Object-Oriented Programming

e Classes
e Object Creation and Destruction
e Equality

OOP: Object-Oriented Programming, Part 1

e A class encapsulates a set of properties

Classes in Java

= Some properties are hidden
= Theremaning properties are the interface of the class

cl ass Cl assNane {
dat aDecl arati on
constructors
met hods

OOP: Object-Oriented Programming, Part 1

-

I nt X,
char c;

Y,

\

Data declarations

<

A\

% M ethod declarations

Example of aClass

public class Coin { // [Source Lewis and Loftus]

public static final int HEADS = O;

public static final int TAILS = 1;

private int face;

public Coin () { /'l constructor
flip();

}

public void flip (){ [/ method “procedure”
face = (int) (Math.random() * 2);

}

public int getFace (){ [/ method “function”
return face;

}

public String toString(){ // method “function”
String faceNane;
| f (face == HEADS)
faceNane = "Heads";
el se
faceNane = "Tail s";
return faceNane;
}
}

OOP: Object-Oriented Programming, Part 1

|nstance Variables

e Aninstance variable is adatadeclaration in aclass. Every
object instantiated from the class has its own version of the
Instance variabl es.

class Car {
private String nake;
private String nodel ;
private double price;

}
-) -) ~)
make: Ford make: Opel make: BMWV
nodel : Taur us nodel : Kadet t Model : ML
price: 100 price: 2500 price: 100
- v, - W, - J
carl car 2 car3

OOP: Object-Oriented Programming, Part 1

Methods In Java

e A method isafunction or procedure that reads and/or modifies
the state of the class.

char calc (int numl, int nun2, String nessage)

A T - L
——
Method Parameter list
name
return The parameter list specifiesthe type
type and name of each parameter

The name of a parameter in the method
declaration is called aformal argument

OOP: Object-Oriented Programming, Part 1

M ethods in Java, cont.

e All methods have areturn type
= voI d for procedures
= A primitive datatype or aclass for functions
* Thereturn value
= Return stop the execution of a method and jumps out
= Return can be specified with or without an expression
e Parameter are pass-by-value
= Class parameter are pass as areference

public double getPrice() { public double getError() {
return this.price; int a := 0:;
} a++:
/1 conpile-error
public void increaseCounter() { }

counter = counter + 1;

}

OOP: Object-Oriented Programming, Part 1

Scope

public int nmyFunction (){ /] start scope 1
Int X = 34;
[/ x is now avail abl e
{ /] start scope 2
Int y = 98;

/[l both x and y are avail abl e
/] cannot redefine x here conpile-tine error
} /'l end scope 2
/1l now only x is avail able
/[l y i1s out-of-scope
return Xx;
} /'l end scope 1

e Theredefinition of x in scope 2 isalowed in C/C++

OOP: Object-Oriented Programming, Part 1

Object Creation in General

e Object can be created by

= |nstantiating aclass
= Copying an existing object

e |nstantiating

= Jatic: Objects are constructed and destructed at the same time as the
surrounding object.

= Dynamic: Objects are created by executing a specific command.

e Copying
= Often caled cloning

OOP: Object-Oriented Programming, Part 1

Object Destruction in General

e QObject can be destructed in two way.
= Explicit, e.qg., by calling a specia method or operator (C++).
= Implicit, when the object is no longer needed by the program.

* Explicit
= An object in use can be destructed.
= Not handling destruction can cause memory leaks.
e Implicit
= QObjects are destructed automatically by agarbage collector.
= Thereis aperformance overhead in starting the garbage collector.
= Thereisascheduling problem in when to start the garbage collector.

OOP: Object-Oriented Programming, Part 1

Object Creation In Java

e |nstantiazion: A process where storage is allocated for an
"empty" object.

e |nitialization: A process where instances variables are assigned
astart value.

e Dynamic instantiazion in Java by calling the new operator.
e Static instantiazion is not supported in Java.

e Cloning implemented in Java viathe method cl one() inclass
(bj ect.

e |nitialization isdonein constructors in Java.

OOP: Object-Oriented Programming, Part 1

10

Object Destruction in Java

e Object destruction in Javaisimplicit an done via a garbage
collector.

e A specia method f i nal i ze iscaled immediately before
garbage collection.
= Method in class (bj ect , that can be redefined.
= Takes no parameters and returnsvoi d.
= Used for releasing resources, e.g., close file handles.

= Rardy necessary.

OOP: Object-Oriented Programming, Part 1

11

Objects and References

e Variables of non-primitive types that are not initialized have the
special valuenul | .

» Ted: varl == null
= Assgnment. var2 = null
Object have identity but no name,

= |.e., not possibleto identify an object O1 by the name of the variable
referring to O1.

e Aliasing: Many variables referring to the same object

varl r ~ r ~
make: BMW cylinders: 6
var 2 nodel : ML / KW 130
engi ne: ref
VarS _ W, _ _J
car 3 engi nel

OOP: Object-Oriented Programming, Part 1

Constructors 1n Java

e A constructor is aspecia method where the instance variables
or anewly created object are initialized with "reasonable" start
values.

e A class must have a constructor
= A default is provided implicitly.
e A constructor must have the same name as the class.
e A constructor has no return value.
= That'swhy it is as specia method
e A constructor can be overloaded.
e A constructor can call other methods (but not vice-versa).

e A constructor can call other constructors (viat hi s).

OOP: Object-Oriented Programming, Part 1

13

Constructors in Java, cont.

e Every class should have a programmer defined constructor, that
explicitly guarantees correct initialization of new objects.

[l redefined Coin class

public class Coin {
public static final int HEADS

public static final int TAILS
private int face;
public Coin () {
face = TAILS;
[/ method in object
Flip();
// method on ot her object
ot her Qbj ect. doMorelnitialization();

I
o

OOP: Object-Oriented Programming, Part 1

14

Constructor Examples

public class Car {
private String nmake;
private String nodel ;
private doubl e price;

[l default constructor
public Car() {

this (llll’ llll, 0.0);
}

/'l give reasonabl e values to instance vari abl es
public Car(String nake, String nodel, double price){

this. mmke = nake;
t hi s. rodel = npdel ;
this.price = price;

OOP: Object-Oriented Programming, Part 1

15

Constructor Initialization

public class Garage {
Car carl = new Car(); [/
static Car car2 = new Car(); // created on first access

public class Garagel {
Car carl;
static Car car?2;
[/ Explicit static initialization
static {
car2 = new Car();
}

OOP: Object-Oriented Programming, Part 1

16

Value vs. Object

e A valueisadataelement without identity that cannot change
state.

e An object is an encapsulated data element with identity, state,
and behavior.

e An object can behave like value (or record). Isit agood idea?

e Vauesin Java are of the primitive type byt e, short, i nt,
| ong, fl oat , doubl e, bool ean, andchar.

e Wrapper classes exists in Java for make the primitive type act
as obj ects.

OOP: Object-Oriented Programming, Part 1

17

Strings 1n Java

e StringsinJavaareof theclassSt ri ng.
e Objectsof class St ri ng behave like values.

e Characteristics of Strings

= The notation "fly" instantiates the class String and initialize it with the
vaues"f", "I", and "y".

= TheclassSt ri ng has many different constructors.

= Vauesinastring cannot be modified (use St r i ngBuf f er instead).

= Class St ri ng redefines the method equal s() from classObj ect .

OOP: Object-Oriented Programming, Part 1

18

Arraysin Java

e Not pointerslikein C,

e Bounds checking at run-time

e Int[] nunbers; // equival ent
| nt nunber[];

e int[] nunbers = {1, 2, 3, 4, 5, 6, 7};
= Thedzeisfixed a compile-time!
e INt[] nunbers = new Integer[getSize()];

= Thegzeisfixed a run-time!
= Cannot beresized

for (int i = 0; I < nunbers.|ength; i++){
System out. println(nunbersf[i]);
}

OOP: Object-Oriented Programming, Part 1

Equality

e Arethereferences aand b equal?

e Reference Equality
= Returns whether a and b points to the same object.

e Shallow Equality
= Returnswhether a and b are structuraly smilar.
= Oneleve of object are compared.

e Deep Equality
= Returnswhere a and b have object-network that is structurally smilar.
= Multiple level of objects are compared recursively.

* Reference Equality b Shallow Equality b Deep Equality

OOP: Object-Oriented Programming, Part 1

20

Equality Examples

var 1l e ~ e
make: BMWN _
cylinders: 6
nodel : M
_ KW 130
engi ne: ref
var 2 \ y L
4)
make: BMWN
varl > nodel : M
: (
engi ne: ref
- W, cylinders: 6
~ ~ KW 130
make: BMWV L
var 2 > nodel : M
engi ne: ref

OOP: Object-Oriented Programming, Part 1

Equality Examples, cont.

var l

make: BMWN

var 2

nodel : ML

cyl i nders:

6

engi ne: ref

KW 130

make: BMN

OOP: Object-Oriented Programming, Part 1

nodel : ML

cyl i nders:

6

engi ne: ref

KW 130

22

Types of Equality In Java

= Equality on primitive data types

«8 == 7
o'pD == "¢
= Reference equality on object references
+ onePoi nt == anot her Poi nt
e equal s

= Method ontheclass(bj ect .
= Default works like reference equality.

= Can berefined in subclass
+ onePoi nt . equal s(anot her Poi nt)

OOP: Object-Oriented Programming, Part 1

23

Summary

e |nstance variables
e Strings are treated specially in Java

e |nitialization iscritical for objects
= Javaguarantees proper initialization using constructors
= Source of many errorsin C

e Java helps clean-up with garbage collection
= Only memory is clean, close those file handles explicitly!
= No memory leaks, "show stopper” in C/C++ project!

e Equality (three types of equality)

OOP: Object-Oriented Programming, Part 1

24

