
OOP: Object-Oriented Programming, Part 1 1

Object-Oriented Programming
• Classes
• Object Creation and Destruction
• Equality

OOP: Object-Oriented Programming, Part 1 2

Classes in Java
• A class encapsulates a set of properties

n Some properties are hidden
n The remaining properties are the interface of the class

int x, y;
char c; Data declarationsData declarations

Method declarationsMethod declarations

class ClassName {
dataDeclaration
constructors
methods

}

OOP: Object-Oriented Programming, Part 1 3

Example of a Class
public class Coin { // [Source Lewis and Loftus]
 public static final int HEADS = 0;

public static final int TAILS = 1;
 private int face;
 public Coin () { // constructor
 flip();
 }
 public void flip (){ // method “procedure”
 face = (int) (Math.random() * 2);
 }
 public int getFace (){ // method “function”
 return face;
 }
 public String toString(){ // method “function”
 String faceName;
 if (face == HEADS)
 faceName = "Heads";
 else
 faceName = "Tails";
 return faceName;
 }
}

OOP: Object-Oriented Programming, Part 1 4

Instance Variables
• An instance variable is a data declaration in a class. Every

object instantiated from the class has its own version of the
instance variables.

class Car {
private String make;
private String model;
private double price;

}

make: Ford

model: Taurus

price: 100

car1

make: Opel

model: Kadett

price: 2500

car2

make: BMW

Model: M1

price: 100

car3

OOP: Object-Oriented Programming, Part 1 5

Methods in Java
• A method is a function or procedure that reads and/or modifies

the state of the class.

char calc (int num1, int num2, String message)

MethodMethod
namename

returnreturn
typetype

Parameter listParameter list

The parameter list specifies the typeThe parameter list specifies the type
and name of each parameterand name of each parameter

The name of a parameter in the methodThe name of a parameter in the method
declaration is called a declaration is called a formal argumentformal argument

OOP: Object-Oriented Programming, Part 1 6

Methods in Java, cont.
• All methods have a return type

n void for procedures
n A primitive data type or a class for functions

• The return value
n Return stop the execution of a method and jumps out
n Return can be specified with or without an expression

• Parameter are pass-by-value
n Class parameter are pass as a reference

public double getPrice() {
return this.price;

}

public void increaseCounter() {
counter = counter + 1;

}

public double getError() {
int a := 0;
a++;
// compile-error

}

OOP: Object-Oriented Programming, Part 1 7

Scope

• The redefinition of x in scope 2 is allowed in C/C++

public int myFunction (){ // start scope 1
int x = 34;
// x is now available
{ // start scope 2

int y = 98;
// both x and y are available
// cannot redefine x here compile-time error

} // end scope 2
// now only x is available
// y is out-of-scope
return x;

} // end scope 1

OOP: Object-Oriented Programming, Part 1 8

Object Creation in General
• Object can be created by

n Instantiating a class
n Copying an existing object

• Instantiating
n Static: Objects are constructed and destructed at the same time as the

surrounding object.
n Dynamic: Objects are created by executing a specific command.

• Copying
n Often called cloning

OOP: Object-Oriented Programming, Part 1 9

Object Destruction in General
• Object can be destructed in two way.

n Explicit, e.g., by calling a special method or operator (C++).
n Implicit, when the object is no longer needed by the program.

• Explicit
n An object in use can be destructed.
n Not handling destruction can cause memory leaks.

• Implicit
n Objects are destructed automatically by a garbage collector.
n There is a performance overhead in starting the garbage collector.
n There is a scheduling problem in when to start the garbage collector.

OOP: Object-Oriented Programming, Part 1 10

Object Creation in Java
• Instantiazion: A process where storage is allocated for an

"empty" object.
• Initialization: A process where instances variables are assigned

a start value.

• Dynamic instantiazion in Java by calling the new operator.
• Static instantiazion is not supported in Java.
• Cloning implemented in Java via the method clone() in class
Object.

• Initialization is done in constructors in Java.

OOP: Object-Oriented Programming, Part 1 11

Object Destruction in Java
• Object destruction in Java is implicit an done via a garbage

collector.

• A special method finalize is called immediately before
garbage collection.
n Method in class Object, that can be redefined.
n Takes no parameters and returns void.
n Used for releasing resources, e.g., close file handles.
n Rarely necessary.

OOP: Object-Oriented Programming, Part 1 12

Objects and References
• Variables of non-primitive types that are not initialized have the

special value null.
n Test: var1 == null
n Assignment: var2 = null

Object have identity but no name,
n i.e., not possible to identify an object O1 by the name of the variable

referring to O1.

• Aliasing: Many variables referring to the same object

make: BMW

model: M1

engine: ref

car3

cylinders: 6

KW: 130

engine1

var1

var2

var3

OOP: Object-Oriented Programming, Part 1 13

Constructors in Java
• A constructor is a special method where the instance variables

or a newly created object are initialized with "reasonable" start
values.

• A class must have a constructor
n A default is provided implicitly.

• A constructor must have the same name as the class.
• A constructor has no return value.

n That's why it is as special method

• A constructor can be overloaded.
• A constructor can call other methods (but not vice-versa).
• A constructor can call other constructors (via this).

OOP: Object-Oriented Programming, Part 1 14

Constructors in Java, cont.
• Every class should have a programmer defined constructor, that

explicitly guarantees correct initialization of new objects.

// redefined Coin class
public class Coin {
 public static final int HEADS = 0;

public static final int TAILS = 1;
 private int face;
 public Coin () {

face = TAILS;
// method in object

 flip();
// method on other object
otherObject.doMoreInitialization();

 }
}

OOP: Object-Oriented Programming, Part 1 15

Constructor Examples
public class Car {

private String make;
private String model;
private double price;

// default constructor
 public Car() {

this ("", "", 0.0);
}

// give reasonable values to instance variables
 public Car(String make, String model, double price){

this.make = make;
this.model = model;
this.price = price;

}

}

OOP: Object-Oriented Programming, Part 1 16

Constructor Initialization
public class Garage {

Car car1 = new Car(); //
static Car car2 = new Car(); // created on first access

}

public class Garage1 {
Car car1;
static Car car2;
// Explicit static initialization
static {

car2 = new Car();
}

}

OOP: Object-Oriented Programming, Part 1 17

Value vs. Object
• A value is a data element without identity that cannot change

state.
• An object is an encapsulated data element with identity, state,

and behavior.

• An object can behave like value (or record). Is it a good idea?

• Values in Java are of the primitive type byte, short, int,
long, float, double, boolean, and char.

• Wrapper classes exists in Java for make the primitive type act
as objects.

OOP: Object-Oriented Programming, Part 1 18

Strings in Java
• Strings in Java are of the class String.

• Objects of class String behave like values.

• Characteristics of Strings
n The notation "fly" instantiates the class String and initialize it with the

values "f"', "l", and "y".
n The class String has many different constructors.
n Values in a string cannot be modified (use StringBuffer instead).
n Class String redefines the method equals() from class Object.

OOP: Object-Oriented Programming, Part 1 19

Arrays in Java
• Not pointers like in C,
• Bounds checking at run-time
• int[] numbers; // equivalent
int number[];

• int[] numbers = {1, 2, 3, 4, 5, 6, 7};
n The size is fixed at compile-time!

• int[] numbers = new Integer[getSize()];
n The size is fixed at run-time!
n Cannot be resized

for (int i = 0; i < numbers.length; i++){
System.out.println(numbers[i]);

}

OOP: Object-Oriented Programming, Part 1 20

Equality
• Are the references a and b equal?

• Reference Equality
n Returns whether a and b points to the same object.

• Shallow Equality
n Returns whether a and b are structurally similar.
n One level of object are compared.

• Deep Equality
n Returns where a and b have object-network that is structurally similar.
n Multiple level of objects are compared recursively.

• Reference Equality ⇒ Shallow Equality ⇒ Deep Equality

OOP: Object-Oriented Programming, Part 1 21

Equality Examples

make: BMW

model: M1

engine: ref

var1

var2

make: BMW

model: M1

engine: ref

var1

var2
make: BMW

model: M1

engine: ref

cylinders: 6

KW: 130

cylinders: 6

KW: 130

OOP: Object-Oriented Programming, Part 1 22

Equality Examples, cont.

make: BMW

model: M1

engine: ref

var1

var2
make: BMW

model: M1

engine: ref

cylinders: 6

KW: 130

cylinders: 6

KW: 130

OOP: Object-Oriented Programming, Part 1 23

Types of Equality in Java
• ==

n Equality on primitive data types
u 8 == 7
u 'b' == 'c'

n Reference equality on object references
u onePoint == anotherPoint

• equals
n Method on the class Object.
n Default works like reference equality.
n Can be refined in subclass

u onePoint.equals(anotherPoint)

OOP: Object-Oriented Programming, Part 1 24

Summary
• Instance variables
• Strings are treated specially in Java
• Initialization is critical for objects

n Java guarantees proper initialization using constructors
n Source of many errors in C

• Java helps clean-up with garbage collection
n Only memory is clean, close those file handles explicitly!
n No memory leaks, "show stopper" in C/C++ project!

• Equality (three types of equality)

