Object-Oriented Programming

* Classes
* Object Creation and Destruction
* Equality

OOP: Object-Oriented Programming, Part 1

Example of aClass

public class Coin { // [Source Lewi s and Loft us]
public final int HEADS = O;
public final int TAILS = 1;
private int face;
public Coin () {

fl1ip();
}
public void flip (){

face = (int) (Math.random) * 2);
}

public int getFace (){
return face;
}

public String toString(){
String faceNane;
| f (face == HEADS)

f aceNane = "Heads":
el se
faceNane = "Tail s":

return faceNane;:

}

OOP: Object-Oriented Programming, Part 1

* A class encapsulates a set of properties

Classes in Java

= Some properties are hidden
= Theremaning properties are the interface of the class

cl ass Cl assNanme {
dat aDecl ar ati on
constructors
met hods

OOP: Object-Oriented Programming, Part 1

-

I nt X,
char c;

Y,

\

Data declarations

<

A\

% M ethod declarations

|nstance Variables

* Aninstance variable is a data declaration in aclass. Every

object instantiated from the class has its own version of the
Instance variables.

class Car {
private String naeke;
private String nodel;
private double price;

}
-) -) ~)
make: Ford make: Opel make: BMA
nodel : Taur us nodel : Kadet t nodel : ML
price: 100 price: 2500 price: 100
- v, - W, - J
carl car 2 car3

OOP: Object-Oriented Programming, Part 1

Methods In Java

* A method is afunction or procedure that reads and/or modifies
the state of the class.

char calc (int numl, int nun2, String nessage)

t T — ~— —
method parameter list
name
return The parameter list specifiesthe type
type and name of each parameter

The name of a parameter in the method
declaration is called aformal argument

OOP: Object-Oriented Programming, Part 1

Methods in Java, cont.

* All methods have areturn type

= voI d for procedures
= A primitive datatype or aclass for functions

* Thereturn vaue

= Return stop the execution of a method and jumps out
= Return can be specified with or without an expression

* Parameter are pass-by-value
= Class parameter are pass as areference

public double getPrice { public double getError {
return this.price; int a; // conpile-error
} a++:
}

public void increaseCounter {
counter = counter + 1;
}

OOP: Object-Oriented Programming, Part 1

Scope

public int nyFunction (){ /] start scope 1
Int x = 34,
/] x 1s now avail abl e
{ [/ start scope 2
int y = 98;

[/ both x and y are avail abl e
/]| cannot redefine x here compile-tine error
} /[l end scope 2
/'l now only x is avail abl e
/[l y is out-of-scope
return Xx;
} /'l end scope 1

* Theredefinition of x in scope 2 isalowed in C/C++

OOP: Object-Oriented Programming, Part 1

Object Creation in General

* Object can be created by
= |nstantiating aclass
= Copying an existing object
* |nstantiating

= Jatic: Objects are constructed and destructed at the same time as the
surrounding object.

= Dynamic: Objects are created by executing a specific command.
* Copying
= QOften called cloning

OOP: Object-Oriented Programming, Part 1

Object Destruction in General

* QObject can be destructed in two way.
= Explicit, e.qg., by calling a specia method or operator (C++).
= |mplicit, when the object is no longer needed by the program.

* Explicit
= An object in use can be destructed.
= Not handling destruction can cause memory leaks.

° Implicit
= QObjects are destructed automatically by agarbage collector.

= Thereisaperformance overhead in starting the garbage collector.
= Thereisascheduling problem in when to start the garbage collector.

OOP: Object-Oriented Programming, Part 1

Object Creation In Java

Instantiazion: A process where storage is allocated for an
"empty" object.

Initialization: A process where instances variables are assigned
astart value.

Dynamic instantiazion in Java by calling the new operator.

Static instantiazion is not supported in Java.

Cloning implemented in Java viathe method cl one() inclass
(bj ect .

Initialization 1s done in constructorsin Java

OOP: Object-Oriented Programming, Part 1

10

Object Destruction in Java

* Object destruction in Javaisimplicit an done via a garbage
collector.

* A specia method f i nal | ze iscaled immediately before

garbage collection.
= Method in class(bj ect , that can be redefined.
= Takes no parameters and returnsvoi d.
= Used for releasing resources, e.g., close file handles.

= Rarely necessary.

OOP: Object-Oriented Programming, Part 1

11

Objects and References

* Variables of non-primitive types that are not initialized have the
special value nul | .
= Ted: varl == nul |l
= Assignment:. var2 = nul |

Object have identity but no name,

= |.e.,, not possible to identify an object O1 by the name of the variable
referring to O1.

* Aliasing: Many variables referring to the same object

varl r ~ r ~
make: BW cylinders: 6

var 2 nodel : ML / KW 130

engi ne: ref

var 3 \- -
car 3 engi nel

OOP: Object-Oriented Programming, Part 1

Constructors 1n Java

* A constructor is aspecia method where the instance variables

or anewly created object are initialized with "reasonable" start
values.

* A class must have a constructor
= A default is provided implicitly.
e A constructor must have the same name as the class.

* A constructor has no return value.
= That'swhy it is as specia method
* A constructor can be overloaded.
* A constructor can call other methods (but not vice-versa).

* A constructor can call other constructors (viat hi s).

OOP: Object-Oriented Programming, Part 1

13

Constructors in Java, cont.

* Every class should have a programmer defined constructor, that
explicitly guarantees correct initialization of new objects.

/'l Redefined Coin class
public class Coin {
public final int HEADS
public final int TAILS
private int face;
public Coin () {
face = TAILS;
[/ method in object
flip();
// method on ot her object
ot her Qbj ect. doMorelnitialization();

TR
2o

OOP: Object-Oriented Programming, Part 1

14

Constructor Examples

public class Car {
private String nake;
private String nodel;
private double price;

/] default constructor
public Car() {

C\a.r (II 1] ’ m n ’ 0. O) ;
}

/'l give reasonabl e values to instance vari abl es
public Car(String nake, String nodel, double price){

this. make = nake;
t hi s. nodel = npdel ;
this.price = price;

}

OOP: Object-Oriented Programming, Part 1

15

Constructor Initialization

public class Garage {
Car carl = new Car(); [/
static Car car = new Car(); [/ created on first access

public class Garagel {
Car carl;
static Car car?2;
/[l Explicit static initialization
static {
car2 = new Car();
}

OOP: Object-Oriented Programming, Part 1

16

Value vs. Object

A value is a data element without identity that cannot change
state.

An object is an encapsulated data e ement with identity, state,
and behavior.

An object can behave like value (or record). Isit agood idea?

Valuesin Java are of the primitive type byt e, short, i nt,
| ong, f | oat , doubl e, bool ean, and char .

Wrapper classes exists in Java for make the primitive type act
as obj ects.

OOP: Object-Oriented Programming, Part 1

17

Strings 1n Java

* StringsinJavaare of theclassSt ri ng.
* Object of class St ri ng behave like values.

* Characteristics of Strings

= The notation "fly" instantiates the class String and initialize it with the
values "', "I", and "y".

= Theclass St r i ng has many different constructors.

= Valuesin astring cannot be modified (use St r i ngBuf f er instead).

= Class St ri ng redefinesthe method equal s() from classObj ect .

OOP: Object-Oriented Programming, Part 1

18

Arraysin Java

* Not pointerslikein C,
* Bounds checking at run-time

* int[] nunbers; // equivalent
| Nt nunber|[];

e int[] nunbers = {1, 2, 3, 4, 5, 6, 7};
= Theszeisfixed at compile-timel
°*int[] nunbers = new I nteger|[getSize()],;

= Thedgzeisfixed a run-time!
= Cannot be resized

for (int i = 0; I < nunbers.length; i++){
System out. println(nunbersf[i]);
}

OOP: Object-Oriented Programming, Part 1

Equality

* Arethereferences a and b equal?

* Reference Equality
= Returns whether a and b points to the same object.

e Shallow Equality

= Returns whether a and b are structuraly similar.
= Onelevd of object are compared.

* Deep Equality
= Returns where a and b have object-network that is structurally similar.
= Multiple level of objects are compared recursively.

* Reference Equality b Shallow Equality b Deep Equality

OOP: Object-Oriented Programming, Part 1

20

Equality Examples

OOP: Object-Oriented Programming, Part 1

var 1l e ~ e
make: BMA _
cylinders: 6
nodel : M
_ KW 130
engi ne: ref
var 2 \ y L
4)
make: BMA
varl > nodel : M
: (
engi ne: ref
- W, cylinders: 6
~ ~ KW 130
make: BMA L
var 2 > nodel : M
engi ne: ref
. W,

21

Equality Examples, cont.

var l

cyl i nders:

6

KW 130

var 2

OOP: Object-Oriented Programming, Part 1

cyl i nders:

6

make: BMA
nodel : M
engi ne: ref
make: BMA
nodel : M
engi ne: ref

KW 130

22

Types of Equality In Java

= Equality on primitive datatypes

8 == 7
o'pD == "¢
= Reference equality on object references
+ onePoi nt == anot her Poi nt
°* equal s

= Method on theclass(bj ect .
= Default works like reference equality.

= Can berefined in subclass
+ onePoi nt . equal s(anot her Poi nt)

OOP: Object-Oriented Programming, Part 1

23

Summary

* |nstance variables
* Strings are treated specially in Java

* |nitialization is critical for objects

= Java guarantees proper initialization using constructors
= Source of many errorsin C

* Java helps clean-up with garbage collection

= Only memory is clean, close those file handles explicitly!
= No memory leaks, "show stopper™ in C/C++ project!

* Equality (three types of equality)

OOP: Object-Oriented Programming, Part 1

24

