int i = 1;
do {
 System.out.println(i)

i = i + 1;
} while (i <= 10);
// next statement

 false

OOP: Basic Parts of Java 37

The for Statement
• The for statement has the following syntax

for (initialization ; condition ; increment)
 statement;

Reserved
word

The The initialization portion portion
is executed onceis executed once

before the loop beginsbefore the loop begins

The statement isThe statement is
executed until theexecuted until the

condition becomes false becomes false

The The increment portion is executed portion is executed
at the end of each iterationat the end of each iteration

The condition is
checked before each

iteration

// equvivalent while statement
initialization
while (condition){
 statement;
 increment;
}

OOP: Basic Parts of Java 38

Logic of the for Statement

statement

condition

increment

initialization

 true

next statement

// Count from 1 to 10
int n = 10;
for (int i = 1; i <= n; i++)
 System.out.println (i);
// next statement

false

// what is wrong here?
for (int i=0; i < 10; i++){
 System.out.println(i);
 i--;
}

// what is wrong here?
for (int i = 0; i < 10;){
 i++;
 // do stuff
}

OOP: Basic Parts of Java 39

The for Statement, cont
• Like a while loop, the condition of a for statement is tested prior

to executing the loop body.
• Therefore, the body of a for loop will execute zero or more

times.
• It is well-suited for executing a specific number of times that can

be determined in advance.
• Each expression in the header of a for loop is optional

 Both semi-colons are always required in the for loop header.

OOP: Basic Parts of Java 40

Branching
• break

 Can be used in any control structure
 Exits from the innermost enclosing loop
 break <label>

• continue
 Cycles a loop, e.g., jump to the condition checking

• return
 Only from methods;
 Jumps out of the current method an returns to where the method was

called from.
 return <expression>

• goto
 Reserved word

OOP: Basic Parts of Java 41

Logic of the break Statement

stmt1

condition1

false

next statement

while (condition1) {
stmt1;
if (condition2)
 break;
stmt2;

}
// next statement

stmt2

condition2

true

false
 true

OOP: Basic Parts of Java 42

Logic of the break Statement, cont

stmt1

condition1

false

next statement

while (condition1) {
 stmt1;
 while (true){
 break;
 }
 stmt2;
}
// next statement

stmt2

condition2

true

break

OOP: Basic Parts of Java 43

Logic of the continue Statement

stmt1

condition1

false

next statement

while (condition1) {
stmt1;
if (condition2)
 continue;
stmt2;

}
// next statement

stmt2

condition2

true

false

 true

// what is wrong here?
while (condition){
 // many more statements
 continue;
}

OOP: Basic Parts of Java 44

continue Example

public void skipPrinting(int x, int y){
for(int num = 1; num <= 100; num++){

if((num % x) == 0){
continue;

}
if((num % y) == 0){

continue;
}
// This num is not divisible by x or y
System.out.println(num);

}
}

OOP: Basic Parts of Java 45

break and continue Example
for (int i = 3; i <= max; i++) {

// skip even numbers
 if (i % 2 == 0)

 continue;
 // check uneven numbers

 boolean isPrime = true;
 for (int j = 2; j < i - 1; j++) {
 // is i diviseable with any number in [2..i-i]
 // then it is not a prime number so we break
 // of efficiency reasons
 if (i % j == 0) {
 isPrime = false;
 break;
 }
 }
 if (isPrime)

System.out.println(i + " is a prime number");
}

OOP: Basic Parts of Java 46

Summary
• Set of built-in data types
• Array are supported

 no support records or enumarated type

• Methods
 procedure
 functions

• Argument passing
 Always by-value in Java
 actual and formal parameters.

• Control structures
 if, if-else, if-else-if-else, if-else-if-else-if-else, etc.
 while-do, do-while
 for
 switch

