
Common Warehouse Metamodel
(CWM)

Specification

Volume 2. Extensions

Version 1.0, 2 February 2001

Copyright 1999, IBM Corporation

Copyright 1999, Unisys Corporation

Copyright 1999, NCR Corporation

Copyright 1999, Hyperion Solutions

Copyright 1999, Oracle Corporation

Copyright 1999, UBS AG

Copyright 1999, Genesis Development Corporation

Copyright 1999, Dimension EDI

The companies listed above hereby grant a royalty-free license to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, so long as
the OMG reproduces the copyright notices and the below paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation. Submission of this document
does not represent a commitment to implement any portion of this specification in the products of
the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material. The
information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except
as otherwise provided herein, no part of this work may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems--without the permission of one of the copyright owners.
All copies of this document must include the copyright and other information contained on this
page.

The copyright owners grant member companies of the OMG permission to make a limited number
of copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA, OMG, and Object Request Broker are trademarks of Object Management Group.

2 February 2001 CWM 1.0 Vol 2 iii

1. Preface . 1-11

1.1 Introduction . 1-11

1.2 Guide to Volume 2 . 1-12

1.3 Organization of the CWM Extensions (CWMX) 1-13

2. Entity Relationship . 2-15

2.1 Overview . 2-15

2.2 Organization of the Entity Relationship Package 2-15

2.3 Entity Relationship Classes . 2-16
2.3.1 CandidateKey . 2-16
2.3.2 Attribute . 2-17
2.3.3 Domain . 2-17
2.3.4 Entity . 2-20
2.3.5 ForeignKey. 2-21
2.3.6 Model . 2-21
2.3.7 ModelLibrary . 2-21
2.3.8 NonUniqueKey. 2-22
2.3.9 PrimaryKey . 2-22
2.3.10 Relationship . 2-22
2.3.11 RelationshipEnd . 2-23
2.3.12 SubjectArea . 2-24

2.4 Entity Relationship Associations 2-24
2.4.1 DomainBaseType . 2-24
2.4.2 ForeignKeyImplements

Protected. 2-25

2.5 OCL Representation of Entity Relationship Constraints 2-25

3. COBOL Data Division . 3-27

3.1 Overview . 3-27

3.2 Organization of the COBOL Data Division Package . . . 3-27

3.3 COBOL Data Division Classes 3-28
3.3.1 COBOLFD . 3-28
3.3.2 COBOLFDIndex . 3-33
3.3.3 COBOLField . 3-34
3.3.4 COBOLItem Abstract

3-38
3.3.5 FileSection . 3-40
3.3.6 LinageInfo . 3-41
3.3.7 LinkageSection . 3-42

iv CWM 1.0 Vol 2 2 February 2001

3.3.8 OccursKey . 3-42
3.3.9 Renames . 3-43
3.3.10 ReportWriterSection 3-44
3.3.11 Section . 3-44
3.3.12 Usage . 3-45
3.3.13 WorkingStorageSection 3-45

3.4 COBOLData Associations . 3-45
3.4.1 FDDepending Protected

3-45
3.4.2 FDStatusID .

Protected. 3-46
3.4.3 FileSectionFD Protected

3-46
3.4.4 LinageField.

Protected. 3-47
3.4.5 LinageInfoField .

Protected. 3-47
3.4.6 OccursDependingOn

Protected. 3-48
3.4.7 OccuringKeyInfo .

Protected. 3-48
3.4.8 OccursKeyField .

Protected. 3-49
3.4.9 PaddingField.

Protected. 3-49
3.4.10 Redefines .

Protected. 3-50
3.4.11 RelativeOffsetField.

Protected. 3-51
3.4.12 RenamesFirst .

Protected. 3-51
3.4.13 RenamesThru .

Protected. 3-52
3.4.14 SectionRecord . 3-52

3.5 OCL Representation of COBOLData Constraints 3-53

4. DMS II . 4-55

4.1 Overview . 4-55

4.2 Organization of the DMSII Package 4-55

4.3 DMSII Classes . 4-57
4.3.1 Access . 4-57
4.3.2 AutomaticSubset . 4-57

2 February 2001 CWM 1.0 Vol 2 v

4.3.3 DASDLComment . 4-57
4.3.4 DASDLProperty . 4-58
4.3.5 Database . 4-59
4.3.6 DataItem . 4-60
4.3.7 DataSet . 4-65
4.3.8 FieldBit. 4-67
4.3.9 KeyItem . 4-67
4.3.10 PhysicalAccessOverride 4-68
4.3.11 PhysicalDatabase . 4-68
4.3.12 PhysicalDataSet . 4-69
4.3.13 PhysicalDataSetOverride 4-69
4.3.14 PhysicalSet . 4-69
4.3.15 PhysicalSetOverride 4-69
4.3.16 Remap . 4-70
4.3.17 RemapItem . 4-71
4.3.18 Remark . 4-73
4.3.19 Set. 4-74
4.3.20 SetStructure . 4-76
4.3.21 Subset . 4-76
4.3.22 VariableFormatPart. 4-77

4.4 DMSII Associations . 4-77
4.4.1 DASDLPropertyOwner 4-77
4.4.2 DataItemStructure. 4-78
4.4.3 DataSetPartitionSet

Protected. 4-78
4.4.4 FieldBits .

Protected. 4-79
4.4.5 KeyDataItem .

Protected. 4-79
4.4.6 OccursDepending .

Protected. 4-80
4.4.7 RemapItems .

Protected. 4-80
4.4.8 RemappedStructure 4-81
4.4.9 SetPartitionSet .

Protected. 4-81

4.5 OCL Representation of DMSII Constraints 4-82

5. IMS . 5-87

5.1 Overview . 5-87

5.2 Organization of the IMS Package. 5-88

vi CWM 1.0 Vol 2 2 February 2001

5.3 IMS Classes . 5-92
5.3.1 ACBLIB . 5-92
5.3.2 AccessMethod . 5-92
5.3.3 DBD . 5-93
5.3.4 DBDLib . 5-96
5.3.5 DEDB . 5-97
5.3.6 Dataset . 5-98
5.3.7 Exit . 5-103
5.3.8 Field . 5-106
5.3.9 HDAM . 5-108
5.3.10 HIDAM . 5-109
5.3.11 INDEX . 5-110
5.3.12 LCHILD . 5-112
5.3.13 MSDB. 5-114
5.3.14 PCB . 5-115
5.3.15 PSB. 5-120
5.3.16 PSBLib . 5-123
5.3.17 SecondaryIndex . 5-124
5.3.18 Segment . 5-127
5.3.19 SegmentComplex . 5-131
5.3.20 SegmentLogical . 5-135
5.3.21 SenField . 5-136
5.3.22 SenSegment . 5-138

5.4 IMS Associations . 5-140
5.4.1 Captures .

protected . 5-140
5.4.2 CapturesExit protected

5-140
5.4.3 ContainsDataset protected

5-141
5.4.4 ContainsDBD protected

5-141
5.4.5 ContainsPSB.

protected . 5-142
5.4.6 ContainsSegment .

protected . 5-142
5.4.7 ExtendedByAccessMethod protected

5-143
5.4.8 HasIndexSource protected

5-143
5.4.9 HasSource protected

5-144

2 February 2001 CWM 1.0 Vol 2 vii

5.4.10 Indexes .
protected . 5-144

5.4.11 IndexShares .
protected . 5-145

5.4.12 Indices .
protected . 5-145

5.4.13 IsDuplicateData protected
5-146

5.4.14 IsInDBDLib .
protected . 5-146

5.4.15 IsIndexedBy .
protected . 5-147

5.4.16 IsInPSBLib .
protected . 5-147

5.4.17 IsLChild .
protected . 5-148

5.4.18 IsLParent .
protected . 5-148

5.4.19 IsPaired.
protected . 5-149

5.4.20 ParentChild.
protected . 5-149

5.4.21 PcbToDbd.
protected . 5-150

5.4.22 PcbToSenSegment .
protected . 5-150

5.4.23 PrimaryIndex protected
5-151

5.4.24 PsbToPcb protected
5-151

5.4.25 Searched protected
5-152

5.4.26 SenfldToField .
protected . 5-152

5.4.27 SensegMapsTo protected
5-153

5.4.28 SensegToSenfld .
protected . 5-153

5.4.29 SequencedBy protected
5-154

5.4.30 StoresSegment .
protected . 5-154

viii CWM 1.0 Vol 2 2 February 2001

5.4.31 Subsequenced protected
5-155

5.5 OCL Representation of IMS Constraints 5-155

6. Essbase . 6-157

6.1 Overview . 6-157

6.2 Organization of the Essbase Package 6-157

6.3 Essbase Classes . 6-159
6.3.1 Alias . 6-159
6.3.2 Application . 6-159
6.3.3 Comment . 6-160
6.3.4 Consolidation . 6-160
6.3.5 CurrencyConversion. 6-160
6.3.6 DataStorage . 6-160
6.3.7 Database . 6-161
6.3.8 Dimension . 6-162
6.3.9 Formula . 6-163
6.3.10 Generation . 6-163
6.3.11 ImmediateParent. 6-163
6.3.12 Level. 6-163
6.3.13 LinkedPartition. 6-164
6.3.14 MemberName . 6-164
6.3.15 OLAPServer . 6-164
6.3.16 Outline . 6-164
6.3.17 Partition abstract

6-165
6.3.18 ReplicatedPartition . 6-166
6.3.19 TimeBalance. 6-167
6.3.20 TransparentPartition 6-167
6.3.21 TwoPassCalculation 6-167
6.3.22 UDA . 6-167
6.3.23 VarianceReporting . 6-168

6.4 Essbase Associations . 6-168
6.4.1 DatabaseOwnsOutline 6-168
6.4.2 OutlineReferencesDimensions 6-168

6.5 OCL Representation of Essbase Constraints 6-169

7. Express . 7-171

7.1 Overview . 7-171

7.2 Organization of the Express Package 7-171

2 February 2001 CWM 1.0 Vol 2 ix

7.3 Express Classes . 7-176
7.3.1 AggMap . 7-176
7.3.2 AggMapComponent 7-177
7.3.3 AliasDimension . 7-178
7.3.4 Composite . 7-178
7.3.5 Conjoint . 7-179
7.3.6 Database . 7-180
7.3.7 Dimension abstract

7-180
7.3.8 Formula . 7-180
7.3.9 Model . 7-181
7.3.10 PreComputeClause . 7-181
7.3.11 Program . 7-182
7.3.12 Relation . 7-183
7.3.13 SimpleDimension . 7-184
7.3.14 ValueSet. 7-186
7.3.15 Variable . 7-187
7.3.16 Worksheet . 7-188

7.4 Express Associations . 7-189
7.4.1 AggMapComponentDimension 7-190
7.4.2 AggMapComponentRelation 7-190
7.4.3 AggMapComponents protected

7-191
7.4.4 AliasDimensionBaseDimension protected

7-191
7.4.5 ComputeClause protected

7-192
7.4.6 RelationReferenceDimension 7-192
7.4.7 SimpleDimensionDataType 7-193
7.4.8 ValueSetReferenceDimension 7-193
7.4.9 WorksheetColumnDimension 7-194
7.4.10 WorksheetRowDimension 7-194

7.5 OCL Representation of Express Constraints 7-195

8. InformationSet. 8-197

8.1 Overview . 8-197

8.2 Organization of the InformationSet Package 8-198
8.2.1 InformationSet Inheritance 8-199
8.2.2 InformationSet Relationships 8-200

8.3 InformationSet Classes. 8-202
8.3.1 InformationSet . 8-202

x CWM 1.0 Vol 2 2 February 2001

8.3.2 InfoSetAdministration 8-203
8.3.3 InfoSetDate. 8-204
8.3.4 Rule . 8-205
8.3.5 Segment . 8-206
8.3.6 SegmentRegion . 8-207

8.4 InformationSet Associations . 8-208
8.4.1 InformationSetReferencesInfoSetAdministration 8-

208
8.4.2 InformationSetReferencesRule 8-208
8.4.3 InfoSetAdministrationReferencesInfoSetDates 8-209
8.4.4 SegmentReferencesRule 8-209
8.4.5 SegmentRegionReferencesRule 8-210

8.5 OCL Representation of InformationSet Constraints. . . . 8-210

9. Information Reporting . 9-211

9.1 Overview . 9-211

9.2 Organization of the Information Reporting Metamodel . 9-211
9.2.1 Dependencies . 9-211
9.2.2 Major Classes and Associations 9-211

9.3 Inheritance of the Information Reporting Metamodel . . 9-213

9.4 Information Reporting Classes . 9-213
9.4.1 Report . 9-213
9.4.2 ReportAttribute. 9-214
9.4.3 ReportExecution . 9-214
9.4.4 ReportField. 9-214
9.4.5 ReportGroup . 9-214
9.4.6 ReportPackage . 9-215

9.5 Information Reporting Associations. 9-215
9.5.1 ReportGroupReferencesQueryExpressions. . 9-215

9.6 OCL Representation of Information Reporting Constraints 9-216

References References-217

2 February 2001 CWM 1.0 Vol 2 1-11

Preface 1

1.1 Introduction

CWM provides interchange for the common portions of data warehouse tool
metamodels. However, the CWM metamodel is also intended to be a foundation for
tool-specific metamodels and may be extended to be a tool-specific metamodel.

There are two general extension techniques to CWM:

1. Use of the general extension mechanisms provided by the UML Object Model,
namely Tagged Values and Stereotypes. This approach is normally used for minor
extensions (for example additional attributes of model objects) that are not
significant enough to require the production of a tool-specific model.

2. Non-normative model extensions documented as additional metamodel packages
that extend the CWM metamodel.

In both cases, tools must share a common understanding of the extension to be able to
interchange the extended information.

The chapters provided in this volume represent examples of non-normative model
extensions to the CWM metamodel. They should be treated only as examples, and
may be changed or updated by the vendors without notice or revision to this volume.

1-12 CWM 1.0 Vol 2 2 February 2001

1

1.2 Guide to Volume 2

Volume 2 consists of the following chapters:

Chapter 1 Preface

Introduces this volume.

Chapter 2 Entity Relationship

Describes the ER package which contains classes and associations that represent
metadata of entity-relationship models. This package is an extension of the CWM
Foundation package.

Chapter 3 COBOL Data Division

Describes the COBOL Data package which contains classes and associations that
represent metadata of COBOL Data Divisions. This package is an extension of the
CWM Record package.

Chapter 4 DMS II

Describes the DMS II package which contains classes and associations that
represent metadata of DMS II data resources. This package is an extension of the
CWM Record package.

Chapter 5 IMS

Describes the IMS Database package which contains classes and associations that
represent metadata of IMS data resources. This package is an extension of the
CWM Record package.

Chapter 6 Essbase

Describes the Essbase package which contains classes and associations that
represent metadata of Essbase data resources. This package is an extension of the
CWM Multidimensional package.

Chapter 7 Express

Describes the Express package which contains classes and associations that
represent metadata of Express data resources. This package is an extension of the
CWM Multidimensional package.

Chapter 8 Information Set

Describes the InformationSet package which contains classes and associations that
represent metadata of Information Set tools. This package is an extension of the
CWM OLAP package.

Chapter 9 Information Reporting

Describes the InformationReporting package which contains classes and
associations that represent metadata of information reporting tools. This package is
an extension of the CWM InformationVisualization package.

References

Lists the references used in this volume.

2 February 2001 CWM 1.0 Vol 2 1-13

1

1.3 Organization of the CWM Extensions (CWMX)

The CWMX Metamodel uses the same package structure as CWM to control
complexity, promote understanding, and support reuse. The packages are grouped as
follows:

• Foundation package

• Entity Relationship (ER) package

• Resource package

• COBOL Data package

• DMS II package

• IMS Database package

• Essbase package

• Express package

• Analysis package

• Information Set package

• Information Reporting package

1-14 CWM 1.0 Vol 2 2 February 2001

1

2 February 2001 CWM 1.0 Vol 2 2-15

Entity Relationship 2

2.1 Overview

Entity Relationship (ER) models are used frequently as a means of describing business
processes and the data on which they operate. The ER model was a precursor of
today’s object models and is probably the first data model to have the adjective
“semantic” applied to it.

Although the ER model is widely used to capture some aspects of application logic and
data structure, there have been surprisingly few implementations of the model as data
resources. Most development teams have preferred to map their ER models to existing
data systems such as relational database management systems. This dearth of physical
implementations has meant that modelers have been free to elaborate the basic ER
model in any (and all) convenient directions with little or no impact on deployed
information systems. Consequently, variants of the ER model abound.

Because of its importance as a design and tool model, the CWM includes a
foundational ER model from which individual tool models may derive their specific
extensions. Doing so will improve the extent to which ER models can be interchanged
between various tooling environments.

2.2 Organization of the Entity Relationship Package

The ER package depends on the following packages:

• org.omg::CWM::Core

• org.omg::CWM::Relationships

• org.omg::CWM::Foundation::Expressions

• org.omg::CWM::Foundation::KeysIndexes

Many ER model concepts map directly onto equivalent CWM concepts, making the
ER classes seem to be little more than renamings of CWM classes. However, the
renaming provided by deriving ER model classes from appropriate CWM classes is

2-16 CWM 1.0 Vol 2 2 February 2001

2

considered valuable to promote understanding. In such cases, the discussion of the role
of ER classes has been kept minimal. However, when important modeling choices
were required, they are discussed in the following class descriptions.

Figure 2-1 Entity Relationship Package

2.3 Entity Relationship Classes

2.3.1 CandidateKey

Candidate keys are keys that meet the requirements for being a primary key. However,
only keys that are members of the PrimaryKey subclass have actually been identified
as primary keys.

Superclasses

UniqueKey

NonuniqueKey

PrimaryKey

CandidateKey

Entity

Attribute

Model

ModelLibrarySubjectArea

Relationship RelationshipEnd

delete : ExpressionNode
update : ExpressionNode
insert : ExpressionNode
/ foreignKey : ForeignKey

ForeignKey

/ relationshipEnd : RelationshipEnd
0..1

0..1

0..1

0..1

KeyRelationship
(from KeysIndexes)

Index
(from KeysIndexes)

UniqueKey
(from KeysIndexes)

Attribute
(from Core)

Model
(from Core)

Subsystem
(from Core)

Package
(from Core)

Class
(from Core)

AssociationEnd
(from Relationships)

Association
(from Relationships)

*

/feature

*{ordered}

/owner

Classifier
(from Core)

Domain

default : ExpressionNode
validationRule : ExpressionNode
/ baseType : Classifier

0..1

*

baseType

0..1

*

2 February 2001 CWM 1.0 Vol 2 2-17

2

2.3.2 Attribute

Instances of the ER model Attribute class represent characteristics of some Entity or
Relationship instance.

Superclasses

Attribute

2.3.3 Domain

Domain instances represent restrictions on data types declared elsewhere and can be
used as the type of Attribute instances. Domains restrict, in a manner described by
their validationRule attribute, the values of the type identified via the baseType
reference that can be stored in the Attribute. Because the baseType reference is
optional, Domains are not required to have a base type; in such cases, the type of the
Domain is the type of the default expression.

The following figures illustrate ways that Domains can be used to subset a enumerated
and numeric data types.

2-18 CWM 1.0 Vol 2 2 February 2001

2

Figure 2-2 Using Domains to subset an enumerated type.

WeekDay :
Enumeration

Sunday :
EnumerationLiteral

Monday :
EnumerationLiteral

Tuesday :
EnumerationLiteral

Wednesday :
EnumerationLiteral

Thursday :
EnumerationLiteral

Friday :
EnumerationLiteral

Saturday :
EnumerationLiteral

WorkDay :
Domai n

validationRule :
ExpressionNode

body =
"Monday..Friday"

default :
Exp ressionNode

bod y =
"Monday"

Day :
Attribute

Schedule :
Entity

baseType

type

fea ture

2 February 2001 CWM 1.0 Vol 2 2-19

2

Figure 2-3 Using Domains to subset a numeric data type.

Superclasses

Classifier

Attributes

validationRule

Contains an expression that describes the valid values for this attribute. If the
baseType reference is not empty, the expression restricts the values of the base
type indicated by it.

type: ExpressionNode

multiplicity: exactly one

Schedule :
Entity

HoursWorked
: At tribute

PostiveInteger :
Domain

val idationRule :
ExpressionNode

body =
">= 0"

default :
ExpressionNode

body =
"0"

Integer :
DataType

feature

typ e

baseType

2-20 CWM 1.0 Vol 2 2 February 2001

2

default

References

baseType

Constraints

A Domain instance may not be its own base type. [C-1]

2.3.4 Entity

Instances of the Entity class are the primary objects in a ER model. They represent
ideas, processes, and things of interest in an application system or tool model.

Superclasses

Class

Contained Elements

Attribute

CandidateKey

PrimaryKey

ForeignKey

NonUniqueKey

An expression indicating the default value of Attributes for which this Domain
serves as the type.

type: ExpressionNode

multiplicity: zero or one

Identifies a Classifier instance that represents the type upon which the Domain
instance is based.

class: Classifier

defined by: DomainBaseType::baseType

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 2-21

2

2.3.5 ForeignKey

A ForeignKey instance identifies a set of attributes in one Entity instance that uniquely
identifies an instance of another Entity containing a matching primary or candidate key
value.

Superclasses

KeyRelationship

References

relationshipEnd

2.3.6 Model

Instances of this class represent ER models. Models are collected together by
ModelLibrary instances.

Superclasses

Model

Contained Elements

Domain

Entity

Relationship

SubjectArea

2.3.7 ModelLibrary

A collection of ER models and model libraries. Model libraries can be nested using the
inherited CWM ElementOwnership association between Namespace and

Identifies the RelationshipEnd of the Relationship that is implemented by the
current ForeignKey instance.

class: RelationshipEnd

defined by: ForeignKeyImplements::relationshipEnd

multiplicity: zero or one

inverse:: RelationshipEnd::foreignKey

2-22 CWM 1.0 Vol 2 2 February 2001

2

ModelElement. The same inherited CWM association is used to define ER package
Model instances that reside in the current model library.

Superclasses

Subsystem

Contained Elements

Model

ModelLibrary

2.3.8 NonUniqueKey

A NonUniqueKey in the ER model is equivalent to a CWM Index. Values of the keys
are not necessarily either unique or required.

Superclasses

Index

2.3.9 PrimaryKey

PrimaryKey instances identify a key that uniquely identifies each instance of an Entity
and that is distinguished by the modeler as the Entity’s primary key.

Superclasses

CandidateKey

2.3.10 Relationship

ER Relationship instances represent links between Entity instances. Because they
derive from AssociationClass, Relationships can have attributes as allowed by some
ER model extensions. This derivation also allows Relationship instances to be used as
the end points of other Relationship instances.

Superclasses

Association

Contained Elements

RelationshipEnd

2 February 2001 CWM 1.0 Vol 2 2-23

2

2.3.11 RelationshipEnd

The RelationshipEnd class extends CWM’s AssociationEnd class to permit the
definition of separate delete, update, and insert rules on each end of a Relationship.

An ER model Relationship instance owns two or more RelationshipEnds via an
inherited CWM association between the Association and AssociationEnd classes.

Superclasses

AssociationEnd

Attributes

delete

update

insert

An expression describing the integrity constraint rule for deletes on this
RelationshipEnd instance.

type: ExpressionNode

multiplicity: Exactly one

An expression describing the integrity constraint rule for updates on this
RelationshipEnd instance.

type: ExpressionNode

multiplicity: exactly one

An expression describing the integrity constraint rule for inserts on this
RelationshipEnd instance.

type: ExpressionNode

multiplicity: exactly one

2-24 CWM 1.0 Vol 2 2 February 2001

2

References

foreignKey

2.3.12 SubjectArea

A meaningful subset of the instances in an ER Model instance. Normally, a
SubjectArea instance will consist of the Entity and Relationship instances it owns or
imports. The inherited CWM ElementOwnership association between ModelElement
and Namespace is used to link SubjectArea instances to their owning Model instances.

Superclasses

Package

2.4 Entity Relationship Associations

2.4.1 DomainBaseType

Identifies a Classifier instance that represents the type upon which the Domain
instance is based.

Ends

baseType

domain

Identifies a ForeignKey instance that implements this RelationshipEnd.

class: ForeignKey

defined by: ForeignKeyImplements::foreignKey

multiplicity: zero or one

inverse: ForeignKey::relationshipEnd

Identifies the Classifier instance that is the type upon which the Domain is based.

class: Classifier

multiplicity: zero or one

Identifies the Domains for which a Classifier instance acts as the base type.

class: Domain

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 2-25

2

2.4.2 ForeignKeyImplements Protected

Identifies the ForeignKey that implements a particular RelationshipEnd.

Ends

relationshipEnd

foreignKey

2.5 OCL Representation of Entity Relationship Constraints

Identifies the RelationshipEnd instance that this ForeignKey instance implements.

class: RelationshipEnd

multiplicity: zero or one

Identifies the ForeignKey instance that implements the RelationshipEnd instance.

class: ForeignKey

multiplicity: zero or one

[C-1] A Domain instance may not be its own base type.

context Domain inv:

self.baseType <> self

2-26 CWM 1.0 Vol 2 2 February 2001

2

2 February 2001 CWM 1.0 Vol 2 3-27

COBOL Data Division 3

3.1 Overview

The concepts and ideas implicit in the definition of the COBOL language’s DATA
DIVISION were one of the earliest (if not the first) formalizations of the ubiquitous
record model. A COBOL program contains much more than just record descriptions.
However, because neither CWM nor UML attempt to describe programming languages
directly, only the DATA DIVISION is described here. The model presented here is
compliant to the COBOL 85 language standard [COBOL].

The primary purpose of the COBOL DATA DIVISION metamodel extension package
in CWM is to allow the structure of DATA DIVISIONs to be captured so that their
usage of other model elements (such as RecordDefs and Fields) can be modeled. This
allows definition of files and databases created by COBOL programs as well as direct
support for tools that attempt to track the lineage and determine the impact of proposed
changes to COBOL application programs. The metamodel does not, however, provide
sufficient structure to support tools that want to capture the structure of a DATA
DIVISION source into a CWM repository and then be able to faithfully reproduce the
source on demand.

The COBOL DATA DIVISION metamodel extension also serves as an example of the
use of the CWM Record metamodel. The CWM Record package is intended as a
foundation upon which many record-oriented programming languages can be
described. The COBOL Data Division extension package is provided as example
demonstrating appropriate usage of CWM and UML classes in modeling the data
structure representation parts of this and similar programming language environments.

3.2 Organization of the COBOL Data Division Package

The COBOL Data Division package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::KeysIndexes

3-28 CWM 1.0 Vol 2 2 February 2001

3

• org.omg::CWM::Resource::Record

Figure 3-1 COBOLDataDivision Package

3.3 COBOL Data Division Classes

3.3.1 COBOLFD

Represents COBOL FD definitions. FDs describe files that are used in COBOL
programs.

The size of COBOLFD records may vary within a range bounded by the contents of
the minRecords and maxRecords attributes and with a current size given by the field
identified by the dependsOn reference. Two attributes and a reference are used to
represent the necessary information. To illustrate the roles they play, the names of the
attributes and the reference are substituted into the following COBOL syntax fragment:

RECORD IS VARYING FROM minRecords TO maxRecords DEPENDING ON
dependsOn

DataType
(from Core)

WorkingStorageSection ReportWriterSection

RecordFile
(f rom Record)

LinkageSection

Field
(f rom Record)

Classifier
(from Core)

ModelElement
(from Core)

Usage

Class
(f rom Core)

Index
(f rom Key sIndexes)

RecordDef
(f rom Record)

Section
/ record : RecordDef

**
record

*

{ordered}

*

COBOLFDIndex
isAlternate : Boolean OccursKey

isAscending : Boolean
/ occursKeyField : COBOLField
/ occursKeyOf : COBOLField

Renames
/ firstField : COBOLField
/ thruField : COBOLField

FileSection
/ cobolFD : COBOLFD

COBOLField

level : Integer
signKind : SignKindType
isFiller : Boolean
isJustifiedRight : Boolean
isBlankWhenZero : Boolean
isSynchronized : Boolean
picture : String
occursLower : Integer
occursUpper : Integer
indexName : String
isExternal : Boolean
isGlobal : Boolean
/ dependingOnField : COBOLField
/ occursKeyInfo : OccursKey
/ occursKeyFieldInfo : OccursKey
/ redefinedByField : COBOLField
/ redefinedField : COBOLField
/ firstRenames : Renames
/ thruRenames : Renames

0..1

*

redefinedField 0..1

redefinedByField *

*

1

occursKeyInfo

*{ordered}

occursKeyOf 1

1

*

occursKeyField
1

occurs KeyFieldInfo *

1* firstField 1firstRenames*

0..1* thruField 0..1thruRenames*

LinageInfo
value : Integer
type : LinageInfoType
/ cobolFD : COBOLFD
/ cobolItem : COBOLItem

COBOLFD

organization : FileOrganization
acces sMode : Access Type
isOptional : Boolean
reserveAreas : Integer
assignTo : String
codeSetLit : String
blockSizeUnit : BlockKind
minBlocks : Integer
maxBlocks : Integer
minRecords : Integer
maxRecords : Integer
labelKind : LabelKind
isExternal : Boolean
isGlobal : Boolean
padLiteral : String
/ fileSection : FileSection
/ linageInfo : LinageInfo
/ statusID : COBOLItem
/ dependsOn : COBOLItem
/ padField : COBOLItem
/ re lativeField : COBOLItem

0..4

1

0..4 {ordered}

1

* 1*

{ordered}

1

COBOLItem
/ relativeFD : COBOLFD
/ statusFD : COBOLFD
/ dependingFD : COBOLFD
/ paddedFD : COBOLFD
/ lineageInfo : LinageInfo
/ occuringField : COBOLField

0..1

*

dependingOnField0..1

occurringField*

0..1 *relativeField0..1 relativeFD *
0..1 *statusID0..1 statusFD *

0..1 *dependsOn0..1 dependingFD *

0..1

*

0..1

*

*0..1 paddedFD *padField0..1

2 February 2001 CWM 1.0 Vol 2 3-29

3

Superclasses

Class

RecordFile

Contained Elements

LinageInfo

Attributes

organization

accessMode

isOptional

Contains the physical organization of the file.

type: FileOrganization (unspecified | indexed | relative |
sequential)

multiplicity: exactly one

Contains the access mode of the file.

type: AccessType (unspecified | dynamic | random |
sequential)

multiplicity: exactly one

If True, the file is optional at runtime.

type: Boolean

multiplicity: exactly one

3-30 CWM 1.0 Vol 2 2 February 2001

3

reserveAreas

assignTo

codeSetLit

blockSizeUnit

minBlocks

maxBlocks

Contains the number of buffer areas reserved for the file.

type: Integer

multiplicity: zero or one

Contains the name of the storage medium the file is assigned to.

type: String

multiplicity: exactly one

Contains the name of the code set.

type: String

multiplicity: exactly one

Contains the unit type for the contents of the minBlocks and maxBlocks fields.

type: BlockKind (records | characters)

multiplicity: exactly one

Contains the minimum number of <units> per block, where <unit> is specified by
the blockSizeUnit attribute.

type: Integer

multiplicity: zero or one

Contains the maximum number of <units> per block, where <unit> is specified by
the blockSizeUnit attribute.

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 3-31

3

minRecords

maxRecords

labelKind

isExternal

isGlobal

padLiteral

References

Contains the minimum number of characters per record.

type: Integer

multiplicity: zero or one

Contains the maximum number of characters per record.

type: Integer

multiplicity: zero or one

Contains the label kind of the file.

type: LabelKind (unspecified | standard | omitted)

multiplicity: exactly one

If True, the file is external.

type: Boolean

multiplicity: exactly one

If True, the file is global.

type: Boolean

multiplicity: exactly one

If not an empty string, contains the pad character. If an empty string, the padField
reference may point to a COBOLField instance that contains the pad character.

type: String

multiplicity: exactly one

3-32 CWM 1.0 Vol 2 2 February 2001

3

fileSection

linageInfo

statusID

dependsOn

padField

Identifies the FileSection instances that contain this COBOLFD instance.

class: FileSection

defined by: FileSectionFD::fileSection

multiplicity: exactly one

inverse: FileSection::cobolFD

Identifies the LinageInfo instances relevant to this COBOLFD instance.

class: LinageInfo

defined by: LinageInfoField::linageInfo

multiplicity: zero to four; ordered

inverse: LinageInfo::cobolFD

Identifies the COBOLItem instance containing the status value.

class: COBOLItem

defined by: FDStatusID::statusID

multiplicity: zero or one

inverse: COBOLItem::statusFD

Identifies the COBOLItem instance that contains the current record size for this
COBOLFD instance.

class: COBOLItem

defined by: FDDepending::dependsOn

multiplicity: zero or one

inverse: COBOLItem::dependingFD

Identifies the COBOLItem instance that contains the pad character.

class: COBOLItem

2 February 2001 CWM 1.0 Vol 2 3-33

3

relativeField

Constraints

The presence of a padding character can be indicated either by a constant (in the
padLiteral attribute) or by a reference to another field via the padField reference but
not by both. [C-1]

3.3.2 COBOLFDIndex

A COBOLFDIndex instance represents a RECORD KEY or ALTERNATE RECORD
KEY for an INDEXED file.

Superclasses

Index

defined by: PaddingField::padField

multiplicity: zero or one

inverse: COBOLItem::paddedFD

Identifies the COBOLItem instance containing the current relative record offset in
the file represented by the COBOLFD instance.

class: COBOLItem

defined by: RelativeOffsetField::relativeField

multiplicity: zero or one

inverse: COBOLItem::relativeFD

3-34 CWM 1.0 Vol 2 2 February 2001

3

Attributes

isAlternate

3.3.3 COBOLField

Represents fields that appear in COBOL record descriptions. COBOLField instances
are associated with their owning RecordDef or Group instances via the UML
owner/feature association between Feature and Classifier.

The VALUE IS clause for a COBOLField instance is stored in the initialValue
attribute inherited from the UML Attribute superclass.

The “occurs-depending” syntax that may be attached to a COBOLField instance is
addressed by a collection of attributes (occursLower and occursUpper) and a reference
(dependingOnField). To illustrate the roles these attributes and references play, their
names can be substituted into the following COBOL syntax fragment:

OCCURS occursLower TO occursUpper TIMES DEPENDING ON
dependingOnField

Superclasses

Field

Contained Elements

OccursKey

Attributes

level

If True, this is an alternate index.

type: Boolean

multiplicity: exactly one

The level number of a COBOLField.

type: Integer

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 3-35

3

signKind

isFiller

isJustifiedRight

isBlankWhenZero

isSynchronized

picture

The type of sign for the field.

type: SignKindType (unspecified | leadingSign |
trailingSign | leadingSepSign | trailingSepSign)

multiplicity: exactly one

If True, the field is a filler field.

type: Boolean

multiplicity: exactly one

If True, the content of the field is right justified.

type: Boolean

multiplicity: exactly one

If True, the field is interpreted as having the numeric value zero when the field
contains blanks.

type: Boolean

multiplicity: exactly one

If True, the field is synchronized.

type: Boolean

multiplicity: exactly one

Contains the picture specification for the field.

type: String

multiplicity: exactly one

3-36 CWM 1.0 Vol 2 2 February 2001

3

occursLower

occursUpper

indexName

isExternal

isGlobal

References

dependingOnField

If the field occurs, contains the lower bound of the number of possible
occurrences.

type: Integer

multiplicity: zero or one

If the field occurs, contains the upper bound of the number of possible
occurrences.

type: Integer

multiplicity: zero or one

A list of strings that are the names obtained from the INDEXED BY clause.

type: String

multiplicity: zero or more

If True, the field is external.

type: Boolean

multiplicity: exactly one

If True, the field is global.

type: Boolean

multiplicity: exactly one

Identifies the COBOLField instance that contains the number of occurrences of
this field.

class: COBOLItem

2 February 2001 CWM 1.0 Vol 2 3-37

3

occursKeyInfo

occursKeyFieldInfo

redefinedByField

redefinedField

defined by: OccursDependingOn::dependingOnField

multiplicity: zero or one

inverse: COBOLItem::occurringField

Identifies the OccursKey instances describing the fields that make up the “occurs”
key for this field.

class: OccursKey

defined by: OccursKeyField::occursKeyInfo

multiplicity: zero or more; ordered

inverse: OccursKey::occursKeyOf

Identifies the OccursKey instances that describe how this field participates in the
“occurs” keys of other fields.

class: OccursKey

defined by: OccuringKeyInfo::occursKeyFieldInfo

multiplicity: zero or more

inverse: OccursKey::occursKeyField

Identifies the COBOLField instances that redefine this field.

class: COBOLField

defined by: Redefines::redefinedByField

multiplicity: zero or more

inverse: COBOLField::redefinedField

Identifies the COBOLField instances that this field redefines.

class: COBOLField

defined by: Redefines::redefinedField

multiplicity: zero or one

inverse: COBOLField::redefinedByField

3-38 CWM 1.0 Vol 2 2 February 2001

3

firstRenames

thruRenames

Constraints

Level 77 fields must be owned by the Working Storage or the Linkage sections and
may not have children. [C-2]

Field level must be 01 to 49, 66, 77 or 88. [C-3]

A COBOLField can only be redefined by fields at the same level. [C-4]

3.3.4 COBOLItem Abstract

The COBOLItem class is an abstract metaclass that represents the commonalities
shared by both the COBOLField and Renames metaclasses.

Superclasses

Field

Identifies the Renames instances in which this COBOLField instance is the first
renamed field.

class: Renames

defined by: RenamesFirst::firstRenames

multiplicity: zero or more

inverse: Renames::firstField

Identifies the Renames instances in which this COBOLField instance is the last
renamed field.

class: Renames

defined by: RenamesThru::thruRenames

multiplicity: zero or more

inverse: Renames::thruField

2 February 2001 CWM 1.0 Vol 2 3-39

3

References

relativeFD

statusFD

dependingFD

paddedFD

Identifies the COBOLFD instances for which this COBOLItem instance acts as a
relative record offset.

class: COBOLFD

defined by: RelativeOffsetField::relativeFD

multiplicity: zero or more

inverse: COBOLFD::relativeField

Identifies COBOLFD instances for which this COBOLItem acts as the statusID.

class: COBOLFD

defined by: FDStatusID::statusFD

multiplicity: zero or more

inverse: COBOLFD::statusID

Identifies the COBOLFD instance for which this COBOLItem determines the
record size.

class: COBOLFD

defined by: FDDepending::dependingFD

multiplicity: zero or more

inverse: COBOLFD::dependsOn

Identifies the COBOLFD instances for which this COBOLItem contains the pad
character.

class: COBOLFD

defined by: PaddingField::paddedFD

multiplicity: zero or more

inverse: COBOLFD::padField

3-40 CWM 1.0 Vol 2 2 February 2001

3

linageInfo

occurringField

3.3.5 FileSection

Represents the File section of a COBOL Data Division.

Superclasses

Section

Contained Elements

COBOLFD

References

cobolFD

Identifies the LinageInfo instances in which this COBOLItem participates.

class: LinageInfo

defined by: LinageField::linageInfo

multiplicity: zero or more

inverse: LinageInfo::cobolField

Identifies the COBOLField instances for which this COBOLItem contains the
number of occurrences.

class: COBOLField

defined by: OccursDependingOn::occuringField

multiplicity: zero or more

inverse: COBOLField::dependingOnField

Associates a COBOL File section with the COBOLFD instances that it contains.

class: COBOLFD

defined by: FileSectionFD::cobolFD

multiplicity: zero or more; ordered

inverse: COBOLFD::fileSection

2 February 2001 CWM 1.0 Vol 2 3-41

3

Constraints

The RecordDef instances defined within each COBOLFD in a FileSection instance
must belong to the FileSection instance. [C-5]

3.3.6 LinageInfo

LinageInfo instances are used to record the individual components of a LINAGE
clause for a COBOLFD. A LINAGE clause is used to specify a page layout for a
sequential file.

Superclasses

ModelElement

Attributes

value

type

References

cobolItem

Contains the value of the LinageInfo. If the value is empty, the cobolField
reference must identify a COBOLField instance that contains the value.

type: Integer

multiplicity: zero or one

Contains the type of the linage information in this LinageInfo instance.

type: LinageInfoType (linage | linageFooting | linageTop |
linageBottom)

multiplicity: exactly one

Identifies the COBOLItem instance that contains the linage information. If this
reference is empty, the value attribute must contain the linage information.

class: COBOLItem

defined by: LinageField::cobolField

multiplicity: zero or one

inverse: COBOLItem::linageInfo

3-42 CWM 1.0 Vol 2 2 February 2001

3

cobolFD

Constraints

LinageInfo must either have a value or reference a COBOLItem, but not both. [C-6]

3.3.7 LinkageSection

Represents the Linkage section of a COBOL Data Division.

Superclasses

Section

3.3.8 OccursKey

This intersection class identifies the COBOLField instances that are parts of occurs
keys and contains attributes relevant to the fields’ roles in the occurs key.

Superclasses

ModelElement

Identifies the COBOLFD instance for which this LinageInfo reference is valid.

class: COBOLFD

defined by: LinageInfoField::cobolFD

multiplicity: exactly one

inverse: COBOLFD::linageInfo

2 February 2001 CWM 1.0 Vol 2 3-43

3

Attributes

isAscending

References

occursKeyOf

occursKeyField

3.3.9 Renames

Renames instances define alternate identifiers for one or more contiguous
COBOLField instances. Although they are not truly COBOL fields, Renames must be
ordered in a record along with true COBOL fields. Because they are ObjectModel
Features, they can be ordered among COBOL fields via the ClassifierFeature
association.

Superclasses

COBOLItem

If True, the COBOLField on the occursKeyField end is maintained in an
ascending order in the occurs key. If False, the occursKeyField is maintained in
descending order.

type: Boolean

multiplicity: exactly one

Identifies the COBOLField instance that owns the occurs key.

class: COBOLField

defined by: OccursKeyField::occursKeyOf

multiplicity: exactly one

inverse: COBOLField::occursKeyInfo

Identifies the COBOLField instance that this OccursKey instance represents in the
occurs key.

class: COBOLField

defined by: OccuringKeyInfo::occursKeyField

multiplicity: exactly one

inverse: COBOLField::occursKeyFieldInfo

3-44 CWM 1.0 Vol 2 2 February 2001

3

References

firstField

thruField

3.3.10 ReportWriterSection

Represents the Report Writer section of a COBOL Data Division. Although a
metaclass for this section remains in the standard, the section itself appears to be
deprecated.

Superclasses

Section

3.3.11 Section

Instances of Section describe the various sections of a COBOL Data Division. Section
instances are use primarily as collection containers for the RecordDefs that a Section
may contain.

Superclasses

Classifier

Identifies the first field that is renamed.

class: COBOLField

defined by: RenamesFirst::firstField

multiplicity: exactly one

inverse: COBOLField::firstRenames

Identifies the last field in a range of features that is renamed.

class: COBOLField

defined by: RenamesThru::thruField

multiplicity: zero or one

inverse: COBOLField::thruRenames

2 February 2001 CWM 1.0 Vol 2 3-45

3

References

record

3.3.12 Usage

A subclass of UML’s DataType class representing valid COBOL usage types. The type
attribute that a COBOLField inherits from StructuralFeature should point to one of the
instances of Usage defined here.

Defined M1 instances of the Usage class have the names: COMP, DISPLAY, and
INDEX. Common extension data types (such as BINARY, PACKEDDECIMAL,
COMP-1, COMP-2, COMP-3, etc.) can be easily added by creating addition M1
instances of Usage without the need to change the metamodel change.

Superclasses

DataType

3.3.13 WorkingStorageSection

Represents the Working Storage section of a COBOL Data Division.

Superclasses

Section

3.4 COBOLData Associations

3.4.1 FDDepending Protected

Associates COBOLFD instances with the COBOLItem instance that contains the
current size of the FD’s record.

Identifies the RecordDef instances that describe the structure of 01 level records
defined in the section.

class: RecordDef

defined by: SectionRecord::record

multiplicity: zero or more; ordered

3-46 CWM 1.0 Vol 2 2 February 2001

3

Ends

dependsOn

dependingFD

3.4.2 FDStatusID Protected

Associates COBOLFD instances with the COBOLItem instance that contains the status
ID of the COBOLFD.

Ends

statusID

statusFD

3.4.3 FileSectionFD Protected

Associates a COBOL File section with the COBOLFD instances that it contains.

Identifies the COBOLItem instance that contains the current size of the
COBOLFD instance’s records.

class: COBOLItem

multiplicity: zero or one

Identifies the COBOLFD instances for which the COBOLItem instance contains
the current record size.

class: COBOLFD

multiplicity: zero or more

Identifies the COBOLItem instance that contains the status ID for this COBOLFD
instance.

class: COBOLItem

multiplicity: zero or one

Identifies the COBOLFD instance for which this COBOLItem instance contains
status ID information.

class: COBOLFD

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 3-47

3

Ends

cobolFD

fileSection

3.4.4 LinageField Protected

Associates COBOLField instances with LinageInfo instances that pertain to them.

Ends

cobolItem

linageInfo

3.4.5 LinageInfoField Protected

Associates a COBOLFD instance with the LinageInfo intersection instances containing
information about the FD’s linage displays.

Identifies the COBOLFD instances that this FileSection instance contains.

class: COBOLFD

multiplicity: zero or more; ordered

Identifies the FileSection instances that contain this COBOLFD instance.

class: FileSection

multiplicity: exactly one

aggregation: composite

Identifies the COBOLItem instance to which the LinageInfo instance applies.

class: COBOLItem

multiplicity: zero or one

Identifies the linageInfo instances that reference a COBOLItem instance.

class: LinageInfo

multiplicity: zero or more

3-48 CWM 1.0 Vol 2 2 February 2001

3

Ends

linageInfo

cobolFD

3.4.6 OccursDependingOn Protected

Associates occurring COBOLItem instances with the fields that contain the current
number of occurrences.

Ends

dependingOnField

occurringField

3.4.7 OccuringKeyInfo Protected

Associates COBOLField instances with the OccursKey instances that describe how the
fields participate in occurs keys.

Identifies the LinageInfo instances for this COBOLFD instance.

class: LinageInfo

multiplicity: zero to four; ordered

Identifies the COBOLFD instance that owns this LinageInfo instance.

class: COBOLFD

multiplicity: exactly one

aggregation: composite

Identifies the COBOLField instance that contains the number of occurrences.

class: COBOLItem

multiplicity: zero or one

Identifies the field that occurs (i.e., the array).

class: COBOLField

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 3-49

3

Ends

occursKeyField

occursKeyFieldInfo

3.4.8 OccursKeyField Protected

Identifies the usage information showing how subfields of an occurring item are used
to order the occurring items.

Ends

occursKeyInfo

occursKeyOf

3.4.9 PaddingField Protected

Associates a COBOLFD instance with a COBOLField instance that contains the FD’s
pad character.

Identifies the COBOLField instance that participates in this occurs key.

class: COBOLField

multiplicity: exactly one

Identifies the OccursKey instances relevant to this COBOLField instance.

class: OccursKey

multiplicity: zero or more

Identifies the OccursKey instances relevant for this field.

class: OccursKey

multiplicity: zero or more; ordered

Identifies the COBOLField instance that owns the occurs key.

class: COBOLField

multiplicity: exactly one

aggregation: composite

3-50 CWM 1.0 Vol 2 2 February 2001

3

Ends

paddedFD

padField

3.4.10 Redefines Protected

If this association is non null, the COBOLField instance on the redefinedField end is
redefined by the COBOLField instance on the redefinedByField end. For example, in
the following COBOL fragment

02 X
02 Y REDEFINES X

X is the redefinedField instance, and Y is the redefinedByField instance.

Ends

redefinedField

redefinedByField

Identifies the COBOLFD instance that is padded by this field.

class: COBOLFD

multiplicity: zero or more

Identifies the COBOLField instance that contains the pad character for this
COBOLFD.

class: COBOLItem

multiplicity: zero or one

Identifies the COBOLField instance that is redefined.

class: COBOLField

multiplicity: zero or one

Identifies the COBOLField instances that redefine this field.

class: COBOLField

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 3-51

3

3.4.11 RelativeOffsetField Protected

Associates COBOLField instances that contains the current relative record offset
values with the COBOLFD instances they serve.

Ends

relativeFD

relativeField

3.4.12 RenamesFirst Protected

Identifies the COBOLField instance that is the first renamed field.

Ends

firstField

firstRenames

Identifies the COBOLFD instances for which this COBOLField instance acts as a
relative record offset.

class: COBOLFD

multiplicity: zero or more

Identifies the COBOLField instance containing the current relative record offset in
the file represented by the COBOLFD instance.

class: COBOLField

multiplicity: zero or one

Identifies the COBOLField instance that is the first renamed field.

class: COBOLField

multiplicity: exactly one

Identifies the Renames instances in which this COBOLField instance is the first
renamed field.

class: Renames

multiplicity: zero or more

3-52 CWM 1.0 Vol 2 2 February 2001

3

3.4.13 RenamesThru Protected

Associates COBOLField instances with the last field in a renamed range of fields.

Ends

thruField

thruRenames

3.4.14 SectionRecord

Identifies the Section instances in which the RecordDef instance is defined.

Ends

section

record

Identifies the COBOLField instance that is the last field in a range of renamed
fields.

class: COBOLField

multiplicity: zero or one

Identifies the Renames instances in which this COBOLField instance is the last
renamed field in a range of renamed fields.

class: Renames

multiplicity: zero or more

Identifies the Section instances in which the RecordDef is used.

class: Section

multiplicity: zero or more

Identifies the RecordDef instances that are defined in the Section instance.

class: RecordDef

multiplicity: zero or more; ordered

2 February 2001 CWM 1.0 Vol 2 3-53

3

3.5 OCL Representation of COBOLData Constraints

[C-1] The presence of a padding character can be indicated either by a constant (in
the padLiteral attribute) or by a reference to another field via the padField reference
but not by both.

context COBOLFD inv:

self.padLiteral <> "" implies self.padField->isEmpty

[C-2] Level 77 fields must be owned by the Working Storage or the Linkage
sections and may not have children.

context COBOLField inv:

self.level = 77 implies (self.classifier.oclIsKindOf(WorkingStorageSection) or
self.classifier.oclIsKindOf(LinkageSection) and self.type.feature->isEmpty

[C-3] Field level must be 01 to 49, 77.

context COBOLField inv:

(self.level >= 1 and self.level <= 49) or self.level = 77

[C-4] A COBOLField can only be redefined by fields at the same level.

context COBOLField inv:

self.redefinedByField->NotEmpty implies self.level = self.redefinedByField.level

[C-5] The RecordDef instances defined within each COBOLFD in a FileSection
instance must belong to the FileSection instance.

context FileSection inv:

self.cobolFD.record->exists(p | p = self.record)

3-54 CWM 1.0 Vol 2 2 February 2001

3

[C-6] LinageInfo must either have a value or reference a COBOLItem, but not both.

context LinageInfo inv:

self.value->isEmpty implies not self.cobolItem->isEmpty

2 February 2001 CWM 1.0 Vol 2 4-55

DMS II 4

4.1 Overview

The CWM DMSII extension package contains classes supporting the description of
DMS II database schemata and their deployment. DMS II is a database system
available on Unisys ClearPath NX servers. DMS II is a non-CODASYL, network
model database management system. The DMS II extension package is provided as
example demonstrating appropriate usage of CWM classes in modeling this and similar
DBMS environments.

Because DMSII database schemas are normally stored in record-based source files
written in a data definition language called DASDL, the CWM DMSII extension
package contains constructs allowing the declaration-order sequence of the DASDL
source file to be preserved in the model. The goal of this is to allow a DASDL source
to be stored into the DMSII model and subsequently regenerated from the model by a
suitably designed utility program. To achieve this ordering, the DMSII model
represents ownership using the CWM ClassifierFeature association which is ordered,
rather than the alternate technique using the ElementOwnership association which is
unordered. A side-effect of this choice is that any DMSII class that can be ordered
must be subclass of the CWM ObjectModel’s Feature class; this is the reason for the
multiple inheritance required to define the SetStructure, DataSet, Database and Remap
classes.

For convenience, utilities may chose to store the text of the DASDL file from which
the database was created in a CWM Description instance attached to particular
instances of DMSII model classes. The names of DMSII model elements are stored in
the name attribute that every DMSII instance inherits from CWM’s ModelElement
class.

4.2 Organization of the DMSII Package

The DMS II package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

4-56 CWM 1.0 Vol 2 2 February 2001

4

• org.omg::CWM::Foundation::BusinessInformation

• org.omg::CWM::Foundation::Expressions

• org.omg::CWM::Foundation::KeyIndexes

• org.omg::CWM::Foundation::Record

Figure 4-1 DMSII Package

Field
(f rom Record)

RecordDef
(f rom Record)

VariableFormatPart

vfLabel : Integer
selectCondition : BooleanExpression

SetStructure
duplicates : String

Subset

AutomaticSubset

condi ti on : BooleanExpression
KeyItem

collation : String

PhysicalAccessOverride

Access

PhysicalSetOverride

PhysicalSet

PhysicalDataSetOverride

Remark

text : String

Feature
(from Core)

PhysicalDataSet

IndexedFeature
(f rom Key sIndexes)

Index
(f rom Key sIndexes)

ModelElement
(f rom Core)

DASDLProperty

text : String
/ owner : ModelElement

1

*

owner1

*
{ordered}

Package
(f rom Core)

DataSet
isGlobal : Boolean
organization : String
reorganize : String
isRequiredAll : Boolean
/ partitioningSet : Set

Set
setType : Str ing
reorganize : String
/ partiti oningSet : Set
/ partiti onedSet : Set
/ keyDataItem : DataItem
/ partiti onedDataSet : DataSet

*

0..1

partitionedSet

*

partitioningSet
0..1

0..1

0..1

partitionedDataSet 0..1

partitioningSet0..1

FieldBit
/ dataItem : DataItem

RemapItem

occurs : Integer
isRequired : Boolean
isHidden : Boolean
isReadOnly : Boolean
isGivingException : Boolean
isVirtual : Boolean
virtualExpression : ExpressionNode
/ dataItem : DataItem

DataItem
nullValue : ExpressionNode
isRequired : Boolean
size : Integer
scaleFactor : Integer
isSigned : Boolean
occurs : Integer
isVi rtual : Boolean
vir tualExpress ion : Express ionNode
isKanji : Boo lean
ccsVersion : String
isGem cosLi teral : Boolean
isGem cosData : Boolean
isGem cosSSN : Boolean
isGem cosDBSN : Boolean
isCom sProgram : Boolean
isCom sID : Boolean
isCom sLocator : Boo lean
isCom sOutpQ : Boolean
/ fi eldBit : Fie ldBit
/ occursData Item : DataItem
/ occuringDataItem : DataItem
/ keyDataSet : Set
/ structure : StructuralFeature
/ rem apItem : RemapItem

*

0..1

occuringDataItem *

occursDataItem 0..1

*

*

keyDataSet *

keyDataItem*

{ordered}

10..48 10..48

** **

StructuralFeature
(from Core)0..1* structure 0..1*

Remap
isRequiredAll : Boolean
isReadOnlyAll : Boolean
isGivingException : Boolean
selectCondition : Expression
/ structure : StructuralFeature

1

*

structure1

*

PhysicalDatabaseDatabase
isLogical : Boolean
guardFile : String
source : String

2 February 2001 CWM 1.0 Vol 2 4-57

4

4.3 DMSII Classes

4.3.1 Access

Represents a DMSII Access which is used to specify the physical ordering of records
in the DataSet that the Access spans. Unlike a Set instance, there is no separate
physical file associated with an Access in a deployed database.

Superclasses

SetStructure

Constraints

An Access must span a DataSet. [C-1]

4.3.2 AutomaticSubset

A Subset that has a membership expression. Records in the spanned DataSet instance
are part of the AutomaticSubset instance if the expression in the condition attribute
evaluates to True.

Superclasses

Subset

Attributes

condition

4.3.3 DASDLComment

Contains the text of the single DASDL <comment> that nearly every object in a
DASDL source may have. These comments differ from Remarks in that there is only
one instance per DASDL object, their position in the source is constrained, and they
are stored in the database description files. Remarks are not tied to particular database
objects, can occur anywhere in a DASDL source, and exist only in the DASDL source
itself.

For all DASDLComments, the language attribute contains the string “DASDL”.

Contains the text of an expression that determines membership of the spanned
DataSet's records in this AutomaticSubset instance.

type: BooleanExpression

multiplicity: exactlyxactly one

4-58 CWM 1.0 Vol 2 2 February 2001

4

Superclasses

Description

4.3.4 DASDLProperty

The DASDL language source file from which DMS II databases are built contains a
large number (>100) of options related primarily to the physical characteristics or
deployment of DMS II databases and the data and set structures they contain.
Generally, these “DASDL properties” are of the form <name> = <string>, where the
meaning of the contents of <string> is specific to the property that is being described
(i.e., knowing the content of <name>). Also, new DASDL properties are added from
time to time. Capturing these DASDL properties as <name>/<string> pairs has several
important side-effects, including

• a much simplified DMS II model overall,

• addition of new properties without having to change the model, and

• maintenance of the order (because of the ordered nature of the association to
ModelElement) in which the property values were supplied in the DASDL source.

Note that allowing a DASDL remark (i.e., a %-comment) to be a DASDL property in
this case allows preservation of the order remarks with respect to other DASDL
properties.

Superclasses

ModelElement

Attributes

text

References

owner

Contains the text of the DASDL property. The precise content of the string is
dependent upon the name of the DASDL property defined in the name attribute
inherited from ModelElement.

type: String

multiplicity: exactly one

Identifies the ModelElement for which this DASDLProperty instance is relevant.

2 February 2001 CWM 1.0 Vol 2 4-59

4

Constraints

The types of ModelElements that may own DASDLProperties is limited to DataSet,
SetStructure, Database, PhysicalDatabase, PhysicalDataset, PhysicalSet,
PhysicalDatasetOverride, PhysicalSetOverride, and PhysicalAccessOverride[C-2].

4.3.5 Database

For a given DASDL source, there can be at most one Database instance with isLogical
= False (representing an independent, free standing database) and zero or more with
isLogical = True (each representing a Logical Database declared within the physical
database). A logical database can be owned by at most one database.

Superclasses

Subsystem

StructuralFeature

Attributes

isLogical

guardFile

class: ModelElement

defined by: DASDLPropertyOwner::owner

multiplicity: exactly one

If True, this Database instance is a logical database.

type: Boolean

multiplicity: exactly one

Contains the name of the database guard file that contains access control
information for the database.

type: String

multiplicity: exactly one

4-60 CWM 1.0 Vol 2 2 February 2001

4

source

Constraints

An independent database may not be owned. [C-11]

A logical database must be owned by an independent database. [C-12]

A database can own SetStructure, DataSet, Remark, and Database, Remap,
PhysicalDataSetOverride, PhysicalSeOverride, and PhyiscalAccessOverride instances.
[C-13]

4.3.6 DataItem

Instances of DataItem represent the individual data fields within a DataSet. The Group
class in the CWM Foundation’s DataTypes package is also available for constructing
collections of fields in a DataSet.

The interpretation of the contents of some attributes of a DataItem instance are
dependent upon the DataItem’s type. For example, the size attribute represents the
maximum number of characters in ALPHA and KANJI items, the number of digits of
precision in a NUMERIC or REAL items, and the number of bits in a FIELD item.
Refer to the definition of individual attributes for specifics.

Superclasses

Field

Contained Elements

FieldBit

Attributes

nullValue

Contains the text of the DASDL source from which the database was created.

type: String

multiplicity: exactly one

Identifies a value of a data item that is treated as representing a null value.

type: ExpressionNode

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 4-61

4

isRequired

size

scaleFactor

isSigned

occurs

isVirtual

If True, the data item must have a value when the corresponding Dataset record is
stored.

type: Boolean

multiplicity: exactly one

Contains the declared size of a data type. The precise meaning of the attribute
depends on the type of the DMS II data type being declared.

type: Integer

multiplicity: exactly one

Contains the <scale factor> value for DMS II data types.

type: Integer

multiplicity: exactly one

Contains the state of the signed indication (“S”) for REAL and NUMERIC data
types. Not relevant for other data types.

type: Boolean

multiplicity: exactly one

Indicates the number of times the data item occurs in the DataSet record. The
occurs attribute is optional, existing only for data items that have an OCCURS
clause in their definition.

type: Integer

multiplicity: exactly one

If True, the DataItem instance is calculated when accessed using the expression
stored in the virtualExpression attribute.

type: Boolean

multiplicity: exactly one

4-62 CWM 1.0 Vol 2 2 February 2001

4

virtualExpression

isKanji

ccsVersion

isGemcosLiteral

isGemcosData

isGemcosSSN

The expression used to calculate the value of a virtual DataItem.

type: ExpressionNode

multiplicity: exactly one

True if the USAGE=KANJI clause was used. Otherwise USAGE=EBCDIC is
assumed. Relevant only for ALPHA data items.

type: Boolean

multiplicity: exactly one

Identifies the CCSVersion specification of a data item.

type: String

multiplicity: exactly one

If True, the DataItem instance was defined with the GEMCOS LITERAL clause.

type: Boolean

multiplicity: exactly one

If True, the DataItem instance was defined with the GEMCOS DATA clause.

type: Boolean

multiplicity: exactly one

If True, the DataItem instance was defined with the GEMCOS SSN clause.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 4-63

4

isGemcosDBSN

isComsProgram

isComsID

isComsLocator

isComsOutputQ

References

fieldBit

If True, the DataItem instance was defined with the GEMCOS DBSN clause.

type: Boolean

multiplicity: exactly one

If True, the DataItem instance was defined with the COMS PROGRAM clause.

type: Boolean

multiplicity: exactly one

If True, the DataItem instance was defined with the COMS ID clause.

type: Boolean

multiplicity: exactly one

If True, the DataItem instance was defined with the COMS LOCATOR clause.

type: Boolean

multiplicity: exactly one

If True, the DataItem instance was defined with the COMS OUTPQ clause.

type: Boolean

multiplicity: exactly one

Identifies the FieldBit instance owned by the DataItem instance.

class: FieldBit

defined by: FieldBits::fieldBit

multiplicity: zero to forty eight

inverse: FieldBit::dataItem

4-64 CWM 1.0 Vol 2 2 February 2001

4

keyDataSet

occursDataItem

occuringDataItem

remapItem

Identifies the Set instances in whose key data parts this DataItem instance
participates.

class: Set

defined by: KeyDataItem::keyDataSet

multiplicity: zero or more

inverse: Set::keyDataItem

Identifies the DataItem instance that contains the number of occurrences for this
occurring DataItem instance.

class: DataItem

defined by: OccursDepending::occursDataItem

multiplicity: zero or one

inverse: DataItem::occuringDataItem

Identifies the DataItem instances whose number of occurrences is defined by the
value of this DataItem instance.

class: DataItem

defined by: OccursDepending::occuringDataItem

multiplicity: zero or more

inverse: DataItem::occursDataItem

Identifies the RemapItem instances that remap this DataItem instance.

class: RemapItem

defined by: RemapItems::remapItem

multiplicity: zero or one

inverse: RemapItem::dataItem

2 February 2001 CWM 1.0 Vol 2 4-65

4

structure

Constraints

A DataItem that owns FieldBit instances must have a data type of FIELD. [C-3]

A reference to a StructuralFeature must refer to a DataSet or a SetStructure instance.
[C-4]

A DataItem may not be its own occursDataItem. [C-5]

A DataItem may not be its own occuringDataItem. [C-6]

4.3.7 DataSet

A DataSet is the primary container of data records in a DMS II database. A DataSet
instance that is owned by another DataSet instance is embedded in its owner.

If the isGlobal attribute is True, the DataSet instance is the global data set -- a special
data set with a single instance that contains database global data items.

Superclasses

RecordDef

StructuralFeature

Contained Elements

None

Identifies the DataSet or SetStructure instance to which this DataItem instance
refers.

class: StructuralFeature

defined by: DataItemStructure::structure

multiplicity: zero or one

4-66 CWM 1.0 Vol 2 2 February 2001

4

Attributes

isGlobal

organization

reorganize

isRequiredAll

References

partitioningSet

If isGlobal = True, the DataSet instance represents the database’s global data
record. There can be at most one DataSet instance with isGlobal = True for a
given database, but multiple with isGlobal = False.

type: Boolean

multiplicity: exactly one

Identifies the structural organization of the DataSet.

type: String

multiplicity: exactly one

Contains the reorganization clause attached the DataSet instance.

type: String

multiplicity: exactly one

If True, the REQUIRED ALL clause was specified in the DASDL for this DataSet
instance.

type: Boolean

multiplicity: exactly one

Identifies the Set instance that serves as the partitioning set for this DataSet
instance.

class: Set

defined by: DataSetPartitionSet::partitioningSet

multiplicity: zero or one

inverse: Set::partitionedDataSet

2 February 2001 CWM 1.0 Vol 2 4-67

4

Constraints

A DataSet may have one of the following organizations. [C-7]

The reorganize attribute, if present, must be one of the allowed values from the
DASDL manual. [C-8]

The partitioningSet, if present, must span the DataSet. [C-9]

If the DataSet has VariableFormatParts, it must also have an attribute of the type
“RECORD TYPE”. [C-10]

4.3.8 FieldBit

FieldBit instances name the individual bits in a DMS II field data item.

Superclasses

ModelElement

References

dataItem

4.3.9 KeyItem

KeyItem instances correspond to DASDL's <key item> construct. Every Key instance
has the inherited attribute isSorted = True and the inherited isAscending attribute set
as indicated in the DASDL <key item>. By default, isAscending = True.

Superclasses

IndexedFeature

Identifies the DataItem instance that owns this FieldBit instance.

class: DataItem

defined by: FieldBits::dataItem

multiplicity: exactly one

inverse: DataItem::fieldBit

4-68 CWM 1.0 Vol 2 2 February 2001

4

Attributes

collation

Constraints

The collation clause, if present, must be one of the allowed values from the DASDL
manual. [C-14]

4.3.10 PhysicalAccessOverride

Collects together DASDLProperty instances associate with a physical access
specification in the DASDL source.

Superclasses

Feature

Constraints

PhysicalAccessOverride instances must be owned by an Access instance. [C-15]

4.3.11 PhysicalDatabase

Instances represent deployed physical DMS II databases.

The INITIALIZE and MODEL statements are directives to the DASDL compiler and
do not need to be modeled here. Rather, they cause specific actions to happen within a
CWM repository. INITIALIZE causes the creation of the first PhysicalDatabase
instance; MODEL causes the creation of additional PhysicalDatabase instances after
the first.

Superclasses

Package

Constraints

A PhysicalDatabase instance must be owned by a Database instance. [C-16]

Identifies the value of the collation clause specified for a KeyItem instance.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 4-69

4

4.3.12 PhysicalDataSet

Identifies a physical deployment of a DMS II DataSet.

Superclasses

ModelElement

Constraints

A PhysicalDataSet instance must be owned by a DataSet instance. [C-17]

4.3.13 PhysicalDataSetOverride

Collects together DASDLProperty instances associate with a physical data set
specification in the DASDL source.

Superclasses

Feature

Constraints

PhysicalDataSetOverride instances must be owned by a DataSet instance. [C-18]

4.3.14 PhysicalSet

Identifies a physical deployment of a DMS II Set.

Superclasses

ModelElement

Constraints

A PhysicalSet instance must be owned by a Set instance. [C-19]

4.3.15 PhysicalSetOverride

Collects together DASDLProperty instances associate with a physical set specification
in the DASDL source.

Superclasses

Feature

4-70 CWM 1.0 Vol 2 2 February 2001

4

Constraints

PhysicalSetOverride instances must be owned by a Set instance. [C-20]

4.3.16 Remap

Contains information identifying a Remap of a DMSII DataSet or Set. The features of
a Remap instance must be RemapItem instances.

Superclasses

RecordDef

StructuralFeature

Contained Elements

RemapItem

Attributes

isRequiredAll

isReadOnlyAll

If True, all items in the remap are required to be non-null.

type: Boolean

multiplicity: exactly one

If True, the READONLY ALL clause was specified.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 4-71

4

isGivingException

selectCondition

References

structure

Constraints

The features of a Remap must be RemapItem instances. [C-21]

Remap instances may remap only DataSet and Set instances. [C-22]

The GIVING EXCEPTION clause is valid only if READONLY ALL was specified.
[C-23]

4.3.17 RemapItem

Maps a Remap instance’s field to its source, which may be some DataItem or an
expression.

The name attribute of a RemapItem instance defaults to the name attribute of the
associated DataItem instance. If changed in the Remap definition by a “<identifier> =”
clause, the name attribute of the Remap instance is simply set to <identifier>.

The RemapItem instance’s initial value is stored in the initialValue attribute inherited
from the CWM ObjectModel’s Attribute class.

The isGivingException boolean is meaningful only if isReadOnlyAll = True. If
the isGivingException boolean is absent, no exception clause was specified. If it
is present, False indicates that the NO EXCEPTION clause was specified whereas
True indicates the GIVING EXCEPTION clause.

type: Boolean

multiplicity: exactly one

Contains the expression specified in a remap's SELECT clause.

type: ExpressionNode

multiplicity: exactly one

Identifies the StructuralFeature instance that represents the remapped structure.

class: StructuralFeature

defined by: RemappedItem::structure

multiplicity: exactly one

4-72 CWM 1.0 Vol 2 2 February 2001

4

Superclasses

Feature

Attributes

occurs

isRequired

isHidden

isReadOnly

If specified, overrides the occurs attribute of the associated DataItem instance.

type: Integer

multiplicity: exactly one

If True, overrides the isRequired attribute of the associated DataItem instance.

type: Boolean

multiplicity: exactly one

If True, the corresponding DataItem is not visible to the user of the Remap.

type: Boolean

multiplicity: exactly one

If True, the RemapItem is readonly.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 4-73

4

isGivingException

isVirtual

virtualExpression

References

dataItem

Constraints

[C-24] The GIVING EXCEPTION clause is valid only if READONLY was specified.

4.3.18 Remark

Contains the text of a % comment embedded anywhere within a DASDL source
(except at places where the Comment class should be used). Making Remarks a

The isGivingException boolean is meaningful only if isReadOnly = True. If the
isGivingException boolean is absent, no exception clause was specified. If it is
present, False indicates that the NO EXCEPTION clause was specified whereas
True indicates the GIVING EXCEPTION clause.

type: Boolean

multiplicity: exactly one

If True, the RemapItem instance is calculated when accessed using the expression
stored in the virtualExpression attribute.

type: Boolean

multiplicity: exactly one

The expression used to calculate the value of a virtual RemapItem.

type: ExpressionNode

multiplicity: exactly one

Identifies the DataItem instance that this RemapItem instance remaps.

class: DataItem

defined by: RemapItems::dataItem

multiplicity: zero or more

inverse: DataItem::remapItem

4-74 CWM 1.0 Vol 2 2 February 2001

4

subtype of StructuralFeature allows their location and order within a DASDL source to
be preserved.

Superclasses

StructuralFeature

Attributes

text

4.3.19 Set

Represents a DMS II Set that spans some DataSet. Sets are represented by a physical
file in a deployed DMSII database.

Superclasses

SetStructure

Attributes

setType

reorganize

Contains the text of the Remark.

type: String

multiplicity: exactly one

Contains the set organization for this Set instance.

type: String

multiplicity: exactly one

Contains the content of the reorganization clause, if any, that was specified for the
Set instance.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 4-75

4

References

keyDataItem

partitionedDataSet

partitionedSet

partitioningSet

Constraints

The setType attribute must contain one of the allowed values for set organization from
DASDL. [C-25]

Identifies the DataItem instances that participate in the Set instance’s key data.

class: DataItem

defined by: KeyDataItem::keyDataItem

multiplicity: zero or more; ordered

inverse: DataItem::keyDataSet

Identifies the DataItem instances that make up this Set instance’s key data.

class: DataSet

defined by: DataSetPartitionSet::partitionedDataSet

multiplicity: exactly one

inverse: DataSet::partitioningSet

Identifies the Set instances partitioned by this Set instance.

class: Set

defined by: SetPartitionSet::partitionedSet

multiplicity: exactly one

inverse: Set::partitioningSet

Identifies the Set instance that act as a partitioning set for this Set instance.

class: Set

defined by: SetPartitionSet::partitioningSet

multiplicity: zero or more

inverse: Set::partitionedSet

4-76 CWM 1.0 Vol 2 2 February 2001

4

The reorganize clause, if present, must be one of the allowed values from the DASDL
manual. [C-26]

The items in the Set’s key data must be owned by the DataSet that the Set spans. [C-
27]

A Set may not partition itself. [C-28]

A Set may not be partitioned by itself. [C-29]

4.3.20 SetStructure

SetStructure instances represent access paths in DMS II. SetStructures are connected to
the DataSet instances that they span via the ElementOwnership association inherited
from the Index class in the CWM Foundation’s KeysIndexes package.

Superclasses

Index

StructuralFeature

Attributes

duplicates

Constraints

A SetStructure must span one and only one DataSet instance. [C-30]

Value of the duplicates attribute must be one of the allowed values from the DASDL
manual. [C-31]

4.3.21 Subset

Represents a subset of a DataSet instance. Because Subset instances have no
membership expression, they are equivalent to DMS II's notion of a “manual” subset.

Superclasses

Set

Indicates the duplicates clause associated with the SetStructure instance.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 4-77

4

4.3.22 VariableFormatPart

Represents the VariableFormatParts that can be associated with a DataSet.

Superclasses

StructuralFeature

Attributes

vfLabel

selectCondition

4.4 DMSII Associations

4.4.1 DASDLPropertyOwner

Associates DASDLProperties with the model elements that own them. The ordered
attribute preserves the order in which individual DASDLProperty instances were found
in the DASDL source file.

Ends

owner

Contains the value of <integer label> identifying this variable format part.
<integer label>s are the values of the DMS II data item in the fixed part of the
owning DataSet instance with the type RECORD TYPE.

type: Integer

multiplicity: exactly one

A boolean expression determining which records appear in the Remap.

type: BooleanExpression

multiplicity: exactly one

Identifies the owning ModelElement.

class: ModelElement

multiplicity: exactly one

4-78 CWM 1.0 Vol 2 2 February 2001

4

dasdlProperty

4.4.2 DataItemStructure

Links DataItems to StructuralFeatures they may reference. Used to represent the Set or
DataSet referenced by various link-type dataItems and to identify the Set or DataSet to
which POPULATION dataItems apply.

Ends

structure

dataItem

4.4.3 DataSetPartitionSet Protected

In DASDL, the partitioning set is specified as a physical data set option. However, it is
more correctly modeled as a relationship between a DataSet instance and a Set
instance.

Ends

partitioningSet

Identifies the DASDLProperties that apply to a ModelElement.

class: DASDLProperty

multiplicity: zero or more; ordered

Identifies the feature referenced by the data item.

class: StructuralFeature

multiplicity: zero or one

Identifies the dataItems which a Set or DataSet instance references.

class: DataItem

multiplicity: zero or more

Identifies the partitioning set for this DataItem instance.

class: Set

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 4-79

4

partitionedDataSet

4.4.4 FieldBits Protected

Associates a BIT data item with the labels for it individual bits.

Ends

dataItem

fieldBit

4.4.5 KeyDataItem Protected

Indicates the DataItem instances that participate in this set’s <key data> clause. Note
that the referenced DataItem instances must be owned by the DataSet instance that the
Set spans.

Ends

keyDataItem

Identifies the DataSet instances which the Set instance partitions.

class: DataSet

multiplicity: zero or one

Identifies the FIELD data item for which a FieldBit is relevant.

class: DataItem

multiplicity: exactly one

aggregation: composite

Identifies the FieldBits for a dataItem whose type is BIT.

class: FieldBit

multiplicity: zero to forty eight

Identifies the DataItem instances that participate in the Set instance’s key data.

class: DataItem

multiplicity: zero or more; ordered

4-80 CWM 1.0 Vol 2 2 February 2001

4

keyDataSet

4.4.6 OccursDepending Protected

Identifies the data item that another data item depends upon for its number of
occurrences. The occuringDataItem end specifies the DataItem that occurs (i.e., the
“array” itself) whereas the occursDataItem end specifies the DataItem whose value is
the number of occurrences (i.e., number of elements in the “array”). Observe that this
works for BOTH scalar data items and group data items!

Ends

occuringDataItem

occursDataItem

4.4.7 RemapItems Protected

Identifies the dataItem that a remapItem remaps.

Ends

dataItem

Identifies the Set instances in which this DataItem instance participates in the Set's
key data.

class: Set

multiplicity: zero or more

Identifies the occurring DataItem (i.e., the array).

class: DataItem

multiplicity: zero or more

Identifies the DataItem that contains the number of elements in the array.

class: DataItem

multiplicity: zero or one

Identifies the dataItem that is remapped.

class: DataItem

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 4-81

4

remapItem

4.4.8 RemappedStructure

Identifies the structure which a Remap instance remaps.

Ends

structure

remap

4.4.9 SetPartitionSet Protected

Associates a partitioned Set with its partitioning Set.

Ends

partitionedSet

Identifies the RemapItem instances that remap this data item.

class: RemapItem

multiplicity: zero or more

Identifies the structure that is remapped by the Remap instance.

class: StructuralFeature

multiplicity: exactly one

Identifies the Remap instances that remap this structure.

class: RemapItem

multiplicity: zero or more

Identifies the partitioned set.

class: Set

multiplicity: zero or more

4-82 CWM 1.0 Vol 2 2 February 2001

4

partitioningSet

4.5 OCL Representation of DMSII Constraints

Identifies the partitioning set.

class: Set

multiplicity: zero or one

[C-1] An Access must span a DataSet.

context Access inv:

self.spannedClass->size = 1 and self.spannedClass.oclIsKindOf(DataSet)

[C-2] The types of ModelElements that may own DASDLProperties is limited by the
following OCL.

context DASDLProperty inv:

self.owner.oclIsKindOf(DataSet) or self.owner.oclIsKindOf(SetStructure) or
self.owner.oclIsKindOf(Database) or self.owner.oclIsKindOf(PhysicalDatabase) or
self.owner.oclIsKindOf(PhysicalDataset) or self.owner.oclIsKindOf(PhysicalSet) or
self.owner.oclIsKindOf(PhysicalDatasetOverride) or
self.owner.oclIsKindOf(PhysicalSetOverride) or
self.owner.oclIsKindOf(PhysicalAccessOverride)

[C-3] An independent database may not be owned.

context Database inv:

not self.isLogical implies self.classifier->isEmpty

[C-4] A logical database must be owned by an independent database.

context Database inv:

self.isLogical implies (self.classifier->size = 1 and
self.classifier.oclIsTypeOf(Database) and not self.classifier.isLogical)

2 February 2001 CWM 1.0 Vol 2 4-83

4

[C-5] A database can own SetStructure, DataSet, Remark, and Database, Remap,
PhysicalDataSetOverride, PhysicalSetOverride, and PhysicalAccessOverride
instances.

context Database inv:

self.feature->forAll(x | x.oclIsTypeOf(SetStructure) or x.oclIsTypeOf(DataSet) or
x.oclIsTypeOf(Remark) or x.oclIsTypeOf(Database) or
x.oclIsTypeOf(PhysicalDataSetOverride) or x.oclIsTypeOf(Remap) or
x.oclIsTypeOf(PhysicalSetOverride) or x.oclIsTypeOf(PhysicalAccessOverride))

[C-6] A DataItem that owns FieldBit instances must have a data type of FIELD.

context DataItem inv:

self.fieldBit.notEmpty implies self.type.name = “FIELD”

[C-7] A reference to a StructuralFeature must refer to a DataSet or a SetStructure
instance.

context DataItem inv:

self.structure.notEmpty implies self.structure.type.oclIsKindOf(DataSet) or
self.structure.type.oclIsKindOf(SetStructure)

[C-8] A DataItem may not be its own occursDataItem.

context DataItem inv:

self.occursDataItem <> self

[C-9]A DataItem may not be its own occuringDataItem.

context DataItem inv:

self.occuringDataItem <> self

[C-10] A DataSet may have one of the following organizations.

context DataItem inv:

self.organization = “COMPACT” or self.organization = “DIRECT” or
self.organization = “ORDERED” or self.organization = “RANDOM” or
self.organization = “RESTART” or self.organization = “STANDARD” or
self.organization = “UNORDERED”

[C-11] The reorganize attribute, if present, must be one of the allowed values from
the DASDL manual.

context DataSet inv:

self.reorganize <> “” implies self.reorganize = “ITEMS SAME” or self.reorganize =
“ITEMS CHANGED”

4-84 CWM 1.0 Vol 2 2 February 2001

4

[C-12] The partitioningSet, if present, must span the DataSet.

context DataSet inv:

self.partitioningSet->size = 1 implies self.partitioningSet.namespace = self

[C-13] If the DataSet has VariableFormatParts, it must also have an attribute of the
type “RECORD TYPE”.

context DataSet inv:

self.ownedElement->exists(oclIsKindOf(VariableFormatPart)) implies
self.feature.oclAsType(StructuralFeature)->exists(type.name = “RECORD TYPE”)

[C-14] The collation clause, if present, must be one of the allowed values from the
DASDL manual.

context KeyItem inv:

self.collation = “BINARY” or self.collation = “EQUIVALENT” or self.collation =
“LOGICAL”

[C-15] PhysicalAccessOverride instances must be owned by an Access instance.

context PhysicalAccessOverride inv:

self.namespace.oclIsKindOf(Access)

[C-16] A PhysicalDatabase instance must be owned by a Database instance.

context PhysicalDatabase inv:

self.namespace->size = 1 and self.namespace.oclIsKindOf(Database)

[C-17] A PhysicalDataSet instance must be owned by a DataSet instance.

context PhysicalDataSet inv:

self.namespace->size = 1 and self.namespace.oclIsKindOf(DataSet)

[C-18] A PhysicalDataSetOverride instance must be owned by a DataSet instance.

context PhysicalDataSetOverride inv:

self.namespace.oclIsKindOf(DataSet)

[C-19] A PhysicalSet instance must be owned by a Set instance.

context PhysicalSet inv:

self.namespace->size = 1 and self.namespace.oclIsKindOf(Set)

2 February 2001 CWM 1.0 Vol 2 4-85

4

[C-20] PhysicalSetOverride instances must be owned by a Set instance.

context PhysicalSetOverride inv:

self.namespace.oclIsKindOf(Set)

[C-21] The features of a Remap must be RemapItem instances.

context Remap inv:

self.feature.oclIsKindOf(RemapItem)

[C-22] Remap instances may remap only DataSet and Set instances.

context Remap inv:

self.structure.oclIsKindOf(DataSet) or self.structure.oclIsKindOf(Set)

[C-23] The GIVING EXCEPTION clause is valid only if READONLY ALL was
specified.

context Remap inv:

self.isGivingException->notEmpty implies self.isReadOnlyAll

[C-24] The GIVING EXCEPTION clause is valid only if READONLY was
specified.

context RemapItem inv:

self.isGivingException->notEmpty implies self.isReadOnly

[C-25] The setType attribute must contain one of the allowed values for set
organization from DASDL.

context Set inv:

self.setType = “BITVECTOR” or self.setType = “UNORDERED LIST” or
self.setType = “INDEX RANDOM” or self.setType = “INDEX SEQUENTIAL” or
self.setType = “ORDERED LIST”

[C-26] The reorganize clause, if present, must be one of the allowed values from the
DASDL manual.

context Set inv:

self.reorganize <> “” implies self.reorganize = ”KEY CHANGED” or
self.reorganize = ”KEY SAME”

4-86 CWM 1.0 Vol 2 2 February 2001

4

[C-27] The items in the Set’s key data must be owned by the DataSet that the Set
spans.

context Set inv:

self.keyDataItem->forAll(self.keyDataItem.namespace = self.spannedClass)

[C-28] A Set may not partition itself.

context Set inv:

self.partitionedSet <> self

[C-29] A Set may not be partitioned by itself.

context Set inv:

self.partitioningSet <> self

[C-30] A SetStructure must span one and only one DataSet instance.

context SetStructure inv:

self.spannedClass->size = 1 and self.spannedClass.oclIsKindOf(DataSet)

[C-31] Value of the duplicates attribute must be one of the allowed values from the
DASDL manual.

context SetStructure inv:

self.duplicates = “DUPLICATES” or self.duplicates = “DUPLICATES FIRST” or
self.duplicates = “DUPLICATES LAST” or self.duplicates = “NO DUPLICATES”
or self.duplicates = “NO DUPLICATES KEY CHANGE OK”

2 February 2001 CWM 1.0 Vol 2 5-87

IMS 5

5.1 Overview

This package contains a model for IMS database definitions that is an extension of the
Record package. This package also uses classes found in the ObjectModel Core
package.

The fundamental objects in IMS databases are DBD (Data Base Definition), PCB
(Process Contol Block) and PSB (Program Specification Block).

PSBs are the connection between an IMS system and application programs. PSBs
contain PCBs which come in three varieties:

• TP (Teleprocessing) PCBs describe a connection to a terminal

• GSAM PCBs connect a PSB to a input or output file.

• DB PCBs connect a PSB to the data defined by a DBD.

DBDs describe the organization of data and the pathways by which an application
program can retrieve or store Records. A Record within a DBD is called a Segment.
Segments are connected by parent-child relationships to create the information
hierarchy.

A Segment can be fully described through the Fields contained within it. However, it
is also valid for the Segments within a DBD to contain only a single key field. In this
case, the detailed layout of information within Records is described by data structures
used by the application program.

Most Data Warehouse applications are concerned only with Segments and Fields. This
model contains classes to cover the rest of IMS to support potential tools that might
export more of the IMS structure.

5-88 CWM 1.0 Vol 2 2 February 2001

5

5.2 Organization of the IMS Package

The IMS package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Resource::Record

The DBD part of the model is shown in Figure 5-1. The PSB portion is shown in
Figure 5-2. The way IMS classes inherit from Record classes and from ObjectModel
classes is shown in Figure 5-3.

2 February 2001 CWM 1.0 Vol 2 5-89

5

Figure 5-1 IMS Package - DBD

SegmentLogical

HIDAM

AccessMethod

ACBLIB

Exit

Segment *

0..1

child *

parent

0..1

*

0..2

logical*

physical0..2

*

0..1

*

0..1

DBDLib

INDEX

0..1

0..1

primaryTarget
0..1

0..1

0..16

0..1

sharingIndex

0..16

sharedIndex

0..1

Field

DBD

1

0..1

1

0..1
*

*

*

*
*

0..1

*

0..1

*

1

*
{ordered}

1

*
*

*

library
*

SecondaryIndex

0..11

secondaryTarget

0..11
0..5

*

ddataFields

0..5

ddataIndex

* * 0..5

subseqIndex

*
subseqFields

0..5 0..5*

searchFields

0..5

searchIndex

*

CHILD

Dataset

1
*

1
*

SegmentComplex

0..32

1

0..32

segment 1

0..1

*

indexSource

0..1

sourcedIndex
*

*

1

lchild

*

parent

1

0..1

1

lparent

0..1

lchild
1

0..1

0..1

pairedLCHILD

0..1

pairedSegment
0..1

0..1

*

0..1

segment
*

5-90 CWM 1.0 Vol 2 2 February 2001

5

Figure 5-2 IMS Package - PSB and PCB

Field

PSBLib

SenField 1* 1*

INDEX

PSB*

*library

*

*

enSegment

1

*

1

*

0..32

*

0..32

senseg
*

ACBLIB
** **

PCB

0..1
*

procSeq
0..1

sequencedPCB

*

*

*

*

*

*

1

*

1

Segment1* 1

senseg

*

DBD

*

*

*

*
0..1

*

0..1

*

*

1

*
{ordered}

1

2 February 2001 CWM 1.0 Vol 2 5-91

5

Figure 5-3 Showing inheritance from Record Oriented and ObjectModel classes

o d e lE le m e n t
(f r o m C o r e)

C B

A C B L I B

S e n S e g m e n t

i e l d
(f ro m R e c o rd)

e n F ie l d

S e g m e n t L o g i c a l

D a t a s e t

A c c e s s M e t h o d

S e c o n d a ry In d e x

F ie l d

D E D B

H D A M

H ID A M

IN D E X

M S D B

E x i t

S e g m e n t

L C H IL D

S e g m e n t C o m p le x

P S B L ib

P S B D B D

D B D L ib

P a c k a g e
(f ro m C o re)

R e c o rd F i l e
(f ro m R e c o rd)

R e c o rd D e f
(f ro m R e c o rd)

F ix e d O f fs e tF i e l d
(f ro m R e c o rd)

5-92 CWM 1.0 Vol 2 2 February 2001

5

5.3 IMS Classes

5.3.1 ACBLIB

This class represents the collection of components needed for an IMS ACB
(Application Control Block).

An IMS application will use one or more PSBs. For an application to be compiled
successfully, all of the PSBs and all of the DBDs referenced by those PSBs must be
collected into an ACBLIB.

Superclasses

Package

References

dbd

psb

5.3.2 AccessMethod

An instance of a subtype of this virtual class holds access-method-specific attributes of
a DBD user object. DBDs with access methods MSDB, INDEX, HIDAM, DEDB or
HDAM will use instances of the subclasses of this object class.

Superclasses

ModelElement

The DBDs used in this ACBLIB.

class: DBD

defined by: ContainsDBD::dbd

multiplicity: zero or more

inverse: DBD::acblib

The PSBs used in this ACBLIB

class: PSB

defined by: Contains PSB::psb

multiplicity: zero or more

inverse: PSB::acblib

2 February 2001 CWM 1.0 Vol 2 5-93

5

References

dbd

5.3.3 DBD

An instance of this object class represents an IMS Data Base Description, which is the
Root entity for a DBD object.

DBDs describe the organization of data and the pathways by which an application
program can retrieve or store Records. A Record within a DBD is called a Segment.
Segments are connected by parent-child relationships to create the information
hierarchy.

Superclasses

RecordFile

Contained Elements

AccessMethod

Dataset

Exit

Segment

DBD extended by this access method instance.

class: DBD

defined by: ExtendedByAccessMethod::dbd

multiplicity: exactly one

inverse: dbd::accessMethod

5-94 CWM 1.0 Vol 2 2 February 2001

5

Attributes

dliAccess

isVSAM

passwordFlag

versionString

References

This attribute holds the access method of the DBD.
PSINDEX, PHDAM, and PHIDAM are new valid values added for IMS V6.

type: AccessMethodType
Valid values: (DEDB | GSAM | HDAM | HIDAM |
HISAM | HSAM | INDEX | LOGICAL | MSDB |
PSINDEX | PHDAM | PHIDAM | SHSAM |
SHISAM)

multiplicity: exactly one

This attribute indicates whether the operating system access method for the DBD
is VSAM. It affects the string in the ACCESS keyword in the generated DBD
when dliAccess=GSAM, HDAM,or HIDAM.

type: Boolean

multiplicity: zero or one

This attribute is a flag to indicate whether PASSWD=YES should be specified on
the DBD macro.

type: Boolean

multiplicity: zero or one

This is a 255-character string that is generated with the VERSION keyword to
serve as a descriptive label on the DBD.

type: String

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-95

5

acblib

accessMethod

dataset

exit

library

The ACBLIB(s) in which the DBD is used.

class: ACBLIB

defined by: ContainsDBD::acblib

multiplicity: zero or more

inverse: ACBLIB::dbd

Connection to additional attributes and relationships that apply to a specific access
method.

class: AccessMethod

defined by: ExtendedByAccessMethod::accessMethod

multiplicity: zero or one

inverse: AccessMethod::dbd

Dataset information for this DBD.

class: Dataset

defined by: ContainsDataset::dataset

multiplicity: zero or more

inverse: Dataset::dbd

Data capture exit used by this DBD.

class: Exit

defined by: Captures::exit

multiplicity: zero or more

inverse: Exit::dbd

DBDLIB(s) in which DBD is stored.

class: DBDLib

5-96 CWM 1.0 Vol 2 2 February 2001

5

pcb

segment

5.3.4 DBDLib

A DBDLib is a collection of DBDs, comparable to a COPYlib for data structures.

Superclasses

Package

defined by: IsInDBDLib::library

multiplicity: zero or more

inverse: DBDLib::dbd

The PCBs that are based on this DBD.

class: PCB

defined by: PcbToDbd::pcb

multiplicity: zero or more

inverse: PCB::dbd

Segments that are part of this DBD.

class: Segment

defined by: ContainsSegment::segment

multiplicity: zero or more; ordered

inverse: Segment::dbd

2 February 2001 CWM 1.0 Vol 2 5-97

5

References

dbd

5.3.5 DEDB

An instance of this object class represents a DBD user object that has access=DEDB.
A DEDB DBD is a Fast Path DBD designed for very fast transactions. It must have a
randomizing module name to be valid. STAGE and XCI (Extended Call Interface)
were new parameters added with IMS 5.

Superclasses

AccessMethod

DBDs stored in the DBDLIB.

class: DBD

defined by: IsInDBDLib::dbd

multiplicity: zero or more

inverse: DBD::library

5-98 CWM 1.0 Vol 2 2 February 2001

5

Attributes

rmName

stage

extendedCall

5.3.6 Dataset

Instances of this object type are used to hold attributes for the DATASET and AREA
macro statements.

DATASET and AREA macro statements describe the physical storage of the DBD in
MVS datasets that are connected to an application by use of DD Statements in the JCL.

Superclasses

ModelElement

This attribute is the name of the executable module used to randomize the
database.

type: String

multiplicity: zero or one

This attribute specifies whether or not the randomizer is a 1 or 2 stage process
(default is 1).
Valid Values: 1 or 2

type: Integer

multiplicity: zero or one

This attribute specifies whether or not the ramdomizer should use the extended
call interface.

type: Boolean

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-99

5

Attributes

dd1name

dd2name

device

model

size1

Name of the primary or input dataset

type: String

multiplicity: exactly one

Name of overflow or output dataset.

type: String

multiplicity: zero or one

This attribute is the DEVICE specified on the DATASET statement.

type: DeviceType
Valid values: (2305 | 2319 | 3330 | 3350 | 3375 | 3380
| 3390 | 2400 | 3400 | TAPE)

multiplicity: zero or one

This attribute holds the model part of the DEVICE attribute on the DATASET
statement. The value is not relevant for most device types.

type: ModelType
Valid values: (1 | 2 | 11)

multiplicity: zero or one

Size of area or primary or input dataset.
For DEDB databases, valid values are: 512, 1024, 2048, 4096, 8192, 12288,
16384, 20480, 24576, 28672, and the Default value is 4096

type: Integer

multiplicity: zero or one

5-100 CWM 1.0 Vol 2 2 February 2001

5

size2

recordLength1

recordLength2

blockingFactor1

blockingFactor2

datasetLabel

Size of overflow or output dataset

type: Integer

multiplicity: zero or one

Record length in primary or input dataset.

type: Integer

multiplicity: zero or one

Record length in overflow or ioutput dataset.

type: Integer

multiplicity: zero or one

Blocking factor in primary or input dataset

type: Integer

multiplicity: zero or one

Blocking factor in overflow or output dataset.

type: Integer

multiplicity: zero or one

This attribute holds a label used for reverse referencing of datasets in a HDAM or
HIDAM database.

type: String

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-101

5

freeBlockFrequency

freeSpacePercentage

recordFormat

scanCylinders

searchAlgorithm

This attribute describes the frequency of free blocks in the initial dataset layout.
Valid Values are 0, 2-100, null

type: Integer

multiplicity: zero or one

This attribute describes the percentage of free space in the initial dataset layout.
Valid Values are 0-99, null

type: Integer

multiplicity: zero or one

This attribute describes the record format for a GSAM database.
Valid Values are F, FB, V, VB, U, null

type: RECFMType
Valid values: (F | FB | V | VB | U)

multiplicity: zero or one

This attribute describes the number of cylinders to be scanned to find space for
new data.
Valid values are 0-255

type: Integer

multiplicity: zero or one

This attribute specifies where should IMS look for space in which to put new data.
Valid Values are 0, 1, 2, null

type: AlgorithmType
Valid values: (0 | 1 | 2)

multiplicity: zero or one

5-102 CWM 1.0 Vol 2 2 February 2001

5

root

rootOverflow

uow

uowOverflow

References

This attribute holds total space allocated to the root addressable part of the AREA
in terms of UOWs. A value of 0 represents a null value.
Valid Values are 0 or 2-32767

type: Integer

multiplicity: zero or one

This attribute holds the amount of space reserved for independent overflow in
terms of units of work. A value of 0 represents a null value.
Valid values are 0 or 1-32767
Constraints:
root and rootOverflow must be specified together.
The value in rootOverflow must be less than the value in root.

type: Integer

multiplicity: zero or one

This attribute holds the number of control intervals in a unit of work. A value of
0 represents a null value.
Valid values: 0 or 2-32767

type: Integer

multiplicity: zero or one

This attribute holds the number of control intervals in overflow section of a unit of
work. A value of 0 represents a null value.
Valid values: 0 or 1-32767

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-103

5

dbd

segment

5.3.7 Exit

This class represents a Data Capture exit routine, which is specified to enable DB2
applications and end users to access updated IMS data. Data Capture exits can apply
to an entire DBD or to a specific segment.

Superclasses

ModelElement

DBD that uses this DATASET statement.

class: DBD

defined by: ContainsDataset::dbd

multiplicity: exactly one

inverse: DBD::dataset

Segment whose physical data is stored in the physical dataset represented by the
DATASET statement.

class: SegmentComplex

defined by: StoresSegment::segment

multiplicity: zero or more

inverse: SegmentComplex::dataset

5-104 CWM 1.0 Vol 2 2 February 2001

5

Attributes

key

data

path

log

Specifies whether the exit routine is passed the physical concatenated key. This
key identifies the physical segment updated by the application. A value of TRUE
makes to KEY, a value of FALSE maps to NOKEY.

type: Boolean

multiplicity: zero or one

This attribute specifies whether the physical segment data is passed to the exit
routine for updating. When DATA is specified and a Segment Edit/Compression
exit routine is also used, the data passed is expanded data. A value of TRUE
maps to DATA, a value of FALSE maps to NODATA.

type: Boolean

multiplicity: zero or one

This attribute specifies whether the data from each segment in the physical root’s
hierarchical path must be passed to the exit routine for an updated segment. A
value of TRUE maps to PATH; a value of FALSE maps to NOPATH.

type: Boolean

multiplicity: zero or one

This attribute specifies whether the data capture control blocks and data should be
written to the IMS system log.
A value of TRUE maps to LOG; a value of FALSE maps to NOLOG.

type: Boolean

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-105

5

cascade

cascadeKey

cascadeData

cascadePath

References

dbd

This attribute specifies whether the exit routine is called when DL/I deletes this
segment because the application deleted a parent segment. Using CASCADE
ensures that data is captured for the defined segment.
A value of TRUE maps to CASCADE; a value of FALSE maps to NOCASCADE.

type: Boolean

multiplicity: zero or one

This attribute specifies whether to pass the physical concatenated key to the exit.
This key identifies the segment being deleted by a cascade delete.
A value of TRUE maps to PATH; a value of FALSE maps to NOPATH.

type: Boolean

multiplicity: zero or one

The attribute specifies whether to pass segment data to the exit routine for a
cascade delete. DATA also identifies the segment being deleted when the physical
concatenated key is unable to do so.
A value of TRUE maps to DATA; a value of FALSE maps to NODATA.

type: Boolean

multiplicity: zero or one

This attribute specifies whether to allow an application to separately access
several segments for a cascade delete.
A value of TRUE maps to PATH; a value of FALSE maps to NOPATH.

type: Boolean

multiplicity: zero or one

The DBD instance that uses this data capture exit.

class: DBD

5-106 CWM 1.0 Vol 2 2 February 2001

5

segment

5.3.8 Field

This sub-type is used to add the attributes that apply to a Record Field only within the
context of a specific DBD. One or more Fields within a Segment can be defined as a
Sequence Field, which is the Key for the segment. A Sequence Field can be defined as
Unique or Multiple. A Segment description does not have to include all of the Fields
defined within the data structure.

Superclasses

FixedOffsetField

defined by: Captures::dbd

multiplicity: zero or one

inverse: DBD::exit

The Segment instance that uses this data capture exit.

class: Segment

defined by: CapturesExit::segment

multiplicity: zero or one

inverse: Segement::exit

2 February 2001 CWM 1.0 Vol 2 5-107

5

Attributes

sequenceField

uniqueSequence

fieldLength

generated

References

ddataIndex

This attribute is a flag to indicate whether the dataItem instance should be
generated as a sequence field or not.

type: Boolean

multiplicity: zero or one

This attribute is a flag to indicate whether the dataItem instance should be
generated as a unique sequence field.

type: Boolean

multiplicity: zero or one

The attribute holds the length of the data item. This value should come from the
data item itself.

type: Integer

multiplicity: exactly one

Indicates if the field has been generated by analyzing the "copybook" associated
with the structure/segment, or if the field is coming directly from the IMS catalog

type: Boolean

multiplicity: exactly one

The index that uses this field as duplicate data.

class: SecondaryIndex

defined by: IsDuplicateData::ddataIndex

multiplicity: zero or more

inverse: SecondaryIndex::ddataFields

5-108 CWM 1.0 Vol 2 2 February 2001

5

searchIndex

subseqIndex

senField

5.3.9 HDAM

An instance of this object class represents a DBD user object that has access=HDAM.
These attributes are part of the randomizing module information that a valid HDAM
DBD must have.

HDAM is a full-function DBD with indexing and logical relationships.

Superclasses

AccessMethod

The index that uses this field for a search field.

class: SecondaryIndex

defined by: Searched::searchIndex

multiplicity: zero or more

inverse: SecondaryIndex::searchFields

The index that uses this field as a subsequence field.

class: SecondaryIndex

defined by: Subsequenced::subseqIndex

multiplicity: zero or more

inverse: SecondaryIndex::subseqFields

Instances of this relationship type are used to connect a SenField instance to the
Field instance that represents a field to which the sensitiveSegment is sensitive.

class: SenField

defined by: SenfldToFiled::senfield

multiplicity: zero or more

inverse: SenField::field

2 February 2001 CWM 1.0 Vol 2 5-109

5

Attributes

rmName

relativeBlockNumber

rootAnchorPoints

rootMaxBytes

5.3.10 HIDAM

An instance of this object class represents a DBD user object with an access method of
HIDAM. A HIDAM DBD must have a primary index relationship to be valid. The
relationship maps to an LCHILD statement under the root segment that has
POINTER=INDX and no associated XDFLD statement.

A HIDAM DBD is a full function DBD with indexing and logical relationships.

This attribute is the name of the executable module used to randomize the
database.

type: String

multiplicity: zero or one

The maximum relative block number that the user wishes to allow a randomizing
module to produce for a database. This attributes determines the number of control
intervals or blocks in the root-addressable area of a HDAM database.
Valid Values: 0 or 1-16777215

type: Integer

multiplicity: zero or one

The number of root anchor points desired in each control interval of block in the
root addressable area.
Valid Values: 0 or 1-255

type: Integer

multiplicity: zero or one

The maximum number of bytes of database record that can be stored in the root-
addressable area in a series of inserts unbroken by a call to another database
record.

type: Integer

multiplicity: zero or one

5-110 CWM 1.0 Vol 2 2 February 2001

5

Superclasses

AccessMethod

References

index

5.3.11 INDEX

An instance of the DBDindex object class represents a DBD user object that can be
used to index a HIDAM database or a segment in a HDAM, HIDAM or HISAM
database. The indexing relationship maps to the LCHILD statement in the macro
language description of an index DBD.

An INDEX DBD can also be treated as a normal single-segment DBD.

Superclasses

AccessMethod

The primary index for this HIDAM DBD

class: INDEX

defined by: PrimaryIndex::index

multiplicity: zero or one

inverse: INDEX::primaryTarget

2 February 2001 CWM 1.0 Vol 2 5-111

5

Attributes

dosCompatibility

protect

References

primaryTarget

secondaryTarget

sharedIndex

This attribute indicates whether the index DBD was created with DLI/DOS with a
segment code as part of the prefix.

type: Boolean

multiplicity: zero or one

This attribute is a flag for data integrity in index pointer segments.

type: Boolean

multiplicity: zero or one

The HIDAM DBD for which this Index is the primary index.

class: HIDAM

defined by: PrimaryIndex::primaryTarget

multiplicity: zero or one

inverse: HIDAM::index

The secondary index relationship to a complex segment.

class: SecondaryIndex

defined by: Indexes::secondaryTarget

multiplicity: zero or one

inverse: SecondaryIndex::index

The first DBD that defines the Dataset shared by the rest of the index DBDs.

class: INDEX

5-112 CWM 1.0 Vol 2 2 February 2001

5

sharingIndex

sequencedPCB

senseg

5.3.12 LCHILD

This type holds the attributes that apply to the relationship used to connect a
SegmentComplex instance to the SegmentComplex instances for which it is the logical
parent (maps to LCHILD statement and to the PARENT keyword on the SEGM
statement).

Superclasses

ModelElement

defined by: IndexShares::sharedIndex

multiplicity: zero or one

inverse: INDEX::sharingIndex

The second and later Index DBDs that share a dataset.

class: INDEX

defined by: IndexShares::sharingIndex

multiplicity: zero or one

inverse: INDEX::sharedIndex

The PCB(s) that use this secondary index for processing sequence.

class: PCB

defined by: SequencedBy::sequencedPCB

multiplicity: zero or more

inverse: PCB::procSeq

The sensitive segments indexed by this Index DBD

class: SenSegment

defined by: Indices::senseg

multiplicity: zero or more

inverse: SenSegment::index

2 February 2001 CWM 1.0 Vol 2 5-113

5

Attributes

counter

lcPointer

lparentFlag

ltwin

rules

This attribute holds a flag for whether COUNTER keyword is to be used in the
POINTER= parameter on the child segment.

type: Boolean

multiplicity: zero or one

This attribute holds a value used in the POINTER keyword on the LCHILD macro
to specify amount of pointer fields to be reserved in the logical parent segment.

type: ChildPointerType
Valid values: (SNGL | DBLE | NONE)

multiplicity: zero or one

This attribute holds a flag for whether LPARNT keyword is to be used in the
POINTER= parameter on the child segment.

type: Boolean

multiplicity: zero or one

This attribute holds a value to be used in the POINTER= parameter on the child
segment in order to specify logical twin pointers.

type: LPointerType
Valid values: (LTWIN | LTWINBWD)

multiplicity: zero or one

This attribute holds a value used in the RULES keyword on the LCHILD macro to
control the logical twin sequence.
Valid Values are FIRST, LAST, HERE

type: RulesType
Valid values: (FIRST | LAST | HERE)

multiplicity: zero or one

5-114 CWM 1.0 Vol 2 2 February 2001

5

virtualParent

References

lparent

lchild

pairedSegment

5.3.13 MSDB

A DBD with access=MSDB (Mass Storage Data Base) has msdbField and msdbType
information instead of physical datasaet information.

virtualParent
This attribute holds a value used in the PARENT parameter on the logical child
segment to specify whether the concatenated key of the logical parent segment is
stored with each logical child segment.

type: ParentType
Valid values: (VIRTUAL | PHYSICAL)

multiplicity: zero or one

The segment that represents the parent in a logical parent relationship.

class: SegmentComplex

defined by: IsLChild::lparent

multiplicity: exactly one

inverse: SegmentComplex::lchild

The child segment in the logical parent relationship.

class: SegmentComplex

defined by: IsLParent::lchild

multiplicity: exactly one

inverse: SegmentComplex::lparent

The pair relationship to a physical child of the logical parent segment.

class: SegmentComplex

defined by: IsPaired::pairedSegment

multiplicity: zero or one

inverse: SegmentComplex::pairedLCHILD

2 February 2001 CWM 1.0 Vol 2 5-115

5

Superclasses

AccessMethod

Attributes

msdbField

msdbType

5.3.14 PCB

A PCB is a series of macro instructions contained in a PSB. PCBs which come in
three varieties:

• TP (Teleprocessing) PCBs describe a connection to a terminal

• GSAM PCBs connect a PSB to a input or output file.

• DB PCBs connect a PSB to the data defined by a DBD.

Superclasses

RecordFile

This attribute holds a search field name for a Mass Storage Data Base.

Update Constraints
A string is required in msdbField when msdbType=FIXED, TERM,or DYNAMIC
for the DBD user object to be valid.
The string in msdbField must not be the same as the name on any FIELD
statement in this DBD.
msdbField must be null when msdbType=NO.

type: String

multiplicity: zero or one

This attribute specifies the type of Mass Storage Data Base. It may be NO
(nonterminal-related without terminal-related keys which has key and sequence
field as part of the segment), FIXED (terminal-related fixed), TERM
(nonterminal-related with terminal-related keys), DYNAMIC (terminal-related
dynamic) or null

type: MSDBtype
Valid values: (NO | TERM | FIXED | DYNAMIC)

multiplicity: exactly one

5-116 CWM 1.0 Vol 2 2 February 2001

5

Contained Elements

SenSegment

2 February 2001 CWM 1.0 Vol 2 5-117

5

Attributes

pcbType

list

keyLength

processingOptions

positioning

The type of PCB - whether GSAM, DB or TP

type: PCBType
Valid values: (DB | GSAM | TP)

multiplicity: exactly one

This attribute specifies whether a named PCB is included in the PCB list passed to
the application program at entry. TRUE includes the PCB in the PCB list, FALSE
excludes it from the PCB list.

type: Boolean

multiplicity: zero or one

The value specified in bytes of the longest concatenated key for a hierarchic path
of sensitive segments used by the application program in the logical data structure.

type: Integer

multiplicity: zero or one

This attribute holds a string that represents the processing options on either the
sensitive segments or the data set declared in this PCB and which can be used in
an associated application program.

type: String

multiplicity: zero or one

This attribute specifies whether single or multiple positioning is desired for the
logical data structure. Single or multiple positioning provides a functional
variation in the call. Multiple positioning is not supported by HSAM.

type: PositioningType
Valid values: (S | M)

multiplicity: zero or one

5-118 CWM 1.0 Vol 2 2 February 2001

5

sequentialBuffering

alternateResponse

express

modify

sameTerminal

The value in this attribute specifies if this PCB will be buffered using sequential
buffering (SB).
True means the SB should be activated conditionally (COND);
False means that SB should not be used for this DB PCB (NO).

type: Boolean

multiplicity: zero or one

This attribute specifies whether this PCB can be used instead of the I/O PCB for
responding to terminal in response mode, conversational mode, or exclusive
mode.

type: Boolean

multiplicity: zero or one

This attribute specifies whether messages from this alternate PCB are to be sent
(TRUE) or are to be backed out (FALSE) if the application program should
terminate abnormally.

type: Boolean

multiplicity: zero or one

This attribute specifies whether the alternate PCB is modifiable. This feature
allows for the dynamic modification of the destination name associated with this
PCB.

type: Boolean

multiplicity: zero or one

This attribute specifies whether IMS should verify that the logical terminal named
in the response alternate PCB is assigned to the same physical terminal as the
logical terminal that originated the input message.

type: Boolean

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-119

5

destinationType

ltermName

References

dbd

psb

The attribute specifies whether the ltermName attribute signifies a logical terminal
(LTERM) or a transaction code (NAME). This attribute maps to the LTERM or
NAME keyword on the PCB macro statement.

type: LTermType
Valid values: (LTERM | NAME)

multiplicity: zero or one

This attribute specifies the name of the actual destination of the message and is
either a logical terminal name or a transaction-code name. When the name is a
transaction-code name, output messages to this PCB are queued for input to the
program used to process the transaction-code named by the NAME attribute. The
name must be specified in the user’s IMS/VS system definition as a logical
terminal name or transaction code. This attribute maps to the LTERM/NAME
keyword on the PCB macro statement.

type: String

multiplicity: zero or one

The DBD on which this PCB is based.

class: DBD

defined by: PcbToDbd::dbd

multiplicity: zero or one

inverse: DBD::pcb

The PSB(s) that use this PCB.

class: PSB

defined by: PsbToPcb::psb

multiplicity: zero or more

inverse: PSB::pcb

5-120 CWM 1.0 Vol 2 2 February 2001

5

senSegment

procSeq

5.3.15 PSB

An instance of this object class represents the root entity of a PSB user object. Within
IMS, a PSB (Program Specification Block) is a series of PCB macro instructions that
describe an application program’s I/O operations and its view and use of segments and
fields in IMS databases. The types of PCBs are TP PCB which describes interactions
with logical terminals, GSAM PCB which is based on a GSAM DBD used as an input
or output dataset, and DB PCB which can relate to segments and fields in its base
DBD.

Superclasses

RecordFile

The sensitive segments included in this PCB.

class: SenSegment

defined by: PcbToSenSegment::senSegment

multiplicity: zero or more

inverse: SenSegment::pcb

The secondary index that this PCB uses as a processing sequence.

class: INDEX

defined by: SequencedBy::procSeq

multiplicity: zero or one

inverse: INDEX::sequencedPCB

2 February 2001 CWM 1.0 Vol 2 5-121

5

Attributes

compatibility

ioErrorOption

ioaSize

language

The value in this attribute provides for compatibility between BMP or MSG and
Batch-DL/I parameter lists. When TRUE, the PSB is always treated as if there
were an I/O PCB, no matter how it is used. When FALSE, the PSB has an I/O
PCB added only when run in a BMP or MSG region.

type: Boolean

multiplicity: zero or one

The value in this attribute represents the condition code returned to the operating
system when IMS/VS terminates normally and one or more input or output errors
occurred on any data base during the application program execution.

type: Integer

multiplicity: zero or one

This attribute holds the size of the largest I/O area to be used by the application
program. The size specification is used to determine the amount of main storage
reserved in the PSB pool to hold the control region’s copy of the user’s I/O area
data during scheduling of this application program. If this value is not specified,
the ACB utility program calculates a maximum I/O area size to be used as a
default. The size calculated is the total length of all sensitive segments in the
longest possible path call. The value specified is in bytes.

type: Integer

multiplicity: zero or one

This attribute holds the language label used on the PSBGEN statement.

type: PSBLanguageType
Valid values: (ASSEM | C | COBOL | PL/I |
PASCAL)

multiplicity: zero or one

5-122 CWM 1.0 Vol 2 2 February 2001

5

lockMaximum

maximumQxCalls

onlineImageCopy

ssaSize

The value in this attribute indicates the maximum number of locks an application
program can get at one time. The value is specified in units of 1000. For
example, a lockMaximum value of 5 indicates a maximum of 5000 locks at one
time. A value of 0 turns off the limit.

type: Integer

multiplicity: zero or one

The value in this attribute represents the maximum number of data base calls with
Qx command codes which may be issued between synchronization points. If this
number is exceeded, the application program will abend.

type: Integer

multiplicity: zero or one

This attribute specifies whether the user of this PSB is authorized to execute the
Online Data Base Image Copy utility or the Surveyor utility feature run as a BMP
against a data based named in this PSB. When TRUE, use of the Online Image
Copy and the Surveyor utility feature is allowed; When FALSE, use of the Online
Image copy and the Surveyor utility feature is prohibited.

type: Boolean

multiplicity: zero or one

The value in this attribute represents the maximum total length of all SSAs to be
used by the application program. The size specification is used to determine the
amount of main storage reserved in the PSB pool to hold the control region’s copy
of the user’s SSA string during scheduling of this application program. If not
specified, the ACB utility program calculates the maximum SSA size to be used
as a default. The size calculated is the maximum number of levels in any PCB
within this PSB times 280. The value specified is in bytes.

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-123

5

writeToOperator

References

acblib

library

pcb

5.3.16 PSBLib

A collection of PSBs - comparable to a COPYlib for data structures.

This attributes holds a subparameter of the IOEROPN parameter. It is tied to the
"write-to-operator-with-reply" function in the Utility Control facility. When
TRUE, a WTOR for the DFS0451A I/O error message is issued, and DL/I waits
for the operator to respond before continuing.

type: Boolean

multiplicity: zero or one

The ACBLIB(s) that use this PSB.

class: ACBLIB

defined by: ContainsPSB::acblib

multiplicity: zero or more

inverse: ACBLIB::psb

The PSBLIB(s) in which this PSB is stored.

class: PSBLib

defined by: IsInPSBLib::library

multiplicity: zero or more

inverse: PSBLib::psb

The PCBs used by this PSB.

class: PCB

defined by: PsbToPcb::pcb

multiplicity: zero or more

inverse: PCB::psb

5-124 CWM 1.0 Vol 2 2 February 2001

5

Superclasses

Package

References

psb

5.3.17 SecondaryIndex

This type holds the attributes on the relationships between a SegmentComplex
instance and the INDEX instances that act as secondary indexes for the DBD (maps to
combination of LCHILD and XDFLD statements).

Superclasses

ModelElement

The PSBs stored in this PSBLIB.

class: PSB

defined by: IsInPSBLib::psb

multiplicity: zero or more

inverse: PSB::library

2 February 2001 CWM 1.0 Vol 2 5-125

5

Attributes

constant

exitRoutine

nullValue

References

index

This attribute holds a character string that defines a one-byte self-defining term
with which every index pointer segment in a particular secondary index is
identified. It is used to identify index pointer segments for a specific secondary
index when multiple secondary indexes reside in the same database.

type: String

multiplicity: zero or one

This attribute is the name of the executable module that suppresses creation of
index pointer segments.

type: String

multiplicity: zero or one

This attribute holds a character string that is a one-byte self-defining term.
The creation of index pointer segments is suppressed when the specified value is
contained in the search field of an index pointer segment.

type: String

multiplicity: zero or one

The index used in the secondary index relationship.

class: INDEX

defined by: Indexes::index

multiplicity: exactly one

inverse: INDEX::secondaryTarget

5-126 CWM 1.0 Vol 2 2 February 2001

5

segment

indexSource

ddataFields

searchFields

subseqFields

The segment that is being indexed.

class: SegmentComplex

defined by: IsIndexedBy::segment

multiplicity: exactly one

inverse: SegmentComplex::secondaryIndex

The segment that contains the Search, Subsequence and Duplicate data fields for
the index relationship.

class: SegmentComplex

defined by: HasIndexSource::indexSource

multiplicity: zero or one

inverse: SegmentComplex::sourcedIndex

Fields used for duplicate data in the index relationship.

class: Field

defined by: IsDuplicateData::ddataFields

multiplicity: 0..5

inverse: Field::ddataIndex

The fields used for search fields by the secondary index.

class: Field

defined by: Searched::searchFields

multiplicity: 0..5

inverse: Field::searchIndex

The fields used as subsequence fields by the secondary index.

class: Field

2 February 2001 CWM 1.0 Vol 2 5-127

5

5.3.18 Segment

An instance of this object class represents a segment within a DBD user object.

A segment is the IMS-view of a data structure that maps the fields in the segment.

Superclasses

Record

Contained Elements

Field

Exit

defined by: Subsequenced::subseqFields

multiplicity: 0..5

inverse: Field::subseqIndex

5-128 CWM 1.0 Vol 2 2 February 2001

5

Attributes

directDependent

exitFlag

frequency

maximumLength

minimumLength

This attribute indicates whether the segment is direct dependent or sequential. A
value of TRUE specifies use of DIR as the segment type on the generated DBD. A
value of FALSE specifies use of SEQ on the generated DBD. This attribute is
ignored for the root segment of the DBD user object.

type: Boolean

multiplicity: zero or one

This attribute is a flag to indicate whether a segment will use the data capture
exits specified on the DBD. A valid of FALSE maps to use of EXIT=NONE
parameter on the SEGM macro. This flag has no meaning when exits points to
any instances of PropagatedBy.

type: Boolean

multiplicity: zero or one

This attribute holds estimated number of times that this segment will occur for
each occurrence of its physical parent.

type: String

multiplicity: zero or one

This attribute holds the length of a fixed-length segment, or the maximum length
of a variable length segment.

type: Integer

multiplicity: zero or one

This attribute holds the minimum length of a variable length segment.

type: Integer

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-129

5

pcPointer

rules

subsetPointers

References

dbd

exit

This attribute describes the type of physical child pointer to be stored in the prefix
area of the segment in the DBD.
Valid Values are SNGL, DBLE, null

type: ChildPointerType
Valid values: (SNGL | DBLE | NONE)

multiplicity: zero or one

This attributes holds the value that indicates where to place new occurrences of
this segment type in the physical database.

type: RulesType
Valid values: (FIRST | LAST | HERE)

multiplicity: zero or one

This attribute holds the number of subset pointers in a direct dependent segment in
a DEDB DBD. Valid values are 0-8.

type: Integer

multiplicity: zero or one

DBD that owns this segment.

class: DBD

defined by: ContainsSegment::dbd

multiplicity: exactly one

inverse: DBD::segment

Data capture exit used by this segment.

class: Exit

5-130 CWM 1.0 Vol 2 2 February 2001

5

defined by: CapturesExit::exit

multiplicity: zero or more

inverse: Exit::segment

2 February 2001 CWM 1.0 Vol 2 5-131

5

logical

child

parent

senseg

5.3.19 SegmentComplex

This subclass of Segment supports the full-function features that are limited to HDAM,
HIDAM and HISAM databases: specifically logical children and secondary indexes.

Superclasses

Segment

The logical segment that is based on this physical segment.

class: SegmentLogical

defined by: HasSource::logical

multiplicity: zero or more

inverse: SegmentLogical::physical

The physical child segment.

class: Segment

defined by: ParentChild::child

multiplicity: zero or more

inverse: Segment::parent

The physical parent segment.

class: Segment

defined by: ParentChild::parent

multiplicity: zero or one

inverse: Segment::child

The sensitive segments that use this segment.

class: SenSegment

defined by: SensegMapsTo::senseg

multiplicity: zero or more

inverse: SenSegment::segment

5-132 CWM 1.0 Vol 2 2 February 2001

5

Contained Elements

SecondaryIndex

LCHILD

2 February 2001 CWM 1.0 Vol 2 5-133

5

Attributes

deleteFlag

dsGroup

insertFlag

replaceFlag

segmPointer

References

This attribute holds the value used for the delete rule.

type: FlagsType
Valid values: (P | L | V | B)

multiplicity: zero or one

This is used to arrange the segments in a partitioned database in a manner
comparable to arranging them within datasets in earlier versions of IMS

type: String

multiplicity: zero or one

This attribute holds the value used for the insert rule.
bidirectional is not used for the insert flag.

type: FlagsType
Valid values: (P | L | V)

multiplicity: zero or one

This attribute holds the value used for the replace rule.
bidirectional is not used for the replace flag.

type: FlagsType
Valid values: (P | L | V)

multiplicity: zero or one

This attribute holds the string used for pointer keyword value.

type: PointerType
Valid values: (NOTWIN | TWIN | HIER |
TWINBWD | HIERBWD)

multiplicity: zero or one

5-134 CWM 1.0 Vol 2 2 February 2001

5

dataset

lchild

lparent

pairedLCHILD

secondaryIndex

Reference to a physical dataset in which this segments physical data is stored.

class: Dataset

defined by: StoresSegment::dataset

multiplicity: zero or one

inverse: Dataset::segment

The relationship to the logical children relationships.

class: LCHILD

defined by: IsLChild::lchild

multiplicity: zero or more

inverse: LCHILD::lparent

The relationship to the logical parent relationship instance.

class: LCHILD

defined by: IsLParent

multiplicity: zero or one

inverse: lchild
The child segment in the logical parent relationship.

The pair relationship to a logical child of the physical parent segment

class: LCHILD

defined by: IsPaired::pairedLCHILD

multiplicity: zero or one

inverse: LCHILD::pairedSegment

The secondary index relationships that would be represented as LCHILD/XDFLD
statement sets.

class: SecondaryIndex

2 February 2001 CWM 1.0 Vol 2 5-135

5

sourcedIndex

5.3.20 SegmentLogical

An instance of this object class represents a segment in a DBD user object that has
access method of LOGICAL. Segments in a logical DBD use segments in other DBDs
instead of defining physical data.

Superclasses

Segment

defined by: IsIndexedBy::secondaryIndex

multiplicity: 0..32

inverse: SecondaryIndex::segment

The index that uses fields in this segment.

class: SecondaryIndex

defined by: HasIndexSource::sourcedIndex

multiplicity: zero or more

inverse: SecondaryIndex::indexSource

5-136 CWM 1.0 Vol 2 2 February 2001

5

Attributes

keyData1

keyData2

References

physical

5.3.21 SenField

This relationship associates a SensitiveSegment instance to the Field instances that

This attribute indicates how segment data will be handled when the logical DBD
is processed.
A value of TRUE specifies use of "DATA" as the type in the first parameter of
the SOURCE keyword in the generated DBD, which directs the segment key to be
placed in the key feedback area and the segment data to be placed in the user’s I/O
area.
A value of FALSE specified use of "KEY" as the type, which directs only the key
to be placed in the key feedback area.

type: Boolean

multiplicity: zero or one

This attribute indicates how segment data will be handled when the logical DBD
is processed.
A value of TRUE specifies use of "DATA" as the type in the second parameter of
the SOURCE keyword in the generated DBD, which directs the segment key to be
placed in the key feedback area and the segment data to be placed in the user’s I/O
area.
A value of FALSE specified use of "KEY" as the type, which directs only the key
to be placed in the key feedback area.
A value of NULL indicates that there is no second SOURCE parameter.

type: Boolean

multiplicity: zero or one

The real segment that is the basis of the logical segment.

class: Segment

defined by: HasSource::physical

multiplicity: 0..2

inverse: Segment::logical

2 February 2001 CWM 1.0 Vol 2 5-137

5

represent the fields in the segment to which the PCB must be sensitive.

Field level sensitivity provides an increased level of data independence by isolating
application programs from changes in the arrangement of fields within a segment and
addition or deletion of data within a segment.

Additionally, it enhances data security by limiting an application program to a subset
of fields within a segment and controlling replace operations at the field level.

Superclasses

FixedOffsetField

5-138 CWM 1.0 Vol 2 2 February 2001

5

Attributes

replace

References

senSegment

field

5.3.22 SenSegment

The type holds the attributes that apply to a PCB’s use of a specific segment within a
DBD. Application programs using a PCB can only access the segments to which that
PCB is sensitive, protecting an hiding some of the data covered by the DBD.

Superclasses

Record

Contained Elements

SenField

The value of this attribute specifies whether this field may be altered on a replace
call.

type: Boolean

multiplicity: zero or one

The segment that is sensitive to this field.

class: SenSegment

defined by: SensegToSenfld::senSegment

multiplicity: exactly one

inverse: SenSegment::senField

The field to which the PCB is sensitive.

class: Field

defined by: SenfldToField::field

multiplicity: exactly one

inverse: Field::senField

2 February 2001 CWM 1.0 Vol 2 5-139

5

Attributes

procoptSENSEG

subsetPointers

References

index

pcb

This attribute holds the processing options allowable for use of this sensitive
segment by an associated application program. It has the same meaning as the
same attribute in the PCB, plus other options may be specified here which are not
allowed on the PCB. This PROCOPT overrides the PCB PROCOPT.

type: String

multiplicity: zero or one

This attribute specifies sensitivity to the array of subset pointers, each of which
may be R (read sensitive), U (update sensitive), or N (not sensitive).

type: String

multiplicity: zero or one

The indices of this sensitive segment

class: INDEX

defined by: Indices::index

multiplicity: 0..32

inverse: INDEX::senseg

The PCB that includes this sensitive segment.

class: PCB

defined by: PcbToSenSegment::pcb

multiplicity: exactly one

inverse: PCB::senSegment

5-140 CWM 1.0 Vol 2 2 February 2001

5

segment

senField

5.4 IMS Associations

5.4.1 Captures protected

This relationship connects a DBD to data capture exits.

Ends

exit

dbd

5.4.2 CapturesExit protected

This relationship connects a Segment to data capture exits.

One segment to which the PCB is sensitive.

class: Segment

defined by: SensegMapsTo::segment

multiplicity: exactly one

inverse: Segment::senseg

The field to which the segment is sensitive.

class: SenField

defined by: SensegToSenfld::senField

multiplicity: zero or more

inverse: SenField::senSegment

Data capture exit used by this DBD.

class: Exit

multiplicity: zero or more

DBD that uses and owns this data capture exit.

class: DBD

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 5-141

5

Ends

exit

segment

5.4.3 ContainsDataset protected

This relationship connects a DBD to the set of Datasets it uses.

Ends

dbd

dataset

5.4.4 ContainsDBD protected

This relationship collects DBDs in an ACBLIB.

Data capture exit used by this Segment.

class: Exit

multiplicity: zero or more

Segment that uses this data capture exit.

class: Segment

multiplicity: zero or one

The DBD instance that owns this Dataset instance.

class: DBD

multiplicity: 1..1

The set of Dataset instances used by this DBD.

class: Dataset

multiplicity: 0..*

5-142 CWM 1.0 Vol 2 2 February 2001

5

Ends

acblib

dbd

5.4.5 ContainsPSB protected

This relationship collects PSBs in an ACBLIB.

Ends

acblib

psb

5.4.6 ContainsSegment protected

Instances of this relationship type are used to connect a DBD instance to the Segment
instances that are used in the DBD user object.

The ACBLIB(s) in which the DBD is used.

class: ACBLIB

multiplicity: zero or more

The DBDs used in the ACBLIB.

class: DBD

multiplicity: zero or more

The ACBLIB(s) that use this PSB.

class: ACBLIB

multiplicity: zero or more

The PSBs used in this ACBLIB.

class: PSB

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 5-143

5

Ends

segment

dbd

5.4.7 ExtendedByAccessMethod protected

An instance of this relationship type is used to connect an instance of DBD to an
instance of AccessMethod or one of its subclasses in order to hold the access-specific
attributes of a DBD. Using an extension instead of subtyping DBD directly allows a
tool to change the access method of a DBD (or decide the access method later) without
having to change the type of the DBD instance.

Ends

dbd

accessMethod

5.4.8 HasIndexSource protected

An instance of this relationship type is used to connect a SecondaryIndex instance to
the SegmentComplex instance that represents the index source segment for the
secondary index (SEGMENT keyword on XDFLD statement).

Segments that are part of this DBD.

class: Segment

multiplicity: zero or more; ordered

DBD that owns this segment.

class: DBD

multiplicity: exactly one

DBD extended by this access method instance.

class: DBD

multiplicity: exactly one

Connection to additional attributes and relationships that apply to a specific access
method.

class: AccessMethod

multiplicity: zero or one

5-144 CWM 1.0 Vol 2 2 February 2001

5

Ends

indexSource

sourcedIndex

5.4.9 HasSource protected

This relationship connects a logical segment to the one or two physical segments that
contain the data.

This relationship maps to the SOURCE keyword on the SEGM statement in a DBD
with access=LOGICAL.

Ends

logical

physical

5.4.10 Indexes protected

Instances of this relationship type are used to connect each SecondaryIndex instance to
the INDEX DBD that acts as a secondary index for the DBD (this information maps to
the combination of LCHILD and XDFLD statements).

The segment that contains the Search, Subsequence and Duplicate data fields for
the index relationship.

class: SegmentComplex

multiplicity: zero or one

The index that uses fields in this segment.

class: SecondaryIndex

multiplicity: zero or more

The logical segment that is based on this physical segment.

class: SegmentLogical

multiplicity: zero or more

The real segment that is the basis of the logical segment.

class: Segment

multiplicity: 0..2

2 February 2001 CWM 1.0 Vol 2 5-145

5

Ends

secondaryTarget

index

5.4.11 IndexShares protected

This relationship connects an Index DBD to the other index DBDs sharing the dataset.
This models the shared secondary index type of DBD.

Ends

sharingIndex

sharedIndex

5.4.12 Indices protected

Instances of this relationship type are used to connect a SensitiveSegment instance to
the INDEX DBDs that are used as INDICES by the SENSEG.

The secondary index relationship to a complex segment.

class: SecondaryIndex

multiplicity: zero or one

The index used in the secondary index relationship.

class: INDEX

multiplicity: exactly one

The second and later Index DBDs that share a dataset.

class: INDEX

multiplicity: 0..16

The first DBD that defines the Dataset shared by the rest of the index DBDs.

class: INDEX

multiplicity: zero or one

5-146 CWM 1.0 Vol 2 2 February 2001

5

Ends

index

senseg

5.4.13 IsDuplicateData protected

Instances of this relationship type are used to connect a SecondaryIndex instance to the
Field instances that are used by the secondary index as duplicate data fields (DDATA
keyword on XDFLD statement).

Ends

ddataFields

ddataIndex

5.4.14 IsInDBDLib protected

DBDs are stored in a DBDlib

The indices of this sensitive segment

class: INDEX

multiplicity: 0..32

The sensitive segments indexed by this Index DBD

class: SenSegment

multiplicity: zero or more

Fields used for duplicate data in the index relationship.

class: Field

multiplicity: 0..5

The index that uses this field as duplicate data.

class: SecondaryIndex

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 5-147

5

Ends

dbd

library

5.4.15 IsIndexedBy protected

Instances of this relationship type are used to connect a SegmentComplex instance to
the SecondaryIndex instances that act as secondary indexes for the DBD user object
(maps to combination of LCHILD and XDFLD statements).

Ends

secondaryIndex

segment

5.4.16 IsInPSBLib protected

PSBs are stored in a PSBlib

DBDs stored in the DBDLIB.

class: DBD

multiplicity: zero or more

DBDLIB(s) in which DBD is stored.

class: DBDLib

multiplicity: zero or more

The secondary index relationships that would be represented as LCHILD/XDFLD
statement sets.

class: SecondaryIndex

multiplicity: 0..32

The segment that is being indexed.

class: SegmentComplex

multiplicity: exactly one

5-148 CWM 1.0 Vol 2 2 February 2001

5

Ends

library

psb

5.4.17 IsLChild protected

Instances of this relationship type are used to connect a SegmentComplex to its logical
children.

Ends

lchild

lparent

5.4.18 IsLParent protected

Instances of this relationship connect a SegmentComplex to its logical parent.

The PSBLIB(s) in which this PSB is stored.

class: PSBLib

multiplicity: zero or more

The PSBs stored in this PSBLIB.

class: PSB

multiplicity: zero or more

The relationship to the logical children relationships.

class: LCHILD

multiplicity: zero or more

The segment that represents the parent in a logical parent relationship.

class: SegmentComplex

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 5-149

5

Ends

lparent

lchild

5.4.19 IsPaired protected

This relationship connects a logical child to the bidirectionally paired segment.

Ends

pairedLCHILD

pairedSegment

5.4.20 ParentChild protected

An instance of this relationship type is used to connect an Segment instance to the
hierarchical parent Segment instance in the same DBD user object (maps to PARENT
keyword on SEGM macro statement).

The relationship to the logical parent relationship instance.

class: LCHILD

multiplicity: zero or one

The child segment in the logical parent relationship.

class: SegmentComplex

multiplicity: exactly one

The pair relationship to a logical child of the physical parent segment

class: LCHILD

multiplicity: zero or one

The pair relationship to a physical child of the logical parent segment.

class: SegmentComplex

multiplicity: zero or one

5-150 CWM 1.0 Vol 2 2 February 2001

5

Ends

child

parent

5.4.21 PcbToDbd protected

An instance of this relationship type is used to connect a PCB to the DBD on which
the PCB is based. The base DBD contains all of the segments that the PCB can access.

Ends

dbd

pcb

5.4.22 PcbToSenSegment protected

Instances of this relationship type are used to connect a PCB to the SenSegments that
reference the segments to which the PCB is sensitive.

The physical child segment.

class: Segment

multiplicity: zero or more

The physical parent segment.

class: Segment

multiplicity: zero or one

The DBD on which this PCB is based.

class: DBD

multiplicity: zero or one

The PCBs that are based on this DBD.

class: PCB

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 5-151

5

Ends

senSegment

pcb

5.4.23 PrimaryIndex protected

An instance of this relationship type is used to connect a HIDAM DBD to the INDEX
DBD that serves as the primary index for the HIDAM database.

Ends

primaryTarget

index

5.4.24 PsbToPcb protected

The relationship connects a PSB to the PCBs used within it.

The sensitive segments included in this PCB.

class: SenSegment

multiplicity: zero or more

The PCB that includes this sensitive segment.

class: PCB

multiplicity: exactly one

The HIDAM DBD for which this Index is the primary index.

class: HIDAM

multiplicity: zero or one

The primary index for this HIDAM DBD

class: INDEX

multiplicity: zero or one

5-152 CWM 1.0 Vol 2 2 February 2001

5

Ends

pcb

psb

5.4.25 Searched protected

Instances of this relationship type are used to connect a SecondaryIndex instance to the
Field instances that are used by the secondary index as search fields (SEARCH
keyword on XDFLD statement).

Ends

searchFields

searchIndex

5.4.26 SenfldToField protected

Instances of this relationship type are used to connect a SensitiveField instance to the
Field instance that represents a field to which the sensitiveSegment is sensitive.

The PCBs used by this PSB.

class: PCB

multiplicity: zero or more

The PSB(s) that use this PCB.

class: PSB

multiplicity: zero or more

The fields used for search fields by the secondary index.

class: Field

multiplicity: 0..5

The index that uses this field for a search field.

class: SecondaryIndex

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 5-153

5

Ends

field

senField

5.4.27 SensegMapsTo protected

Instances of this relationship type are used to connect a SensitiveSegment instance to
the Segment instance that represents a segment to which the PCB is sensitive.

Ends

segment

senseg

5.4.28 SensegToSenfld protected

Instances of this relationship type are used to connect a SensitiveField instance to the
SensitiveSegment that is sensitive to a field.

The field to which the PCB is sensitive.

class: Field

multiplicity: exactly one

The sensitive field that depends on this field.

class: SenField

multiplicity: zero or more

One segment to which the PCB is sensitive.

class: Segment

multiplicity: exactly one

The sensitive segments that use this segment.

class: SenSegment

multiplicity: zero or more

5-154 CWM 1.0 Vol 2 2 February 2001

5

Ends

senSegment

senField

5.4.29 SequencedBy protected

An instance of this relationship type is used to connect a PCB instance to the INDEX
DBD that defines the processing sequence (PROCSEQ parameter) for the PCB.

Ends

procSeq

sequencedPCB

5.4.30 StoresSegment protected

In a full-function database, a segment can be assigned to a specific dataset.

The segment that is sensitive to this field.

class: SenSegment

multiplicity: exactly one

The field to which the segment is sensitive.

class: SenField

multiplicity: zero or more

The secondary index that this PCB uses as a processing sequence.

class: INDEX

multiplicity: zero or one

The PCB(s) that use this secondary index for processing sequence.

class: PCB

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 5-155

5

Ends

dataset

segment

5.4.31 Subsequenced protected

Instances of this relationship type are used to connect a SecondaryIndex instance to the
Field instances that are used by the secondary index as subsequence fields (SUBSEQ
keyword on XDFLD statement).

Ends

subseqIndex

subseqFields

5.5 OCL Representation of IMS Constraints

None

Reference to a physical dataset in which this segments physical data is stored.

class: Dataset

multiplicity: zero or one

Segment whose physical data is stored in the physical dataset represented by the
DATASET statement.

class: SegmentComplex

multiplicity: zero or more

The index that uses this field as a subsequence field.

class: SecondaryIndex

multiplicity: zero or more

The fields used as subsequence fields by the secondary index.

class: Field

multiplicity: 0..5

5-156 CWM 1.0 Vol 2 2 February 2001

5

2 February 2001 CWM 1.0 Vol 2 6-157

Essbase 6

6.1 Overview

The Hyperion Essbase package represents the physical data model for a Hyperion
Essbase Database. This package extends the Multidimensional package and provides a
specific metadata representation for Hyperion’s Essbase multidimensional database.

The classes in this package can be used as either sources or targets of data in the data
warehouse, and are available to provide a physical implementation of the OLAP data
model.

6.2 Organization of the Essbase Package

The Essbase package depends on the following packages:

org.omg::CWM::ObjectModel::Core

org.omg::CWM::Foundation::Expressions

org.omg::CWM::Foundation::SoftwareDeployment

org.omg::CWM::Resource::Multidimensional

org.omg::CWM::Analysis::OLAP

Figure 6-1 shows the Essbase server metamodel. The inheritance of Essbase classes
from classes of the Multidimensional, SoftwareDeployment, OLAP, and ObjectModel
packages is shown in Figure 6-2. Note that the Essbase metamodel is primarily
dependent on classes of the Multidimensional model.

6-158 CWM 1.0 Vol 2 2 February 2001

6

Figure 6-1 Essbase Server Metamodel

Outline

aliasTableName : String
/ database : Database
/ dimension : Dimension

ReplicatedPartit ion TransparentPartition LinkedPartit ion

OLAPServer Application

**

/dataPackage

*

/dataManager

*

Database

isCurrency : Boolean
/ outline : Outline1

1

1

1

*

0..1

/ownedElement
*

/namespace 0..1

Partition
isSource : Boolean
isShared : Boolean
formula : ExpressionNode*0..1

/ownedElement/namespace

*0..1

Dimension
type : DimensionType
isDense : Boolean
/ outline : Outl ine

*

1

*

1

DimensionedObject
(f rom Multidimensional)

**

/dimensionedObject

/dimension

**
{ordered}

2 February 2001 CWM 1.0 Vol 2 6-159

6

Figure 6-2 Essbase Metamodel Inheritance

6.3 Essbase Classes

6.3.1 Alias

An alias name for an Essbase Dimension member.

Superclasses

DimensionedObject

6.3.2 Application

An Essbase Application is a named container of one or more Databases and their
related files. In addition to the Database, an Application may include scripts that are
used to load data into the database, calculate derived values, and prepare reports.

CubeRegion
(from Olap)

Alias

Comment

Consolidation

Formula

TwoPassCalculation

VarianceReporting

TimeBalance

CurrencyConversion

DataStorage

UDA

Generation Level

ImmediateParent

OLAPServer

Package
(from Core)

DataManager
(f rom Sof twareDeploy ment)

Application Partit ionDatabase

Namespace
(from Core)

MemberName

ReplicatedPartition TransparentPartition LinkedPartition

Outline Dimension

DimensionedObject
(f rom Multidimensional)

Schema
(f rom Multidimensional)

Dimension
(f rom Mu ltidimensional)

6-160 CWM 1.0 Vol 2 2 February 2001

6

Superclasses

Package

Contained Elements

Database

6.3.3 Comment

This is a user-defined comment that can be attached to an Essbase Dimension member.

Superclasses

DimensionedObject

6.3.4 Consolidation

Specifies how this Essbase Dimension member is to roll-up into its parent (e.g.,
attribute instance values include: +, -, *, /, %, ~).

Superclasses

DimensionedObject

6.3.5 CurrencyConversion

Currency conversion tag for an Essbase Currency Dimension member (e.g., attribute
instance values include: "None", "NoConversion", "Category").

Superclasses

DimensionedObject

6.3.6 DataStorage

Data storage tag for an Essbase Dimension member (e.g., attribute instance values
include: "StoreData", "DynamicCalc&Store", "DynamicCalc", "NeverShare",
"LabelOnly", "SharedMember").

2 February 2001 CWM 1.0 Vol 2 6-161

6

Superclasses

DimensionedObject

6.3.7 Database

An Essbase Database is a unique, named multidimensional database implemented by
an Essbase server.

Superclasses

Schema

Contained Elements

• Outline

• Partition

Attributes

isCurrency

References

outline

Constraints

Restrict the cardinality of the namespace role to 1 so that a Database must always be
owned by an Application. [C-1]

If true, then this Database is a Currency Database.

type: Boolean

multiplicity: exactly one

Reference the Outline owned by the Database.

class: Outline

defined by: DatabaseOwnsOutline::outline

multiplicity: exactly one

inverse: Outline::database

6-162 CWM 1.0 Vol 2 2 February 2001

6

6.3.8 Dimension

An Essbase Dimension is the primary physical object used in the construction of
Essbase Databases.

Superclasses

Dimension

Contained Elements

None

Attributes

type

isDense

References

outline

The type of the Essbase Dimension.

type: DimensionType (ess_none | ess_accounts | ess_time |
ess_country | ess_currencyPartition | ess_attribute)

multiplicity: exactly one

Specifies if this Essbase Dimension is sparse or dense.

type: Boolean

multiplicity: exactly one

References the Outline that organizes this Dimension.

class: Outline

defined by: OutlineReferencesDimensions::outline

multiplicity: exactly one

inverse: Outline::dimension

2 February 2001 CWM 1.0 Vol 2 6-163

6

Constraints

Essbase Dimensions are not composed from other Essbase dimensions. [C-2]

The inclusion of certain DimensionedObjects is valid only for certain DimensionTypes.
[C-3]

6.3.9 Formula

Formula used to calculate the value of an Essbase Dimension member.

Superclasses

DimensionedObject

6.3.10 Generation

Common name/identifier for members occupying the same generation in the
Dimension hierarchy, as defined by the Outline.

Superclasses

DimensionedObject

6.3.11 ImmediateParent

Represents the immediate parent of an Essbase Dimension member in the Dimension
hierarchy defined by the Outline.

Superclasses

DimensionedObject

6.3.12 Level

Common name/identifier for members occupying the same level in the Dimension
hierarchy, as defined by the Outline.

6-164 CWM 1.0 Vol 2 2 February 2001

6

Superclasses

DimensionedObject

6.3.13 LinkedPartition

Subclass of Essbase Partition representing Linked Partitions.

Superclasses

Partition

6.3.14 MemberName

Name for an Essbase Dimension member.

Superclasses

DimensionedObject

6.3.15 OLAPServer

A software process that implements one or more Essbase Databases.

Superclasses

DataManager

6.3.16 Outline

An Essbase Outline defines the structure of an Essbase Database, including the
dimensional hierarchies, members, tags, types, consolidations, and mathematical
relationships. Data is stored in the Database according to the structure defined in the
Outline.

Superclasses

Namespace

2 February 2001 CWM 1.0 Vol 2 6-165

6

Attributes

aliasTableName

References

database

dimension

Constraints

The Outline name must be the same as the Database name. [C-4]

6.3.17 Partition abstract

Defines an abstract Essbase partition class (the superclass of all Essbase partition
types).

Superclasses

CubeRegion

The name of the Alias Table to be used by this instance of Outline.

type: String

multiplicity: exactly one

References the Database owning this Outline.

class: Database

defined by: DatabaseOwnsOutline::database

multiplicity: exactly one

inverse: Database::outline

References the collection of Dimensions that this Outline organizes.

class: Dimension

defined by: OutlineReferencesDimensions::dimension

multiplicity: zero or more

inverse: Dimension::outline

6-166 CWM 1.0 Vol 2 2 February 2001

6

Attributes

isSource

isShared

formula

Constraints

Restrict the cardinality of the namespace role to 1 so that a Partition must always be
owned by a Database. [C-5]

Only a source Partition can be shared. [C-6]

6.3.18 ReplicatedPartition

Subclass of Essbase Partition representing Replicated Partitions.

Superclasses

Partition

If true, then this Partition is a source Partition (i.e., a source of data values for
some other target Partition).

type: Boolean

multiplicity: exactly one

If true, then this Partition is a shared source Partition (i.e., shared by several
targets).

type: Boolean

multiplicity: exactly one

Expression specifying the mapping of source Partition data cells to target Partition
data cells.

type: ExpressionNode

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 6-167

6

6.3.19 TimeBalance

Time balance tag for an Essbase Accounts Dimension member (e.g., attribute instance
values include: "None", "First", "Last", "Average").

Superclasses

DimensionedObject

6.3.20 TransparentPartition

Subclass of Essbase Partition representing Transparent Partitions.

Superclasses

Partition

6.3.21 TwoPassCalculation

This is a tag specifying that a derived (calculated) Accounts member needs to be re-
computed following the global calculation of an Essbase Database

This is done to provide a derived Accounts member that’s dependent on other account
members with a final, correct value, following the sequential calculation of both the
Accounts and Time Dimensions (e.g., Profit % Sales).

Superclasses

DimensionedObject

6.3.22 UDA

An Essbase user-defined attribute.

Superclasses

DimensionedObject

6-168 CWM 1.0 Vol 2 2 February 2001

6

6.3.23 VarianceReporting

Variance reporting tag for an Essbase Accounts Dimension (e.g., attribute instance
values include: "NonExpense", "Expense").

Superclasses

DimensionedObject

6.4 Essbase Associations

6.4.1 DatabaseOwnsOutline

A Database has exactly one Outline.

Ends

database

outline

6.4.2 OutlineReferencesDimensions

An Outline organizes the Dimensions contained in its Database.

The Database that owns the Outline.

class: Database

multiplicity: exactly one

aggregation: composite

The Outline owned by the Database.

class: Outline

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 6-169

6

Ends

outline

dimension

6.5 OCL Representation of Essbase Constraints

[C-1] Restrict the cardinality of the namespace role to 1 so that a Database must
always be owned by an Application.

context Database inv:

self.namespace->notEmpty and self.namespace.oclIsKindOf(Application)

[C-2] Essbase Dimensions are not composed from other Essbase dimensions.

context Dimension

inv: self.component->isEmpty

inv: self.composite->isEmpty

[C-3] The inclusion of certain DimensionedObjects is valid only for certain
DimensionTypes.

context Dimension

inv: self.dimensionedObject->includes(TimeBalance) implies self.type =
#ess_accounts

inv: self.dimensionedObject->includes(VarianceReporting) implies self.type =
#ess_accounts

inv: self.dimensionedObject->includes(CurrencyConversion) implies self.type =
#ess_currencyPartition

The Outline that organizes the Dimensions.

class: Outline

multiplicity: exactly one

Dimensions organized by the Outline.

class: Dimension

multiplicity: zero or more

6-170 CWM 1.0 Vol 2 2 February 2001

6

inv: self.dimensionedObject->includes(UDA) implies self.type = #ess_attribute

[C-4] The Outline name must be the same as the Database name.

context Outline inv:

self.name = self.database.name

[C-5] Restrict the cardinality of the namespace role to 1 so that a Partition must
always be owned by a Database.

context Partition inv:

self.namespace->notEmpty and self.namespace.oclIsKindOf(Database)

[C-6] Only a source Partition can be shared.

context Partition inv:

self.isShared implies self.isSource

2 February 2001 CWM 1.0 Vol 2 7-171

Express 7

7.1 Overview

The Oracle Express package is an extension of the Multidimensional package. It
represents the physical data model for an Oracle Express Database.

The classes in this package can be used as either sources or targets of data in the data
warehouse, and are available to provide a physical implementation of the OLAP data
model.

7.2 Organization of the Express Package

The Express package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::SoftwareDeployment

• org.omg::CWM::Resource::Multidimensional

The model for the Express package is shown in five diagrams. Figure 7-1 shows the
Express Database class and its containment relationships to other Express classes.
Figure 7-2 shows the main Express classes and associations, while Figure 7-3 shows
the associations for Express Aggregation Maps and Figure 7-4 shows the associations
for Express Worksheets. Finally, Figure 7-5 shows the inheritance relationships for all
the Express classes.

7-172 CWM 1.0 Vol 2 2 February 2001

7

Figure 7-1 Express Database and its containment relationships

Dimension

ValueSet

isTemp : Boolean
/ referenceDimension : Dimension

Formula

expression : String

Relation

isTemp : Boolean
pageSpace : String
/ referenceDimension : Dimension

Variable

storageType : String
pageSpace : String
width : Integer

Model

content : String

Program

program : String
returnDimension : String

Worksheet

isTemp : Boolean
/ columnDimension : Dimension
/ rowDimension : Dimension

Database

0..1

*

/namespace

0..1

/ownedElement

*

0..1

*
/namespace

0..1 /ownedElement

*

0..1

*

/namespace

0..1

/ownedElement

*

AggMap

/ aggMapComponent : AggMapComponent

0..1

*

/namespace

0..1

/ownedElement*

DimensionedObject

(from Multidimensional)

Schema

(from Multidimensional)
0..1

*

/namespace

0..1

/ownedElement *

Dimension

(from Multidimensional)n n

dimensionedObject

n {ordered}

dimension

n

0..1

*

/namespace 0..1

/ownedElement *

2 February 2001 CWM 1.0 Vol 2 7-173

7

Figure 7-2 Main Express classes and associations

Conjoint

searchAlgorithm : String
pageSpace : String

Formula

expression : String

Composite

searchAlgorithm : String
pageSpace : String

Variable

storageType : String
pageSpace : String
width : Integer

Relation

isTemp : Boolean
pageSpace : String
/ referenceDimension : Dimension

Dimension1

*

referenceDimension

1

*

ValueSet

isTemp : Boolean
/ referenceDimension : Dimension

1

*

referenceDimension

1

*

AliasDimension

/ baseDimension : SimpleDimension Classifier
(from Core)

SimpleDimension

width : Integer
isTime : Boolean
multiple : Integer
beginningPhase : String
endingPhase : String
searchAlgorithm : String
pageSpace : String
/ dataType : Classifier
/ aliasDimension : AliasDimension

1

*

baseDimension 1

*

1

*

dataType1

*

DimensionedObject
(from Mul tidimensional)

Dimension
(from Multidimensional)* *

dimensionedObject

* {ordered}

dimension

*
*

*

composite

*

component

*

7-174 CWM 1.0 Vol 2 2 February 2001

7

Figure 7-3Express Aggregation Maps

Figure 7-4Express Worksheets

Relation

isTemp : Boolean
pageSpace : String
/ referenceDimension : Dimension

Dimension

PreComputeClause

statusList : Any
/ aggMapComponent : AggMapComponent

AggMap

/ aggMapComponent : AggMapComponent

AggMapComponent

aggOperator : String
/ aggMap : AggMap
/ dimension : Dimension
/ relation : Relation
/ computeClause : PreComputeClause

0..1

*

relation

0..1

*

1

*

dimension1

*
0..1

1

computeClause0..1

1

1

*

1

aggMapComponent

*

Worksheet

isTemp : Boolean
/ columnDimension : Dimension
/ rowDimension : Dimension

Dimension

0..1

*

columnDimension

0..1

columnDimensionInW orksheet

* *

0..1

rowDimensionInWorksheet

*

rowDimension

0..1

2 February 2001 CWM 1.0 Vol 2 7-175

7

Figure 7-5Express inheritances

DimensionedObject
(from Multidimensional)

Schema
(from Multidimensional)

Dimension
(from Multidimensional)

Dimension

ValueSet

isTemp : Boolean
/ referenceDimension : Dimension

Relation

isTemp : Boolean
pageSpace : String
/ referenceDimension : Dimension

Database

Formula

expression : String

Conjoint

searchAlgorith m : String
pageSpace : String

Program

program : String
returnDimension : String

Model

content : String

Variable

storageType : Strin g
pageSpace : String
width : Intege r

Class
(from Core)

Worksheet

isTemp : Boolean
/ columnDimension : Dimension
/ rowDimension : Dimension

Composite

searchAlgorithm : String
pageSpace : String

AggMap

/ aggMapComponent : AggMapComponent

ModelElement

(from Core)

AggMapComponent

aggOperator : String
/ aggMa p : Ag gMap
/ dimension : Dime nsion
/ relation : Re lation
/ co mputeClause : PreCo mputeClause

PreComputeClause

statusList : An y
/ aggMa pCom ponent : AggMapCompon ent

AliasDimension

/ baseDimension : SimpleDimension
SimpleDimension

width : Intege r
isTime : Boolean
multiple : Integer
beginnin gPha se : String
endingPhase : S tring
searchAlgorith m : String
pageSpace : String
/ dataType : Classifier
/ aliasDimension : A liasDimension

Component
(from SoftwareDeployment)

7-176 CWM 1.0 Vol 2 2 February 2001

7

7.3 Express Classes

The Oracle Express package contains the following classes, in alphabetical order:
• AggMap
• AggMapComponent
• AliasDimension
• Composite
• Conjoint
• Database
• Dimension
• Formula
• Model
• PreComputeClause
• Program
• Relation
• SimpleDimension
• ValueSet
• Variable
• Worksheet

7.3.1 AggMap

This represents an Express aggregation map.

Superclasses

Class (from Core)

Contained Elements

AggMapComponent

References

aggMapComponent

Constraints

An AggMap must be owned by a Database. [C-1]

Identifies the AggMapComponents that constitute the AggMap.

class: AggMapComponent

defined by: AggMapComponents::aggMapComponent

multiplicity: zero or more

inverse: AggMapComponent::aggMap

2 February 2001 CWM 1.0 Vol 2 7-177

7

7.3.2 AggMapComponent

This represents a component of an Express aggregation map.

Superclasses

ModelElement (from Core)

Contained Elements

PreComputeClause

Attributes

aggOperator

References

aggMap

dimension

A text expression indicating the type of aggregate operation.

type: String

multiplicity: exactly one

Identifies the AggMap that includes the AggMapComponent.

class: AggMap

defined by: AggMapComponents::aggMap

multiplicity: exactly one

inverse: AggMap::aggMapComponent

Identifies the Dimension associated with the AggMapComponent.

class: Dimension

defined by: AggMapComponentDimension::dimension

multiplicity: exactly one

7-178 CWM 1.0 Vol 2 2 February 2001

7

relation

computeClause

7.3.3 AliasDimension

This represents an Express alias dimension.

Superclasses

Dimension (from Express)

References

baseDimension

7.3.4 Composite

This represents a physical Express composite.

Superclasses

Dimension (from Express)

Identifies the Relation used by the AggMapComponent.

class: Relation

defined by: AggMapComponentRelation::relation

multiplicity: zero or one

Identifies a PreComputeClause associated with the AggMapComponent.

class: PreComputeClause

defined by: ComputeClause::computeClause

multiplicity: zero or one

inverse: PreComputeClause::aggMapComponent

Identifies the SimpleDimension for which this is an alias.

class: SimpleDimension

defined by: AliasDimensionBaseDimension::baseDimension

multiplicity: exactly one

inverse: SimpleDimension::aliasDimension

2 February 2001 CWM 1.0 Vol 2 7-179

7

Attributes

searchAlgorithm

pageSpace

7.3.5 Conjoint

This represents a physical Express conjoint. This is a type of physical dimension that
may be used to provide more efficient storage for sparse cubes.

Superclasses

Dimension (from Express)

Attributes

searchAlgorithm

Indicates the type of algorithm Express should use for loading and accessing the
values of the Composite Dimension. The valid values are HASH, BTREE.

type: String

multiplicity: exactly one

If specified, this defines the type of page space to be allocated to data relating
specific values of the Composite to values of its base Dimensions:
OWNSPACE specifies that the data will be stored in private page space.
SHAREDSPACE specifies that the data will be stored in the database’s global
page space.

type: String

multiplicity: zero or one

Indicates the type of algorithm Express should use for loading and accessing the
values of the Conjoint Dimension. Valid values are HASH, BTREE, NOHASH.

type: String

multiplicity: exactly one

7-180 CWM 1.0 Vol 2 2 February 2001

7

pageSpace

7.3.6 Database

This represents a physical Express database.

Superclasses

Schema (from Multidimensional)

Contained Elements

AggMap
AliasDimension
Composite
Conjoint
Formula
Model
Program
Relation
SimpleDimension
ValueSet
Variable
Worksheet

7.3.7 Dimension abstract

This represents a physical Express dimension.

Superclasses

Dimension (from Multidimensional)

7.3.8 Formula

This represents a physical Express formula.

If specified, this defines the type of page space to be allocated to data relating
specific values of the Conjoint to values of its base Dimensions:
OWNSPACE specifies that the data will be stored in private page space.
SHAREDSPACE specifies that the data will be stored in the database’s global
page space.

type: String

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 7-181

7

Superclasses

DimensionedObject (from Multidimensional)

Attributes

expression

7.3.9 Model

This represents a physical Express model.

Superclasses

Component (from SoftwareDeployment)

Attributes

content

Constraints

A Model must be owned by a Database. [C-2]

7.3.10 PreComputeClause

This represents a pre-compute clause for an Express aggregation map.

Superclasses

ModelElement (from Core)

The calculation to be performed to produce values when you use the Formula.
It can be any valid Express expression, including a constant or the name of a
Variable.

type: String

multiplicity: exactly one

An Express representation of the content of the Model.

type: String

multiplicity: exactly one

7-182 CWM 1.0 Vol 2 2 February 2001

7

Attributes

statusList

References

aggMapComponent

7.3.11 Program

This represents a physical Express program. The interface to the Program may be
documented as an Operation associated with the Program.

Superclasses

Component (from SoftwareDeployment)

Attributes

program

The status of the dimension to aggregate.

type: Any

multiplicity: exactly one

Identifies the AggMapComponent to which the PreComputeClause relates.

class: AggMapComponent

defined by: ComputeClause::aggMapComponent

multiplicity: exactly one

inverse: AggMapComponent::computeClause

An Express representation of the Program.

type: String

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 7-183

7

returnDimension

 Constraints

A Program must be owned by a Database. [C-3]

7.3.12 Relation

This represents a reference from one or more Dimensions to another Dimension.

Superclasses

DimensionedObject (from Multidimensional)

Attributes

isTemp

pageSpace

If present, this specifies that when the Program is called as a function it returns a
value of the named Dimension.

type: String

multiplicity: zero or one

If set, this indicates that values of the Relation are only temporary, and will be
discarded at the end of each Express session.

type: Boolean

multiplicity: exactly one

This identifies the type of page space in which data associated with the Relation
will be stored:
OWNSPACE specifies that the data will be stored in private page space associated
with the Relation.
SHAREDSPACE specifies that the data will be stored in the database’s global
page space.

type: String

multiplicity: zero or one

7-184 CWM 1.0 Vol 2 2 February 2001

7

References

referenceDimension

7.3.13 SimpleDimension

This represents an Express simple dimension.

Superclasses

Dimension (from Express)

Attributes

width

isTime

Identifies the Dimension referenced by the Relation.

class: Dimension

defined by: RelationReferenceDimension::referenceDimension

multiplicity: exactly one

If specified, this defines a fixed width, in bytes, for the storage area for each value
of the SimpleDimension. Fixed widths can be specified for TEXT dimensions
only. Valid width values are 1 through 256.

type: Integer

multiplicity: zero or one

If set, indicates that the SimpleDimension is a time dimension.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 7-185

7

multiple

 beginningPhase

endingPhase

searchAlgorithm

This may be used for SimpleDimensions whose data type is WEEK or MONTH,
to define time periods that span a multiple number of weeks or months.
With the WEEK data type, multiple can be an integer from 2 to 52.
With the MONTH data type, multiple can be 2, 3, 4, or 6.

type: Integer

multiplicity: zero or one

This may be used for any time data type except DAY, to specify the beginning
phase of the Dimension.
For single weeks, beginningPhase can be a day of the week or a date. For multiple
weeks, beginningPhase must be a date. For months, quarters, or years,
beginningPhase must be a month, expressed as a month name or as a date.

type: String

multiplicity: zero or one

This may be used for any time data type except DAY, to specify the ending phase
of the Dimension.
For single weeks, endingPhase can be a day of the week or a date. For multiple
weeks, endingPhase must be a date. For months, quarters, or years, endingPhase
must be a month, expressed as a month name or as a date.

type: String

multiplicity: zero or one

Indicates the type of algorithm Express should use for loading and accessing the
values of the SimpleDimension. The valid values are HASH, BTREE.

type: String

multiplicity: exactly one

7-186 CWM 1.0 Vol 2 2 February 2001

7

pageSpace

References

dataType

 aliasDimension

7.3.14 ValueSet

This represents a physical Express value set.

Superclasses

DimensionedObject (from Multidimensional)

If specified, this defines the type of page space to be allocated to values of the
SimpleDimension:
OWNSPACE specifies that the data will be stored in private page space.
SHAREDSPACE specifies that the data will be stored in the database’s global
page space.

type: String

multiplicity: zero or one

Identifies the SimpleDimension’s data type.

class: Classifier

defined by: SimpleDimensionDataType::dataType

multiplicity: exactly one

Identifies any AliasDimensions associated with the SimpleDimension.

class: AliasDimension

defined by: AliasDimensionBaseDimension::aliasDimension

multiplicity: zero or more

inverse: AliasDimension::baseDimension

2 February 2001 CWM 1.0 Vol 2 7-187

7

Attributes

isTemp

References

referenceDimension

7.3.15 Variable

This represents a physical Express variable.

Superclasses

DimensionedObject (from Multidimensional)

Attributes

storageType

If set, this indicates that values in the ValueSet are only temporary, and will be
discarded at the end of each Express session.

type: Boolean

multiplicity: exactly one

Identifies the Dimension whose values are to be stored in the ValueSet.

class: Dimension

defined by: ValueSetReferenceDimension::referenceDimension

multiplicity: exactly one

The type of storage to use for the Variable. The valid values are: TEMP,
INPLACE, PERMANENT.

type: String

multiplicity: exactly one

7-188 CWM 1.0 Vol 2 2 February 2001

7

pageSpace

width

7.3.16 Worksheet

This represents a physical Express worksheet.

Superclasses

Class (from Core)

Contained Elements

Attribute

Attributes

isTemp

If specified, this defines the type of page space in which data associated with the
Variable will be stored:
OWNSPACE specifies that the data will be stored in private page space associated
with the Variable.
SHAREDSPACE specifies that the data will be stored in the database’s global
page space.

type: String

multiplicity: zero or one

If specified, this defines a fixed width, in bytes, for the storage area for each value
of a Variable. Fixed widths can be specified only for dimensioned TEXT and
INTEGER Variables.

type: Integer

multiplicity: zero or one

If set, this indicates that values in the Worksheet are only temporary, and will be
discarded at the end of each Express session.

type: Boolean

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 7-189

7

References

columnDimension

rowDimension

Constraints

A Worksheet must be owned by a Database. [C-4]

7.4 Express Associations

The Oracle Express package contains the following associations, in alphabetical order:
• AggMapComponentDimension
• AggMapComponentRelation
• AggMapComponents
• AliasDimensionBaseDimension
• ComputeClause
• RelationReferenceDimension
• SimpleDimensionDataType
• ValueSetReferenceDimension
• WorksheetColumnDimension
• WorksheetRowDimension

Identifies a Dimension used as the column dimension of the Worksheet.

class: Dimension

defined by: WorksheetColumnDimension::columnDimension

multiplicity: zero or one

Identifies a Dimension used as the row dimension of the Worksheet.

class: Dimension

defined by: WorksheetRowDimension::rowDimension

multiplicity: zero or one

7-190 CWM 1.0 Vol 2 2 February 2001

7

7.4.1 AggMapComponentDimension

Identifies the associated Dimension for an AggMapComponent.

Ends

aggMapComponent

dimension

7.4.2 AggMapComponentRelation

Identifies a Relation used by an AggMapComponent.

Ends

aggMapComponent

relation

Identifies the AggMapComponent.

class: AggMapComponent

multiplicity: zero or more

Identifies the Dimension associated with the AggMapComponent.

class: Dimension

multiplicity: exactly one

Identifies the AggMapComponent.

class: AggMapComponent

multiplicity: zero or more

Identifies the Relation used by the AggMapComponent.

class: Relation

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 7-191

7

7.4.3 AggMapComponents protected

Identifies the AggMapComponents that constitute an AggMap.

Ends

aggMap

aggMapComponent

7.4.4 AliasDimensionBaseDimension protected

Associates AliasDimensions with the SimpleDimension on which they are based.

Ends

baseDimension

aliasDimension

Identifies the AggMap.

class: AggMap

multiplicity: exactly one

aggregation: composite

Identifies an AggMapComponent that forms part of the AggMap.

class: AggMapComponent

multiplicity: zero or more

Identifies the SimpleDimension on which an AliasDimension is based.

class: SimpleDimension

multiplicity: exactly one

Identifies an AliasDimension that is based on the SimpleDimension.

class: AliasDimension

multiplicity: zero or more

7-192 CWM 1.0 Vol 2 2 February 2001

7

7.4.5 ComputeClause protected

Identifies a PreComputeClause associated with an AggMapComponent.

Ends

aggMapComponent

computeClause

7.4.6 RelationReferenceDimension

Associates Express Relations with the Dimension they reference.

Ends

relation

referenceDimension

Identifies the AggMapComponent.

class: AggMapComponent

multiplicity: exactly one

aggregation: composite

Identifies the PreComputeClause associated with the AggMapComponent.

class: PreComputeClause

multiplicity: zero or one

Identifies the Express Relations that reference the Dimension.

class: Relation

multiplicity: zero or more

Identifies the Dimension referenced by the Relation.

class: Dimension

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 7-193

7

7.4.7 SimpleDimensionDataType

Identifies the data type for a SimpleDimension.

Ends

SimpleDimension

dataType

7.4.8 ValueSetReferenceDimension

Associates Express ValueSets with the Dimension whose values are to be stored in the
ValueSet.

Ends

valueSet

referenceDimension

Identifies the SimpleDimension.

class: SimpleDimension

multiplicity: zero or more

Identifies the data type for the SimpleDimension.

class: Classifier (from UML Core)

multiplicity: exactly one

Identifies the Express ValueSets that reference a Dimension.

class: ValueSet

multiplicity: zero or more

Identifies the Dimension whose values are to be stored in the ValueSet.

class: Dimension

multiplicity: exactly one

7-194 CWM 1.0 Vol 2 2 February 2001

7

7.4.9 WorksheetColumnDimension

Identifies a Dimension used as the column dimension in a physical Express worksheet
structure.

Ends

columnDimensionInWorksheet

columnDimension

7.4.10 WorksheetRowDimension

Identifies a Dimension used as the row dimension in a physical Express worksheet
structure.

Ends

rowDimensionInWorksheet

rowDimension

Identifies the Worksheets using the Dimension as a column dimension.

class: Worksheet

multiplicity: zero or more

Identifies a Dimension used as the column dimension of the Worksheet.

class: Dimension

multiplicity: zero or one

Identifies the Worksheets using the Dimension as a row dimension.

class: Worksheet

multiplicity: zero or more

Identifies a Dimension used as the row dimension of the Worksheet.

class: Dimension

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 7-195

7

7.5 OCL Representation of Express Constraints

[C-1] An AggMap must be owned by a Database

context AggMap

inv: self.namespace->size = 1 and
self.namespace.oclIsKindOf(Database)

[C-2] A Model must be owned by a Database

context Model

inv: self.namespace->size = 1 and
self.namespace.oclIsKindOf(Database)

[C-3] A Program must be owned by a Database

context Program

inv: self.namespace->size = 1 and
self.namespace.oclIsKindOf(Database)

[C-4] A Worksheet must be owned by a Database

context Worksheet

inv: self.namespace->size = 1 and
self.namespace.oclIsKindOf(Database)

7-196 CWM 1.0 Vol 2 2 February 2001

7

2 February 2001 CWM 1.0 Vol 2 8-197

InformationSet 8

8.1 Overview

The InformationSet package contains the metamodel of information sets that is an
extension of the OLAP package.

An important aspect of data warehousing is the collection of data from external
resources using, for example, application generated reports, questionnaires or surveys.
To allow for inter-operability of tools supporting data collection, the metadata
identifying the data to be collected must be defined, together with metadata that can be
used to ensure accuracy and validity of data.

The InformationSet package is designed to enable interchange of common metadata
about InformationSet structures, rules (e.g. validation, calculation), and, possibly,
visual renderings.

The characteristics of the InformationSet are:

• the definition of logical structures that define the data to be collected can be both
single and multi-dimensional (e.g. value of export by country and product)

• data can be derived both from either from non-human sources or from human
sources (e.g. questionnaire, report form).

• instruments for data collection need to be designed in such a way that relevant and
accurate data is collected, and in some instances this means that the designer needs
control over the visual rendering of the collection instrument. Validation and
Navigation within the InformationSet is also required in order to facilitate the
collection/retrieval of accurate data.

The InformationSet package contains metamodel elements that support the following
functions:

• Semantic definition of the InformationSet and its constituent parts

• Visual rendering supporting different media

8-198 CWM 1.0 Vol 2 2 February 2001

8

• Validation, navigation and calculation based on data values entered/retrieved

• Via OLAP, the links to Nomenclatures (LevelBasedHierarchy) that give the valid
codes and multi lingual labels for the Dimensions

The InformationSet is a domain specific extension of the OLAP model with some
additional classes to support specific requirements of the InformationSet (e.g.
validation, rendering). All information to be collected can be identified in terms of the
OLAP model, thus supporting the definition of both multidimensional and
unidimensional Segments (the OLAP Cube).

In addition to the definition of multi-dimensional structures that comprise the logical
InformationSet, there is a need to:

• ensure accuracy of the data by applying validation and navigation expressions

• derive values from other values in the InformationSet

• provide visual rendering capability to support data collection using visual media
such as forms or screens

8.2 Organization of the InformationSet Package

The InformationSet package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::BusinessInformation

• org.omg::CWM::Foundation::Expressions

• org.omg::CWM::Analysis::OLAP

• org.omg::CWM::Analysis::InformationVisualization

The package is illustrated with two class diagrams:

• InformationSet Inheritance

• InformationSet Relationships

2 February 2001 CWM 1.0 Vol 2 8-199

8

8.2.1 InformationSet Inheritance

Figure 8-1 InformationSet Inheritance

The core classes in the InformationSet package (InformationSet, Segment,
SegmentRegion) are derived from the OLAP package classes of Schema, Cube, and
CubeRegion. This means that each part of an InformationSet (the Segment) is defined
in terms of a multidimensional structure of Dimensions.

Rule, InfoSetAdministration, and InfoSetDate are derived from ModelElement.

Schema
(from Olap)

Cube
(from Olap)

CubeRegion
(from Olap)

InfoSetDateInfoSetAdministration

InformationSet Segment SegmentRegion

Rule

ModelElement
(from Core)

8-200 CWM 1.0 Vol 2 2 February 2001

8

8.2.2 InformationSet Relationships

Figure 8-2 InformationSet Relationships

InformationSet is the logical container of all elements comprising the InformationSet
metamodel. It is the root element of the metamodel hierarchy and marks the entry point
for navigating the metamodel.

*

1..*

InfoSetDate

type : String
format : String
dateTime : String

ResponsibleParty
(from Business

Document
(from Business

InfoSetAdministration

priority : String
acknowledgement : Boolean
/ date : InfoSetDate
/ responsibleParty : ResponsibleParty
/ document : Document

date

*+infoSetAdmin

1..*

*

*

/modelElement
*

/responsibleParty
*

*

*

/modelElement*

/document*

InformationSet

version : String
/ rule : Rule
/ infoSetAdmin : InfoSetAdministration

1 *1 *

Segment

regionSequence : ProcedureExpression
/ rule : Rule

0..1

*

/namespace
0..1

/ownedElement
*

Rule

ruleExpression : ExpressionNode
type : String 0..1

*

0..1

*

0..1

*

0..1

*

SegmentRegion

/ rule : Rule
/ renderedObject : RenderedObject

1

*

/cube 1

/cubeRegion

*0..1

*

0..1

*

RenderedObject
(from Information

0..1

*

/modelElement 0..1

/renderedObject
*

2 February 2001 CWM 1.0 Vol 2 8-201

8

An InformationSet contains Segments. The Segment is a sub class of the OLAP Cube
and inherits the association to Dimension through CubeDimAssoc. This association
yields a set of unique Dimensions that comprise a multidimensional object and this
gives the Segment the ability to be multidimensional.

The Segment comprises one or more SegmentRegion, and, if the order of these is
significant, they can be ordered and specified as such. The SegmentRegion is a
subclass of the OLAP CubeRegion. The SegmentRegion is a definition of a part of the
Segment, specified in terms of the Dimensions and Dimension value combinations that
comprise the SegmentRegion. This is achieved via the OLAP association between
CubeRegion and MemberSelGrp and onward to MemberSelection or CodedLevel. In
effect, the SegmentRegion is a "mask" or "slice" of the complete Segment. This mask
may expose the entire Segment, or it may expose just one cell in the multidimensional
structure, or any combination in between. The SegmentRegion can be used to:

• specify the valid combinations of Dimension values for which target data are to be
collected or extracted

• identify a cell or cells for which specific Rules apply (e.g. navigation, validation or
calculation is specified)

• identify the part of a Segment for which a specific visual rendering is specified - the
high level rendering requirements can be specified using the RenderedObject which
is part of the InformationVisualization package

A SegmentRegion can overlap with another SegmentRegion for the same Segment, and
the SegmentRegion can expose the whole of the Segment. Any ambiguities resulting
from overlapping SegmentRegions are resolved by making use of the ability to order
the SegmentRegions. This makes it possible, for instance, to impose a specific
validation that is relevant to all of the Segment, and supplement this with a validation
that is specific to a smaller part of the Segment.

One or more Rules can be attached to InformationSet, Segment, SegmentRegion. This
makes it possible to apply rules at any level:

• to the whole InformationSet, including rules that span the data in two Segments

• to a Segment, including rules that span the data in two SegmentRegions

• to a SegmentRegion

The application of rules to the extraction of data from data resources makes it possible
to specify validation of the data which can then be undertaken by an appropriate tool.
This makes it possible to validate the data at the earliest possible time, including
immediately after extraction or, if the InformationSet is rendered on a screen, after data
has been entered.

The InformationSet can have InfoSetAdministration details associated with it. Specific
references to ResponsibleParty and Document (from the BusinessInformation package)
have been included. The InfoSetAdministration can have InfoSetDate associated with
it, giving the ability to associate one or more dates with the InformationSet (e.g.
collection date), as defined by the InfoSetDate.type attribute.

8-202 CWM 1.0 Vol 2 2 February 2001

8

8.3 InformationSet Classes

8.3.1 InformationSet

InformationSet contains all elements comprising an InformationSet database model.

Superclasses

Schema

Contained Elements

Segment

InfoSetAdministration

Attributes

version

References

rule

The version of an Information Set.

type: String

multiplicity: exactly one

References the Rule owned by the InformationSet.

class: Rule

defined by: InformationSetReferencesRule::rule

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 8-203

8

infoSetAdmin

8.3.2 InfoSetAdministration

This class represents administrative details of an Information Set.

Superclasses

ModelElement

Attributes

priority

acknowledgement

References

date

References the InfoSetAdministration owned by InformationSet.

class: InfoSetAdministration

defined by: InformationSetReferencesInfoSetAdministration::info
SetAdmin

multiplicity: zero or more

The priority of an Information Set.

type String

multiplicity exactly one

If true, an acknowledgement is requested.

type Boolean

multiplicity exactly one

References the InfoSetDate owned by InfoSetAdministration.

class: InfoSetDate

defined by: InfoSetAdministrationReferencesInfoSetDates::date

multiplicity: zero or more

8-204 CWM 1.0 Vol 2 2 February 2001

8

responsibleParty

document

8.3.3 InfoSetDate

This class represents dates relevant to an InformationSet such as date of dissemination
or receipt. It can have different formats.

Superclasses

ModelElement

References the ResponsibleParty owned by InfoSetAdministration.

class: ResponsibleParty

defined by: ModelElementResponsibility::responsibleParty

multiplicity: zero or more

References the Document owned by InfoSetAdministration.

class: Document

defined by: DocumentDescribes::document

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 8-205

8

Attributes

type

format

dateTime

8.3.4 Rule

This is a rule that performs one or more of the following:

1) Defines the validation required for data extracted from the data resource part of the
InformationSet, Segment or SegmentRegion. This can include the requirement or
otherwise of other Segment or SegmentRegions based on the value of the data
extracted from this Segment or SegmentRegion.

2) Defines a calculation that can be used to derive data values, based on data values
that are part of the InformationSet, Segment or SegmentRegion.

Superclasses

ModelElement

Type of date, e.g. date of creation, validity period.

type: String

multiplicity: exactly one

Format of date, time or period.

type: String

multiplicity: exactly one

A date, time or period.

type: String

multiplicity: exactly one

8-206 CWM 1.0 Vol 2 2 February 2001

8

Attributes

ruleExpression

type

Constraints

One instance of Rule can be associated with only one of InformationSet, Segment,
SegmentRegion. [C-1]

8.3.5 Segment

Segment represents a multidimensional structure. A Segment is defined by a
collection of unique Dimensions from the InformationSet. Each unique combination
of members in the Cartesian product of the Segment’s Dimensions identifies precisely
one data cell within the multidimensional structure.

Note that a logical segment is "defined" by a collection of unique Dimensions from the
InformationSet, and is "described" by a collection of one or more Segment Regions.

Superclasses

Cube

Contained Elements

SegmentRegion

Attributes

regionSequence

This is the rule, which can be an expression or an expression tree.

type: ExpressionNode

multiplicity: exactly one

This allows the Rule to be categorized - for example validation, calculation.

type: String

multiplicity: exactly one

Specifies the sequence of the SegmentRegion.

type: ProcedureExpression

multiplicity: exactly one

2 February 2001 CWM 1.0 Vol 2 8-207

8

References

rule

8.3.6 SegmentRegion

SegmentRegion represents a sub-set of a Segment. A SegmentRegion may be used for
exposing a subset of the dimensionality of a Segment. The Member Selections
comprising a SegmentRegion always collectively define a subset of the total
dimensionality of the associated Segment.

Superclasses

CubeRegion

References

rule

renderedObject

References the Rule owned by Segment.

class: Rule

defined by: SegmentReferencesRule::rule

multiplicity: zero or more

References the Rule owned by SegmentRegion.

class: Rule

defined by: SegmentRegionReferencesRule::rule

multiplicity: zero or more

References the RenderedObject owned by SegmentRegion.

class: RenderedObject

defined by: RenderedObjectsReferenceModelElement::renderedO
bject

multiplicity: zero or more

8-208 CWM 1.0 Vol 2 2 February 2001

8

8.4 InformationSet Associations

8.4.1 InformationSetReferencesInfoSetAdministration

This association relates an Information Set to Administrative details.

Ends

informationSet

infoSetAdmin

8.4.2 InformationSetReferencesRule

An InformationSet may reference one or more Rule.

Ends

informationSet

rule

InformationSet for adminstrative details.

class: InformationSet

multiplicity: one

Administrative details for an InformationSet.

class: InfoSetAdministration

multiplicity: zero or more

The InformationSet for a Rule

class: InformationSet

multiplicity: zero or one

The Rule for an InformationSet.

class: Rule

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 8-209

8

8.4.3 InfoSetAdministrationReferencesInfoSetDates

Allows dates to be specified for Information Set details.

Ends

date

infoSetAdmin

8.4.4 SegmentReferencesRule

A Segment may reference one or more Rule.

Ends

segment

rule

Date for administration details.

class: InfoSetDate

multiplicity: zero or more

Adminstration details owning the date.

class: InfoSetAdministration

multiplicity: one or more

The Segment for a Rule

class: Segment

multiplicity: zero or one

The Rule for a Segment

class: Rule

multiplicity: zero or more

8-210 CWM 1.0 Vol 2 2 February 2001

8

8.4.5 SegmentRegionReferencesRule

A SegmentRegion may reference one or more Rules.

Ends

segmentRegion

rules

8.5 OCL Representation of InformationSet Constraints

[C-1] One instance of Rule can be associated with only one of InformationSet,
Segment, SegmentRegion.

context Rule

inv: self.informationSet->isEmpty xor self.segment->isEmpty xor self.segmentRegion-
>isEmpty

The SegmentRegion for a Rule.

class: SegmentRegion

multiplicity: zero or one

The Rules for a SegmentRegion.

class: Rule

multiplicity: zero or more

2 February 2001 CWM 1.0 Vol 2 9-211

Information Reporting 9

9.1 Overview

The CWM Information Reporting metamodel extends the CWM Information
Visualization metamodel for the purpose of defining metadata representing formatted
reports.

9.2 Organization of the Information Reporting Metamodel

9.2.1 Dependencies

The Information Reporting package depends on the following packages:

org.omg::CWM::ObjectModel::Core

org.omg::CWM::Foundation::DataTypes

org.omg::CWM::Analysis::Transformation

org.omg::CWM::Analysis::InformationVisualization

9.2.2 Major Classes and Associations

The major classes and associations of the Information Reporting metamodel are shown
in Figure 9-1.

Report is a subclass of InformationVisualization::RenderedObject that represents a
formatted report. Reports are comprised of instances of ReportGroup, which is also a
subclass of RenderedObject. Thus, a Report is composed from ReportGroups, and
ReportGroups may be composed recursively from other ReportGroups. Ultimately, the
recursive definition of a ReportGroup must terminate with one or more ReportFields as
leaf-level components. ReportField represents single-valued attributes of the Report

9-212 CWM 1.0 Vol 2 2 February 2001

9

that are individually mapped to data sources (e.g., report queries) and rendered (i.e.,
formatted) by associated instances of InformationVisualization::Rendering.

Related Reports may be grouped together into a ReportPackage, a subclass of
InformationVisualization::RenderedObjectSet. A Report may also have a related
ReportExecution, which is a subclass of TranformationMap that relates the Report to
both its data sources and procedures required to run the Report. Each ReportGroup
may also specify a separate QueryExpression which is evaluated to yield the contents
of fields within the ReportGroup. This enables the specification of both derived, as
well as retrieved, data values for report fields.

Note that the Information Reporting metamodel makes extensive use of associations
and attributes inherited from Information Visualization. For example, the formula
attribute inherited from RenderedObject would be used by an instance of ReportGroup
to indicate its positioning within the overall report layout. The inherited association
“CompositesReferenceComponents” is used to compose Reports from ReportGroups,
as well as to compose ReportGroups recursively from other ReportGroups and
ReportFields. The inherited association “NeighborsReferenceNeighbors” may be used
to specify topological relationships between instances of ReportGroup at the same
level of composition.

Figure 9-1 CWM Information Reporting Metamodel

ReportPackage ReportExecution

ReportAttribute Rendering
(f rom Inf ormationVisualization)

QueryExpression
(from DataTypes)

Report

*0..1

/ownedElement

*

/namespace

0..1 *0..1

/ownedElement

*

/namespace

0..1

ReportField

*0..1
/renderedObject

*

/modelElement

0..1 **
/rendering

*
/renderedObject

*

ReportGroup

groupType : ReportGroupType
/ reportQuery : QueryExpression

*

0..1

reportQuery
*

0..1*

*

/component
*

/composite
*

*

*

/component
*

/composite **

*

/component *

/composite

*

*

*

/neighbor*

/referencingNeighbor

*

2 February 2001 CWM 1.0 Vol 2 9-213

9

9.3 Inheritance of the Information Reporting Metamodel

The inheritance of classes of the Information Reporting metamodel from classes of
packages it depends on is shown in Figure 9-2 below.

Figure 9-2 CWM Information Reporting Metamodel: Inheritance

9.4 Information Reporting Classes

9.4.1 Report

Report is a subclass of RenderedObject that defines a two-dimensional, formatted
report. A Report may be rendered as a printed report, in HTML, or as a dynamic,
online report.

Superclasses

RenderedObject

Contained Elements

ReportExecution

References

reportExecution

References the collection of ReportExecutions owned by a Report.

class: ReportExecution

defined by: ReportOwnsReportExecutions::reportExecution

multiplicity: zero or more

inverse: ReportExecution::report

Attribute
(from Core)

ReportFieldReportPackage

RenderedObjectSet
(from InformationVisualization)

RenderedObject
(from InformationVisualization)

ReportGroupReportAttribute ReportExecutionReport

TransformationMap
(from Transformation)

9-214 CWM 1.0 Vol 2 2 February 2001

9

Constraints

Reports generally do not have neighbor relationships with other reports. [C-1]

9.4.2 ReportAttribute

ReportAttribute is a subclass of UML Attribute that generally defines a ReportField.
Note that ReportAttributes may be re-used in the definitions of multiple ReportFields.

Superclasses

Attribute

9.4.3 ReportExecution

ReportExecution is a subclass of TransformationMap that defines any necessary
mappings and procedures for actually generating an instance of a Report.

Superclasses

TransformationMap

9.4.4 ReportField

ReportField defines a specific field within a ReportGroup.

Superclasses

RenderedObject

Constraints

A ReportField is associated with precisely one ReportGroup. [C-2]

A ReportField may not have components. [C-3]

9.4.5 ReportGroup

ReportGroup defines a grouping of fields on a report.

2 February 2001 CWM 1.0 Vol 2 9-215

9

Superclasses

RenderedObject

Attributes

groupType

References

reportQuery

Constraints

A ReportGroup is associated with precisely one Report. [C-4]

9.4.6 ReportPackage

Defines a grouping of related reports.

Superclasses

RenderedObjectSet

9.5 Information Reporting Associations

9.5.1 ReportGroupReferencesQueryExpressions

A ReportGroup may reference one or more instances of QueryExpression.

Specifies the type of a ReportGroup

type: ReportGroupType (header | footer | detail | other)

multiplicity: exactly one

References the collection of QueryExpressions owned by a ReportGroup.

class: QueryExpression

defined by: ReportGroupReferenceQueryExpressions
::reportQuery

multiplicity: zero or more

9-216 CWM 1.0 Vol 2 2 February 2001

9

Ends

reportQuery

reportGroup

9.6 OCL Representation of Information Reporting Constraints

[C-1] Reports generally do not have neighbor relationships with other reports.

context Report

inv: self.neighbor->isEmpty

inv: self.referencingNeighbor->isEmpty

[C-2] A ReportField is associated with precisely one ReportGroup.

context ReportField inv:

self.composite->size = 1

[C-3] A ReportField may not have components.

context ReportField inv:

self.component->isEmpty

[C-4] A ReportGroup is associated with precisely one Report.

context ReportGroup inv:

self.composite->size = 1

QueryExpressions referenced by the ReportGroup.

class: QueryExpression

multiplicity: zero or more

The ReportGroup referencing QueryExpressions.

class: ReportGroup

multiplicity: zero or one

2 February 2001 CWM 1.0 Vol 2 Reference-217

References

Non-Normative

[COBOL] ANSI X3.23-1985, American National Standard for Information Systems - Programming Language -
COBOL, 1985

[OIM] MDC Open Information Model, Version 1.0, 1999

Reference-218 CWM 1.0 Vol 2 2 February 2001

	Preface
	1.1 Introduction
	1.2 Guide to Volume 2
	1.3 Organization of the CWM Extensions (CWMX)

	Entity Relationship
	2.1 Overview
	2.2 Organization of the Entity Relationship Package
	2.3 Entity Relationship Classes
	2.3.1 CandidateKey
	2.3.2 Attribute
	2.3.3 Domain
	2.3.4 Entity
	2.3.5 ForeignKey
	2.3.6 Model
	2.3.7 ModelLibrary
	2.3.8 NonUniqueKey
	2.3.9 PrimaryKey
	2.3.10 Relationship
	2.3.11 RelationshipEnd
	2.3.12 SubjectArea

	2.4 Entity Relationship Associations
	2.4.1 DomainBaseType
	2.4.2 ForeignKeyImplements Protected

	2.5 OCL Representation of Entity Relationship Constraints

	COBOL Data Division
	3.1 Overview
	3.2 Organization of the COBOL Data Division Package
	3.3 COBOL Data Division Classes
	3.3.1 COBOLFD
	3.3.2 COBOLFDIndex
	3.3.3 COBOLField
	3.3.4 COBOLItem Abstract
	3.3.5 FileSection
	3.3.6 LinageInfo
	3.3.7 LinkageSection
	3.3.8 OccursKey
	3.3.9 Renames
	3.3.10 ReportWriterSection
	3.3.11 Section
	3.3.12 Usage
	3.3.13 WorkingStorageSection

	3.4 COBOLData Associations
	3.4.1 FDDepending Protected
	3.4.2 FDStatusID Protected
	3.4.3 FileSectionFD Protected
	3.4.4 LinageField Protected
	3.4.5 LinageInfoField Protected
	3.4.6 OccursDependingOn Protected
	3.4.7 OccuringKeyInfo Protected
	3.4.8 OccursKeyField Protected
	3.4.9 PaddingField Protected
	3.4.10 Redefines Protected
	3.4.11 RelativeOffsetField Protected
	3.4.12 RenamesFirst Protected
	3.4.13 RenamesThru Protected
	3.4.14 SectionRecord

	3.5 OCL Representation of COBOLData Constraints

	DMS II
	4.1 Overview
	4.2 Organization of the DMSII Package
	4.3 DMSII Classes
	4.3.1 Access
	4.3.2 AutomaticSubset
	4.3.3 DASDLComment
	4.3.4 DASDLProperty
	4.3.5 Database
	4.3.6 DataItem
	4.3.7 DataSet
	4.3.8 FieldBit
	4.3.9 KeyItem
	4.3.10 PhysicalAccessOverride
	4.3.11 PhysicalDatabase
	4.3.12 PhysicalDataSet
	4.3.13 PhysicalDataSetOverride
	4.3.14 PhysicalSet
	4.3.15 PhysicalSetOverride
	4.3.16 Remap
	4.3.17 RemapItem
	4.3.18 Remark
	4.3.19 Set
	4.3.20 SetStructure
	4.3.21 Subset
	4.3.22 VariableFormatPart

	4.4 DMSII Associations
	4.4.1 DASDLPropertyOwner
	4.4.2 DataItemStructure
	4.4.3 DataSetPartitionSet Protected
	4.4.4 FieldBits Protected
	4.4.5 KeyDataItem Protected
	4.4.6 OccursDepending Protected
	4.4.7 RemapItems Protected
	4.4.8 RemappedStructure
	4.4.9 SetPartitionSet Protected

	4.5 OCL Representation of DMSII Constraints

	IMS
	5.1 Overview
	5.2 Organization of the IMS Package
	5.3 IMS Classes
	5.3.1 ACBLIB
	5.3.2 AccessMethod
	5.3.3 DBD
	5.3.4 DBDLib
	5.3.5 DEDB
	5.3.6 Dataset
	5.3.7 Exit
	5.3.8 Field
	5.3.9 HDAM
	5.3.10 HIDAM
	5.3.11 INDEX
	5.3.12 LCHILD
	5.3.13 MSDB
	5.3.14 PCB
	5.3.15 PSB
	5.3.16 PSBLib
	5.3.17 SecondaryIndex
	5.3.18 Segment
	5.3.19 SegmentComplex
	5.3.20 SegmentLogical
	5.3.21 SenField
	5.3.22 SenSegment

	5.4 IMS Associations
	5.4.1 Captures protected
	5.4.2 CapturesExit protected
	5.4.3 ContainsDataset protected
	5.4.4 ContainsDBD protected
	5.4.5 ContainsPSB protected
	5.4.6 ContainsSegment protected
	5.4.7 ExtendedByAccessMethod protected
	5.4.8 HasIndexSource protected
	5.4.9 HasSource protected
	5.4.10 Indexes protected
	5.4.11 IndexShares protected
	5.4.12 Indices protected
	5.4.13 IsDuplicateData protected
	5.4.14 IsInDBDLib protected
	5.4.15 IsIndexedBy protected
	5.4.16 IsInPSBLib protected
	5.4.17 IsLChild protected
	5.4.18 IsLParent protected
	5.4.19 IsPaired protected
	5.4.20 ParentChild protected
	5.4.21 PcbToDbd protected
	5.4.22 PcbToSenSegment protected
	5.4.23 PrimaryIndex protected
	5.4.24 PsbToPcb protected
	5.4.25 Searched protected
	5.4.26 SenfldToField protected
	5.4.27 SensegMapsTo protected
	5.4.28 SensegToSenfld protected
	5.4.29 SequencedBy protected
	5.4.30 StoresSegment protected
	5.4.31 Subsequenced protected

	5.5 OCL Representation of IMS Constraints

	Essbase
	6.1 Overview
	6.2 Organization of the Essbase Package
	6.3 Essbase Classes
	6.3.1 Alias
	6.3.2 Application
	6.3.3 Comment
	6.3.4 Consolidation
	6.3.5 CurrencyConversion
	6.3.6 DataStorage
	6.3.7 Database
	6.3.8 Dimension
	6.3.9 Formula
	6.3.10 Generation
	6.3.11 ImmediateParent
	6.3.12 Level
	6.3.13 LinkedPartition
	6.3.14 MemberName
	6.3.15 OLAPServer
	6.3.16 Outline
	6.3.17 Partition abstract
	6.3.18 ReplicatedPartition
	6.3.19 TimeBalance
	6.3.20 TransparentPartition
	6.3.21 TwoPassCalculation
	6.3.22 UDA
	6.3.23 VarianceReporting

	6.4 Essbase Associations
	6.4.1 DatabaseOwnsOutline
	6.4.2 OutlineReferencesDimensions

	6.5 OCL Representation of Essbase Constraints

	Express
	7.1 Overview
	7.2 Organization of the Express Package
	7.3 Express Classes
	7.3.1 AggMap
	7.3.2 AggMapComponent
	7.3.3 AliasDimension
	7.3.4 Composite
	7.3.5 Conjoint
	7.3.6 Database
	7.3.7 Dimension abstract
	7.3.8 Formula
	7.3.9 Model
	7.3.10 PreComputeClause
	7.3.11 Program
	7.3.12 Relation
	7.3.13 SimpleDimension
	7.3.14 ValueSet
	7.3.15 Variable
	7.3.16 Worksheet

	7.4 Express Associations
	7.4.1 AggMapComponentDimension
	7.4.2 AggMapComponentRelation
	7.4.3 AggMapComponents protected
	7.4.4 AliasDimensionBaseDimension protected
	7.4.5 ComputeClause protected
	7.4.6 RelationReferenceDimension
	7.4.7 SimpleDimensionDataType
	7.4.8 ValueSetReferenceDimension
	7.4.9 WorksheetColumnDimension
	7.4.10 WorksheetRowDimension

	7.5 OCL Representation of Express Constraints

	InformationSet
	8.1 Overview
	8.2 Organization of the InformationSet Package
	8.2.1 InformationSet Inheritance
	8.2.2 InformationSet Relationships

	8.3 InformationSet Classes
	8.3.1 InformationSet
	8.3.2 InfoSetAdministration
	8.3.3 InfoSetDate
	8.3.4 Rule
	8.3.5 Segment
	8.3.6 SegmentRegion

	8.4 InformationSet Associations
	8.4.1 InformationSetReferencesInfoSetAdministration
	8.4.2 InformationSetReferencesRule
	8.4.3 InfoSetAdministrationReferencesInfoSetDates
	8.4.4 SegmentReferencesRule
	8.4.5 SegmentRegionReferencesRule

	8.5 OCL Representation of InformationSet Constraints

	Information Reporting
	9.1 Overview
	9.2 Organization of the Information Reporting Metamodel
	9.2.1 Dependencies
	9.2.2 Major Classes and Associations

	9.3 Inheritance of the Information Reporting Metamodel
	9.4 Information Reporting Classes
	9.4.1 Report
	9.4.2 ReportAttribute
	9.4.3 ReportExecution
	9.4.4 ReportField
	9.4.5 ReportGroup
	9.4.6 ReportPackage

	9.5 Information Reporting Associations
	9.5.1 ReportGroupReferencesQueryExpressions

	9.6 OCL Representation of Information Reporting Constraints

	References
	Non-Normative

