
 Volume 2 No.1, January 2012 ISSN 2224-3577

International Journal of Science and Technology

©2010-11 IJST Journal. All rights reserved

http://www.ejournalofsciences.org

 10

A New Compression Based Index Structure for Efficient Information

Retrieval

Md. Abdullah al Mamun
1
, Md. Hanif

2
, Md. Rakib Uddin

3
, Tanvir Ahmed

4
, Md. Mofizul Islam

5

1,2,5Department of ICT, Mawlana Bhashani Science and Technology University (MBSTU).

Bangladesh.
4Department of Computer Science, American International University-Bangladesh (AIUB).

Kemal Ataturk Avenue, Banani, Dhaka, Bangladesh.
3Department of Pharmaceutical Chemistry, University of Dhaka.

Dhaka, Bangladesh

ABSTRACT

Finding desired information from large data set is a difficult problem. Information retrieval is concerned with the structure,

analysis, organization, storage, searching, and retrieval of information. Index is the main constituent of an IR system. Now

a day exponential growth of information makes the index structure large enough affecting the IR system’s quality. So

compressing the Index structure is our main contribution in this paper. We compressed the document number in inverted

file entries using a new coding technique based on run-length encoding. Our coding mechanism uses a specified code

which acts over run-length coding. We experimented and found that our coding mechanism on an average compresses

67.34% more than the other techniques.

Keywords: Information Retrieval, Query, Inverted Index, Compression, Decompression

1. INTRODUCTION

 Information Retrieval (IR) refers to the

processing of user requests, to obtain relevant information

normally from unstructured textual data. The task of a full-

text information retrieval system is to satisfy a user’s

information need by identifying the documents in a

collection of documents that contain the desired

information. This identification process requires a means

of locating documents based on their content. A well

known mechanism for providing such means is the

inverted file index [1], [2]. An inverted file index consists

of a record, or inverted list, for each term that appears in

the document collection. A term’s record contains an entry

for every occurrence of the term in the document

collection, identifying the document and possibly giving

the location of the occurrence or a weight associated with

the occurrence. Similarly an index may be a list of words

and associated pointers to where those words can be found

in a document. Indexes are designed to help the reader

find information quickly and easily . Inverted file indices

can become quite large. Some commercial systems contain

millions of full text documents, occupying gigabytes of

disk space. An inverted file index for such a collection

will contain hundreds of thousands of records, ranging in

size from just a few bytes to millions of bytes.

More over the B+ tree is a widely used index

structure that maintains their efficiency irrespective of

insertion and deletion of data [3]. Similar to B+-tree, B-

tree allows search-key values to appear only once;

eliminates redundant storage of search keys [3]. Another

important indexing mechanism is hashing a hash function

is computed on some attribute of each record; the result

specifies in which block of the file the record should be

placed. Bitmap indexes are special types of index designed

for easy querying on multiple keys although each bitmap

index is built on a single key [5].

Due to the enormous amount of data it is very

much difficult to find the relevant information quickly. On

the other hand as index is the main constituents of an IR

system, it grows rapidly with the increase of data.

Eventually compression of index structure has become the

prime research issue. There are two more subtle benefits

of compression. The first is increased use of caching.

Search systems use some parts of the dictionary and the

index much more than others [8]. The second more subtle

advantage of compression is faster transfer of data from

disk to memory. Efficient decompression algorithms run

so fast on modern hardware that the total time of

transferring a compressed chunk of data from disk and

then decompressing it is usually less than transferring the

same chunk of data in uncompressed form. So in most

cases, the retrieval system will run faster on compressed

postings lists than on uncompressed postings lists [9].

2. LITERATURE REVIEW

An efficient compression based index structure is

developed by Justin Zobel, Alistair Moffat and Ron Sacks-

Davis [1]. [1] Shows gamma technique which compresses

5.1% more efficiently then binary technique. They also

show that VT compression technique compresses 4.5%

more efficiently then binary. Another index structure is

developed by Jinlin Chen, Terry Cook where they used d-

gap method for index compression [2]. A comparison

between d-gap and gamma is also shown in [2]. Maxim

Martynov, Boris Novikov proposed an algorithm for query

evaluation in text retrieval systems based on inverted lists,

 Volume 2 No.1, January 2012 ISSN 2224-3577

International Journal of Science and Technology

©2010-11 IJST Journal. All rights reserved

http://www.ejournalofsciences.org

 11

augmented with additional data structure and estimate

expected performance gains [3]. This data structure is able

to support dynamic indexing. A simple run-length

compression method to use the codes for integers is

described by Elias [4]. A research which shows indexing

of very large data files containing hundreds of thousands

or possibly millions of records is developed by [5].

Another compression based index structure is developed

by Justin Zobel, Alistair Moffat and Ron Sacks-Davis [6].

A compressed inverted file index to search such a lexicon

for entries that match a pattern or partially specified term

is shown in [6]. This method provides an effective

compression between speed and space.

3. COMPRESSING THE INDEX

STRUCTURE

An inverted file index consists of a record, or

inverted list, for each term that appears in the document

collection. An inverted file index for such a collection

will contain hundreds of thousands of records, ranging in

size from just a few bytes to millions of bytes. So

compression play important role in inverted file index.

A. General structure of inverted file indexing

Fig. 1: The general index structure

 A general inverted file index consists of two

parts: a set of inverted file entries, being lists of identifiers

of the records containing each indexed word; and a search

structure or vocabulary for identifying the location of the

inverted file entry for each word has shown in Fig. 1. We

assume that inverted file entries store ordinal record

numbers rather than addresses, and so to map the resulting

record identifiers to disc addresses there must also be an

address table (or disc mapping). Here documents are

sequentially numbered and are accessible via addressing

table. Inserting a new record means that each of the words

in the record now occurs in one more record overall, thus

changing the weight of each of these words. If record

length was based on sums of weights, the length of every

record containing any one of these words would have to be

recomputed. In many applications it would be preferable

to use a simpler measure of length, for which ranking

performance may be worse but update is feasible.

B. Compression on general index structure

 For every word (Index Term) that occurs in a stored

document, the inverted list contains an entry that includes

a document number and optionally position information.

For better search speed and storage utilization the inverted

lists are ordered to enable run-length encoding .The

general inverted file entries are shown in Table I.

Table 1: General Inverted File Entries

The inverted file size is of an uncompressed

record-level inverted file, assuming a binary code of

 bits per records identifier where N is the

number of records in the collections. Rather than

compressing the series of record numbers in an inverted

file entry, we compression is on done their run-length

encoding, the series of differences between successive

numbers [3].

For example, the inverted file entry

50,70,110,190,240,…..

has the run-length encoding

50,20,40,80,50,………

C. Our proposed compression method on

index structure

In this paper we propose a variation of these

Term Document number Weight

CSE 20,58,222223,1111111 80,70,50,30

ESRM 90,50,21,5688,47584 85,40,30,20,15

CPS 50,199999,77777713 70,60,50

BGE 5555555,12 80,60

FTNS 2855555,233333 90,70

computer 124,5848,66687 95,40,30

Book 82,3333333,22222 80,60,20

 pen 10000000,12,65,24 70,50,40,30

 Volume 2 No.1, January 2012 ISSN 2224-3577

International Journal of Science and Technology

©2010-11 IJST Journal. All rights reserved

http://www.ejournalofsciences.org

 12

schemes with improved performance especially for queries

with large number of index terms. The model of data

structure for this indexing scheme is represented on Fig. 2.

Here we can modify the content of general inverted

indexing structure in two parts. First we changed the

inverted file entries that are shown in Table II. Secondly

we changed the address table for documents. Here we

divided it into two parts, the first part (1) contains the

document number, which cannot be supported by

compression technique, shown in Table III.

Fig. 2: Proposed inverted file index structure

 The second part (2) contains the document

number, which supports our compression technique, which

is shown in Table IV. In inverted file entries our

compression method works on the document number. We

compressed only those numbers that supports our

compressing algorithm, according to Table VI. For

example original document number is 222222331 after

using our compression algorithm it will be replaced by

2B331. Inverted file entries table is shown in above below.

The converted document number of Table I will be like

Table II using our algorithm. If a digit occurs more then 5

times sequentially in a document number then the

occurrence number will be replaced by a code according

to Table V. So, 222222331 will be 2B331. But during

storing we will store the equivalent coded value of

101011001100110001 using Table VI instead of normal

binary value 1101001111101101011111111011. It causes

a significant amount of compression for large document

number. The proposed algorithm is given in Fig. 3. This

compression technique gives the efficient facility of

decoding also. During decoding we will scan the encode

binary value of the compressed document number from

right and find its equivalent value using Table VI.

Table 2: Proposed Inverted File Entries

In our work we divided the address table for

document into two parts. As a result the overall time for

finding relevant information against a query has been

reduced. The document number that does not support our

algorithm scan the address table in Table III. Otherwise it

search in Table IV. This mechanism reduced the searching

time for finding relevant information.

Table 3: Address Table for Documents

Part (1)

Table 4: Address Table for Documents

Part (2)

Term Document number Weight

CSE 20,58,2A3,1C 80,70,50,30

ESRM 90,50,21,5688,47584 85,40,30,20,15

CPS 50,19A,7B13 70,60,50

BGE 5C,12 80,60

FTNS 285A,23A 90,70

computer 124,5848,66687 95,40,30

Book 82,3C,2A 80,60,20

 pen 10C,12,65,24 70,50,40,30

 Volume 2 No.1, January 2012 ISSN 2224-3577

International Journal of Science and Technology

©2010-11 IJST Journal. All rights reserved

http://www.ejournalofsciences.org

 13

Table V shows the corresponding coded value of

original value having value greater then 3. Here we

assigned the value up to 100.

Table 5: Coding of Frequency Count for

Similar Digits

In our experiment we will store our coded value

in the database according to Table 6

Table 6: Assigning Code

4. EXPERIMENT AND RESULT

Here we experimented the corresponding bit

representation of the original document number and our

compressed document number. For our compression

purpose we used the hexadecimal coding technique of

Table VI. Our algorithm works good for large document

numbers. For huge data set of different domain it is

obvious that there may be large document number. We

analyzed the IR system of our university library data set.

For document numbers we experimented our algorithm.

For large document number our algorithm shows

significant compression ratio. Different compression

results are shown in Table VII and Table VIII. Table VII

shows that our propose algorithm perform 56.84% more

compression than binary coding. We can find 77.85%

more compression than gamma coding [4]. Fig. 4. Shows

the graphical representation of our compression technique

to other techniques.

Table 7: Compression Using Binary Code

Original value Coded value

4 A

5 B

6 C

7 D

8 E

9 F

10 AA

. .

17 BC

. .

. .

81 AFF

. .

. .

99 BCE

100 BCF

Coded Value Assigned Code

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

 Volume 2 No.1, January 2012 ISSN 2224-3577

International Journal of Science and Technology

©2010-11 IJST Journal. All rights reserved

http://www.ejournalofsciences.org

 14

Table 8: Compression Using Gamma Code

Fig. 4: Comparison with Gamma code and Binary code

5. CONCLUDING REMARKS

In this paper we used new algorithm for compressing

inverted index. Although our proposed technique performs

better results on huge number of documents only, it shows

significant compression ratio to the well – known gamma

and binary technique. Decompressing the encoded

characters is also very straight forward in our algorithm.

On the other hand as we split the index structure into two

parts, it also gives a comparatively quick response to any

user query.

REFERENCES

[1] Justin Zobel, Alistair Moffat, and Ron Sacks-

Davis, “Efficient indexing technique for full-text

database systems”, In Proc. 18
th

 Intnl.Conf. on

VLDB, pp. 352–362, 1992.

[2] Jinlin Chen, Terry Cook, “Using d-gap Patterns

for Index Compression”, In Proc. of the

WWW2007.

[3] Maxim Martynov, Boris Novikov, “An Indexing

Algorithm for Text Retrieval”, The International

Workshop on Advances in Databases and

Information Systems, Moscow, September 1996.

[4] P. Elias, “Universal codeword sets and

representation of the integers”, IEEE Trans. On

Info. Theory, pp. 194–203, February 1975.

[5] A.J. Kent, R. Sacks-Davis, and K.

Ramamohanarao, “A signature file scheme based

on multiple organizations for indexing

very large text databases”, American Society for

Inf. Science, pp. 508-534, 1990.

[6] Justin Zobel, Alistair Moffat, and Ron Sacks-

Davis, “Searching large lexicons for partially

specified terms using compressed Inverted files”,

In Proc.19th Intnl.Conf. on VLDB, pp. 290–301,

1992.

[7] V. N. Anh and A. Moffat , “Index compression

using fixed binary codeword’s”, In Proc. 15th

Australasian Database Conference, pp. 61-67,

2004

[8] J. Zobel and A. Moffat, “Adding compression to

a full-text retrieval system”, In Proc. 15’Th

Australian Computer Science Conference, pp.

1077-1089, January 1992.

[9] I H. Witten, T.C. Bell, and C. Nevill, “Models for

compression in full-text retrieval systems”, Proc.

IEEE Data Compression Conference, pp. 23-32,

April 1991.

