Software Engineering Techniques

* Low level design issues for programming-in-the-large.

e Software Quality

* Design by contract

= Pre- and post conditions
= Classinvariants

°* Tendo
°* Ten do nots

* Another type of summary

OOP: Software Engineering Techniques

Software Quality

® Correctness: Isthe ability of software to exactly perform their tasks,
as defined by the requirements and specifications.

® Robustness: Isthe ahility of software to function even in abnormal
conditions.

* Extendibility: Isthe ease with which software may be adapted to
changes of specifications.

* Reusability: Isthe ability of software to be reused, in whole or in part
for new applications.

* Compatible: Isthe ease with which software may be combined with
oor NS M TWATE.

Other Software Quality

* Efficiency: Isthe good use of hardware resources.

* Portability: Isthe ease with which software may be transferred to
various hardware and software environments.

* Verifiability: Isthe ease of preparing acceptance procedures, e.g., test
data and methods for finding bugs and tracing the bugs.

* Integrity: Isthe ability of software to protect its components against
unauthorized access and modification.

* Ease of use: Isthe ease of learning how to use the software, operating
It, preparing input data, interpreting results and recovering from
OOP: So%\‘/gr%gslﬁeeri ng Techniques

Design By Contract

* Purpose: To increase software quality by giving each part of a
software product certain obligations and benefits.

* Without contract

= All parts of aprogram take a huge responsibility

= All parts of aprogram check for all possible error possibilities (called
defensive programming).

= Thismakes alarge program larger and more complicated

* With contracts

= Methods can make assumptions
= Fewer checksfor errors possbilities
= Thismakes alarge program simpler.

OOP: Software Engineering Techniques

Design By Contract, Example

* A stack example the push method.

* Client programmer
= QObligation: Only call push(x) on a non-full stack
= Benefit: Gets x added on top of stack.

* Class programmer

= QObligation: Make sure that x is pushed on the stack.
= Benefit: No need to check for the case that the stack is aready full

* Think Win-Win!

OOP: Software Engineering Techniques

Pre and Postconditions

* A precondition expresses the constraints under which a method
will function properly.
= Theresponsbility of the caller to fulfill the precondition.

* A postcondition expresses properties of the state resulting from
a method's execution.
= Theresponshility of the method to fulfill the postcondition

* Both preconditions and postconditions are expressed using
logical expressions also called assertions

* Other issues

= Classinvariantss
= Loop invariants

OOP: Software Engineering Techniques

Javal.4d'sassert Keyword

* An assertion is a boolean expression that a devel oper

specifically proclaims to be true during program runtime
execution [Source: java.sun.com].

°* New to Java 1.4.
* Used for expressing both pre- and postconditions.

* Syntax:

assert expressionl;
assert expressionl : expression2;

OOP: Software Engineering Techniques

Javal.d'sassert Keyword, cont.

* Evauation of an assert statement.

Evaluateexpr essi onl
If true
no further action
else
If expr essi on2 exists
Evaluate expr essi on2 and usetheresultina
single-parameter form of the Assert i onErr or
constructor
else
Usethe default Assert i onEr r or constructor

OOP: Software Engineering Techniques

assert, Examples

assert 0 <= val ue;

assert 0 <= value : "Value nust be positive " + val ue;
assert ref !'= null;

assert ref !'=null : "Ref is null in myFunc";

assert newCount == (ol dCount + 1);

assert nmyQbj ect. nyFunc(nyParanml, nyParanl);

OOP: Software Engineering Techniques

Pre- and Postcondition, Example

| mport java.util.?*;

public class AStack{
private LinkedList stck = new LinkedList();
private final int no = 42;

public boolean full () {
| f (stck.size() >= no) return true;
el se return fal se;
}
publ i c bool ean enpty() {
return full();

}

public void push(Cbject v) {
/] precondition
assert !full(): "Stack is full";
stck. addFirst(v);
/] postconditions
assert lenmpty();
assert top().equal s(v);

}

OOP: Software Engineering Techniques

10

Pre- and Postcondition, Example

public Cbject top() {
assert lenpty();
return stck.getFirst();
// no post conditions
}
public Cbject pop() {
assert !lemty();
return stck.renoveFirst();
assert !full();

}

public static void main(String[] args) {
ASt ack as = new ASt ack();
}

}

OOP: Software Engineering Techniques

11

assert and Inheritance

cl ass Base{
public void nyMet hod (bool ean val){
assert val : "Assertion failed: val 1s " + val;
Systemout.println ("OK");

}
}

public class Derived extends Base {
public void nyMethod (bool ean val){

assert val : "Assertion failed: val 1s " + val;
Systemout.println ("CK");

Lublic static void main (String[] args){
tr%&iived derived = new Derived();

}

}

OOP: Software Engineering Techniques 12

assert and Inheritance, cont

* Preconditions cannot be strengthened in subclasses.
* Postconditions cannot be weakened in subclasses.

OOP: Software Engineering Techniques

13

Class Invariant

A classinvariant is an expression that must be fulfilled by all

objects of the class at all stable timesin the lifespan of an object
= After object creation
= Before execution a public method
= After execution of a public method

A classinvariant is extra requirement on the pre and
postconditions of methods.

Class invariants can be used to express consistency checks

between the data representation and the method of aclass, e.g.,
after iIf astack i1s empty then size of the linked list is zero.

Class invariants cannot be weakened in subclasses.
Not supported in Java.

OOP: Software Engineering Techniques 14

Ten Dos

* Logical naming
= Classnamep3452 vs. classnameVehi cl e
= The foundation for reuse!
* Symmetry
= |f aget method then aso aset method
= |[f ani nsert method then also adel et e method
= Makestesting easier.
= To avoid "surprises' for the clients.
* Add extra parameters to increase flexibility

= split (string str) vs
split (string str, char ch default

= To anticipate "small" changes.

OOP: Software Engineering Techniques

15

Ten Dos

* Set amaximum line size (80-100 characters)
= To avoid more the one thing being done in the same line of code
= To be ableto print the code with out wrapping. For code reviews
* Set the maximum of lines for a method
= \What can be shown on a screen (30-60 lines)
= To increase readability
= To increase modularity
° |ndent your code
= |ncreases readability

* Avoid side-effects

= |f amethod refersto an object in a database and the object does not exist
then raise and error do not create the object.

= Make program logic impossible to understand

OOP: Software Engineering Techniques

16

Ten Dos

* Add commentsin method

= Comment where you are puzzled yoursdlf or is puzzled the day after you
wrote the code

= Do not comment the obvioud!

* Look at (and comment on) other peoples code

= Code reviews are agood investment
= |ncreases readability of code
= A good way to learn from each other

* Beconsistent
= Can automate global changes with scripts

OOP: Software Engineering Techniques

17

Ten Do Nots

* Make amethod do more than one thing

= split_and store (string str, char ch) vs.split
(string str, char ch) andstore (string array)

= Makes the method more complicated
= Decreases reuse

* Make amethod take more than 7+2 parameters
= Can parameters be clustered in objects?
* Make morethan 4 level of nesting in a method

= if {if{uf{if{if }}}}}
= Decreases readability

* Make use of "magic" numbers

= WHERE enpl oyee.status = '1' vs
VWHERE enpl oyee. st atus = gl obal . open

OOP: Software Engineering Techniques

18

Ten Do Nots

* Make use of Copy-and-Paste facilities

= Redundant code
= Make anew method or use inheritance

* Become mad and aggressive if some one suggest changes to
your code.

* Have more than one return statement in a function
* SKkip exception handling

* SKip testing

* Assume the requirement specification is stable

OOP: Software Engineering Techniques

19

Summary

* Any fool can write code that a computer can understand. Good
orogrammers write code that humans can understand. (Fowler)

* Debug only code - comments can lie.

* |f you have too many special cases, you are doing it wrong.

* Get your data structures correct first, and the rest of the
program will write itself.

* Testing can show the presence of bugs, but not their absence.

* Thefirst step in fixing a broken program is getting it to fail
repeatedly.

* The fastest algorithm can frequently be replaced by onethat is
almost as fast and much easier to understand.

OOP: Software Engineering Techniques

20

Summary, cont.

* The cheapest, fastest, and most reliable components of a
computer system are those that are not there.

* (Good judgement comes from experience, and experience
comes from bad judgement.

* Do not use the computer to do things that can be done
efficiently by hand.

* |tisfaster to make afour-inch mirror then a six-inch mirror

than to make a six-inch mirror.
[Thompson's Rule for first-time telescope makers|

* |f you lie to the computer, it will get you.

* |Inside of every large program is asmall program struggling to
get out.

OOP: Software Engineering Techniques 21

