
Undecidability of Weak Bisimilarity

for Pushdown Processes

Jǐŕı Srba?

BRICS??

Department of Computer Science, University of Aarhus,
Ny Munkegade bld. 540, 8000 Aarhus C, Denmark

srba@brics.dk

Abstract. We prove undecidability of the problem whether a given pair
of pushdown processes is weakly bisimilar. We also show that this unde-
cidability result extends to a subclass of pushdown processes satisfying
the normedness condition.

1 Introduction

An important question in the area of verification of infinite-state systems is
that of equivalence checking [1]. A prominent role is played by the bisimulation
equivalence [17] as it possesses many pleasant properties. Strong bisimilarity is
decidable both for Basic Process Algebra (BPA) [3] and Basic Parallel Processes
(BPP) [2], two basic models of purely sequential, respectively parallel, com-
putations. There are even polynomial time algorithms for normed subclasses of
BPA and BPP [7, 8] (a process is normed iff from every reachable state there is a
computation leading to the empty process). This strongly contrasts with the fact
that all other equivalences (including language equivalence) in van Glabbeek’s
spectrum (see [25, 26]) are undecidable for BPA [5] and BPP [9].

The answers to the strong bisimilarity problems for processes generated by
pushdown automata (PDA) are even more involved than those for BPA and
BPP. A pushdown automaton can be seen as a BPA process extended with a
finite control unit. From the language point of view, there is no difference be-
tween PDA and BPA, since both formalisms describe the class of context-free
languages. On the other hand the situation is different when considering strong
bisimilarity as the equivalence relation. The PDA class is strictly more expres-
sive than BPA w.r.t. strong (and weak) bisimilarity, and hence the decidability
problems are more difficult to handle. Nevertheless, Stirling proved decidability
of strong bisimilarity for normed PDA [22] and the same question for the whole
class of PDA was positively answered by Senizergues [19].

Let us draw our attention to the notion of weak bisimilarity. Weak bisimilarity
is a more general equivalence than strong bisimilarity, in the sense that it allows
? The author is supported in part by the GACR, grant No. 201/00/0400.

?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

to abstract from internal behaviour of processes by introducing a silent action
τ , which is not observable [15]. Decidability of weak bisimilarity for BPA and
BPP are well known open problems. The problems are open even for normed
BPA and BPP. Some partial positive results were achieved e.g. in [6, 23]. It is
also known that weak bisimilarity is decidable for deterministic PDA (follows
from [18] as mentioned e.g. in [14]).

Our contribution is the undecidability of weak bisimilarity for PDA (and
even for its normed subclass). To the best of our knowledge, this is the first
undecidability result for weak bisimilarity on a class of infinite-state systems
where strong bisimilarity remains decidable. Similar result is only known for
bisimilarity between Petri nets and finite-state systems where strong bisimilarity
is decidable [12] whereas weak bisimilarity is undecidable [11].

A full proof of our result is provided in Section 3. The technique is based
on an effective encoding of the halting problem for 2-counter Minsky machine
into the bisimilarity checking problem for a pair of pushdown processes. We use
a game-theoretic characterization of weak bisimilarity to make the proof more
understandable. In this setting two processes are weakly bisimilar if and only if a
player called ‘defender’ has a winning strategy in the bisimulation game against
a player called ‘attacker’. The intuition of our encoding is that a configuration of
a Minsky machine, consisting of an instruction label and the values of counters,
is represented by a pair of pushdown processes. The label is remembered in the
control state and the values of counters are stored in the stack. The problem is,
of course, that we have only sequential access to the stack but we need to enable
(at least a limited) parallel access to both counters. The key idea is a technique
how to manage these stack contents in such a way that the players faithfully
simulate the computation of the Minsky machine. The goal is to establish that
the attacker has a winning strategy in the bisimulation game iff the machine
halts, or equivalently that the defender has a winning strategy iff the machine
diverges.

2 Basic Definitions

A labelled transition system is a triple (S,Act,−→) where S is a set of states (or
processes), Act is a set of labels (or actions), −→⊆ S ×Act × S is a transition
relation, written α

a−→ β, for (α, a, β) ∈−→.
As usual we extend the transition relation to the elements of Act∗, i.e., α

ε−→
α for every α ∈ S and α

aw−→ β if α
a−→ α′ and α′ w−→ β for every α, β ∈ S,

a ∈ Act and w ∈ Act∗. We also write α −→∗ β whenever α
w−→ β for some

w ∈ Act∗, α 6 a−→ whenever there is no β such that α
a−→ β, and α 6−→ whenever

α 6 a−→ for all a ∈ Act.
A process is a pair (α, T) where T = (S,Act,−→) is a labelled transition

system and α ∈ S. We say that β ∈ S is reachable in (α, T) iff α −→∗ β. We
call (α, T) a finite-state process iff the set of its reachable states is finite.

Assume that the set of actions Act contains a distinguished silent action τ .
The notation α

τ∗−→ β means that there is an integer n ≥ 0 such that α
τn−→ β,

where τn is a word consisting of n occurrences of τ . The weak transition relation
=⇒ is defined as follows:

a=⇒def=

{
τ∗−→ ◦ a−→ ◦ τ∗−→ if a ∈ Act r {τ}

τ∗−→ if a = τ .

Let T = (S,Act,−→) be a labelled transition system. A binary relation
R ⊆ S ×S is a weak bisimulation iff whenever (α, β) ∈ R then for each a ∈ Act:

– if α
a−→ α′ then β

a=⇒ β′ for some β′ such that (α′, β′) ∈ R

– if β
a−→ β′ then α

a=⇒ α′ for some α′ such that (α′, β′) ∈ R.

Processes (α1, T) and (α2, T) are weakly bisimilar, and we write (α1, T) ≈
(α2, T) (or simply α1 ≈ α2 if T is clear from the context), iff there is a weak
bisimulation R such that (α1, α2) ∈ R. Given a pair of processes (α1, T1) and
(α2, T2) such that T1 and T2 are different labelled transition systems, we write
(α1, T1) ≈ (α2, T2) iff (α1, T) ≈ (α2, T) where T is the disjoint union of T1 and
T2.

Remark 1. If we assume that τ does not appear in the set of actions Act then the
relations =⇒ and −→ coincide. We call the corresponding notion of bisimilarity
strong bisimilarity and denote it by ∼.

Weak bisimilarity has an elegant characterisation in terms of bisimulation
games.

Definition 1 (Bisimulation game).
A bisimulation game on a pair of processes (α1, T) and (α2, T) where T =
(S,Act,−→) is a two-player game between an ‘attacker’ and a ‘defender’. The
game is played in rounds on pairs of states from S × S. In each round the play-
ers change the current states β1 and β2 (initially α1 and α2) according to the
following rule.

1. The attacker chooses an i ∈ {1, 2}, a ∈ Act and β′
i ∈ S such that βi

a−→ β′
i.

2. The defender responds by choosing a β′
3−i ∈ S such that β3−i

a=⇒ β′
3−i.

3. The states β′
1 and β′

2 become the current states.

A play is a maximal sequence of pairs of states formed by the players according
to the rule described above, and starting from the initial states α1 and α2. The
defender is the winner in every infinite play. A finite play is lost by the player
who is stuck. Note that the attacker gets stuck in current states β1 and β2 if and
only if both β1 6−→ and β2 6−→.

We remind the reader of the fact that if the attacker chooses a move under
the action τ in one of the processes, the defender can (as one possibility) simply
answer by doing “nothing”, i.e., by staying in the same state of the other process.
The following proposition is a standard one (see e.g. [21, 24]).

Proposition 1. Processes (α1, T) and (α2, T) are weakly bisimilar iff the de-
fender has a winning strategy (and nonbisimilar iff the attacker has a winning
strategy).

Let Q = {p, q, . . .}, Γ = {X, Y, . . .} and Act = {a, b, . . .} be finite sets of
control states, stack symbols and actions, respectively, such that Q ∩ Γ = ∅ and
τ ∈ Act is the distinguished silent action. A pushdown automaton (PDA) is a
finite set

∆ ⊆ Q × Γ ×Act × Q × Γ ∗

of rewrite rules, written pX
a−→ qα for (p, X, a, q, α) ∈ ∆. A pushdown automa-

ton ∆ generates a labelled transition system T (∆) = (Q × Γ ∗,Act,−→) where
Q×Γ ∗ is the set of states1, Act is the set of actions, and the transition relation
−→ is defined by

pXβ
a−→ qαβ iff (pX

a−→ qα) ∈ ∆

for all β ∈ Γ ∗.
A pushdown process (or simply a process) is a pair

(
pα, T (∆)

)
where T (∆) is

the transition system generated by a pushdown automaton ∆ and pα is a state
of T (∆). We often abbreviate the notation

(
pα, T (∆)

)
to (pα, ∆) or even to pα

if ∆ is clear from the context.
A process (pα, ∆) is normed iff for every reachable state qβ there is a finite

computation which empties the stack, i.e., there is a state rε ∈ Q×Γ ∗ such that
qβ −→∗ rε. We say that (pα, ∆) is weakly (or strongly) regular iff there is some
finite-state process (γ, T) such that (pα, ∆) ≈ (γ, T) (or (pα, ∆) ∼ (γ, T)).

Notation 1. Let i be a natural number and A ∈ Γ . We use the notation Ai for
a sequence of i occurrences of A, i.e., A0 def= ε and Ai+1 def= AiA. For example
pX2Y 3 is an abbreviation for pXXY Y Y .

Example 1. Let Q
def= {p, p1, p

′, p′1, p′2, p′3}, Γ
def= {X, Y } and Act

def= {a, b, c, τ}
and let ∆ be the following pushdown automaton.

pX
a−→ p1X pX

τ−→ p′X p1X
c−→ p1X

p′X a−→ p′1X p′1X
c−→ p′1X

p′X τ−→ p′2X p′2X
c−→ p′3

p′2X
τ−→ p′2YX p′2Y

τ−→ p′2Y Y p′2Y
b−→ p′2

A fraction of the transition system T (∆) is depicted in Figure 1. Let us consider
processes (pX, ∆) and (p′X, ∆). We show that (pX, ∆) ≈ (p′X, ∆) by describing
a winning strategy for the defender in the bisimulation game starting from pX
and p′X . The attacker has the following four possibilities in the first round:
pX

a−→ p1X , or pX
τ−→ p′X , or p′X a−→ p′1X , or p′X τ−→ p′2X . In order to

1 We write pα instead of (p,α) ∈ Q× Γ ∗. A state pε ∈ Q× Γ ∗, where ε is the symbol
for empty stack, is usually written only as p.

pX

a

xxqqqqqqqqq
τ

��
p1X

c

FF p′X
a

xxqqqqqqqqq
τ

��
p′
1X

c

GG p′
2X

c

��

τ ,,
p′
2YX

τ --

b

kk p′
2Y YX

τ
**

b

ll · · ·
b

mm

p′
3

Fig. 1. Transition system generated by ∆

avoid the situation where the defender can reach a pair of syntactically equal
states, the attacker is forced to choose the first move, namely pX

a−→ p1X .
The defender answers by playing p′X a=⇒ p′1X . Now the game continues from

p1X and p′1X , however, these two states are obviously weakly bisimilar and hence
the defender has a winning strategy. This implies that (pX, ∆) ≈ (p′X, ∆).

In this example we also recall some of our previous definitions. The process
(pX, ∆) can terminate (empty its stack) since pX −→∗ p′3 but it is not normed —
it can reach e.g. the state p1X from which there is no terminating computation.
On the other hand the process (p′2Y

iX, ∆) is normed for any i ≥ 0.
Also note that (pX, ∆) is not weakly regular because it has infinitely many

reachable and weakly nonbisimilar states. Consider the states p′2Y
iX and p′2Y

jX
for i 6= j. Obviously, pX −→∗ p′2Y iX and pX −→∗ p′2Y jX . We leave it to the
reader to find a winning strategy for the attacker from the pair p′2Y

iX and
p′2Y

jX and thus show that (p′2Y
iX, ∆) 6≈ (p′2Y

jX, ∆).

3 Undecidability of Weak Bisimilarity

We shall prove that weak bisimilarity of pushdown processes is undecidable.

Problem: Weak bisimilarity of pushdown processes
Instance: A pushdown automaton ∆ and a pair of processes

(p1α1, ∆) and (p2α2, ∆).
Question: (p1α1, ∆) ≈ (p2α2, ∆) ?

The proof is by reduction from the halting problem of Minsky machine [16]
with two counters.

Definition 2 (Minsky machine with two counters).
A Minsky machine R with two counters c1 and c2 is a finite sequence

R = (L1 : I1, L2 : I2, . . . , Ln−1 : In−1, Ln : halt)

where n ≥ 1, L1, . . . , Ln are pairwise different labels, and I1, . . . , In−1 are in-
structions of the following two types:

– increment: cr := cr + 1; goto Lj

– test and decrement: if cr = 0 then goto Lj else cr := cr − 1; goto Lk

where 1 ≤ r ≤ 2 and 1 ≤ j, k ≤ n.

A configuration of a Minsky machine R is a triple (Li, v1, v2) where Li is
the instruction label (1 ≤ i ≤ n), and v1, v2 ∈ N are nonnegative integers
representing the values of counters c1 and c2, respectively. Let Conf be the set
of all configurations of R. The transition relation ↪→ ⊆ Conf × Conf between
configurations is defined in the obvious and natural way. We remind the reader
of the fact that the computation of the machine R is deterministic, i.e., if c↪→d
and c↪→e then d = e for all c, d, e ∈ Conf.

It is a well known fact that the problem whether a Minsky machine R halts
with the initial counter values set to zero (in other words the problem whether
(L1, 0, 0)↪→∗(Ln, v1, v2) for some v1, v2 ∈ N) is undecidable [16]. If R does not
halt we say that it diverges.

Our aim is to show that there is an effective construction such that given
a Minsky machine R it defines a pushdown automaton ∆ and a pair of pro-
cesses p1α1 and p2α2 with the property that R halts if and only if (p1α1, ∆) 6≈
(p2α2, ∆). This proves that weak bisimilarity of pushdown processes is an unde-
cidable problem.

Let us fix a Minsky machine

R = (L1 : I1, L2 : I2, . . . , Ln−1 : In−1, Ln : halt).

We construct ∆ in stages. First, we define the sets of control states, stack symbols
and actions. Let Inc

def= {i | 1 ≤ i < n and Ii is of the type ‘increment’} and
Dec

def= {i | 1 ≤ i < n and Ii is of the type ‘test and decrement’}.
Q

def= {equal, equal1, equal2, empty1, empty2, empty′1, empty′2} ∪⋃
i∈Inc

{pi, p
′
i} ∪ ⋃

i∈Dec
{pi, p

′
i, ui, u

′
i, qi, q

′
i, ti, t

′
i} ∪ {pn, p′n}

Γ
def= {C1, C2, S}

Act
def= {a, b, c, d, e, c1, c2, c

′
1, c

′
2, halt, τ}

The intuition is that a configuration (Li, v1, v2) ∈ Conf is represented by a
pair of processes piγS and p′iγ

′S where γ, γ′ ∈ {C1, C2}∗ such that the num-
ber of occurrences of C1 and C2 in γ (and also in γ′) is equal to v1 and v2,
respectively. Using this representation, our task is now to design rewrite rules to
simulate step by step the computation of R. Let us define formally a mapping
value : {C1, C2}∗ 7→ N × N by the following inductive definition (the operation
of addition is component-wise).

value(ε) def= (0, 0)
value(C1γ) def= value(γ) + (1, 0) for all γ ∈ {C1, C2}∗
value(C2γ) def= value(γ) + (0, 1) for all γ ∈ {C1, C2}∗

As a part of the bisimulation game we will find useful the following rewrite
rules which enable to check whether two given stacks contain the same number of
occurrences of C1 and C2. In the rules below X ranges over the set {C1, C2, S}.

equal X
a−→ equal1 X equal X

b−→ equal2 X

equal1 C1
c1−→ equal1 equal1 C2

τ−→ equal1
equal2 C2

c2−→ equal2 equal2 C1
τ−→ equal2

Proposition 2. Let γ, γ′ ∈ {C1, C2}∗. Then

equal γS ≈ equal γ′S iff value(γ) = value(γ′).

We continue by defining further rewrite rules to check whether the number
of occurences of C1 (or C2) is zero.

empty1 C1
c1−→ empty1 empty1 C2

c2−→ empty1

empty′1 C1
c′1−→ empty′1 empty′1 C2

c2−→ empty′1

empty2 C1
c1−→ empty2 empty2 C2

c2−→ empty2

empty′2 C1
c1−→ empty′2 empty′2 C2

c′2−→ empty′2

Proposition 3. Let γ, γ′ ∈ {C1, C2}∗ be such that value(γ) = value(γ′) =
(v1, v2) for some v1, v2 ∈ N. Let r ∈ {1, 2}. Then

emptyr γS ≈ empty′r γ′S iff vr = 0.

Let us now define the rewrite rules that are connected with the increment
instructions of R. Assume again that X ranges over the set {C1, C2, S}. For all
i ∈ Inc such that Ii is of the type

Li: cr := cr + 1; goto Lj

where 1 ≤ j ≤ n and 1 ≤ r ≤ 2, we add the following two rules.

piX
a−→ pjCrX p′iX

a−→ p′jCrX

Lemma 1. Let (Li, v1, v2) ∈ Conf be such that Ii is the ‘increment’ instruc-
tion and (Li, v1, v2)↪→(Lj, v

′
1, v

′
2). Let γ, γ′ ∈ {C1, C2}∗ be such that value(γ) =

value(γ′) = (v1, v2). There is a unique continuation of the bisimulation game
from the pair piγS and p′iγ

′S such that after one round the players reach the
pair pjγS and p′jγ′S satisfying value(γ) = value(γ′) = (v′1, v

′
2).

Proof. Obvious — see Figure 2. ut

piγS

a

��

p′
iγ

′S

a

��
pjCrγS p′

jCrγ
′S

Fig. 2. Instruction Li: cr := cr + 1; goto Lj

We proceed by giving the rules for the ‘test and decrement’ instructions. For
all i ∈ Dec such that Ii is of the type

Li: if cr = 0 then goto Lj else cr := cr − 1; goto Lk

where 1 ≤ j, k ≤ n and 1 ≤ r ≤ 2, we define the rewrite rules in three parts.
The intuitive meaning is that if vr 6= 0 and the stacks γS and γ′S contain on
their tops the symbol Cr, we can do immediately the branching according to the
rules defined later in the third part. However, if it is not the case, the first two
parts of the rewrite rules enable the defender to rearrange the stack contents
(while preserving the number of occurrences of C1 and C2) in such a way that
Cr will appear as the first symbol on the stacks. Recall that X ranges over the
set {C1, C2, S}.

piX
a−→ qiX piX

a−→ u′
iX

p′iX
a−→ u′

iX u′
iX

τ−→ q′iX u′
iX

e−→ u′
iX

u′
iC1

τ−→ u′
i u′

iC2
τ−→ u′

i

u′
iX

τ−→ u′
iC1X u′

iX
τ−→ u′

iC2X

qiX
c−→ equal X q′iX

c−→ equal X

Assume a bisimulation game played from piγS and p′iγ
′S. The purpose of

the previously defined rules is to enable the defender to rearrange the sequence
of C1 and C2 in γ′. Details are discussed in the proof of Lemma 2, here we give
only a short description. If the attacker plays piγS

a−→ qiγS, the defender must
answer by p′iγ

′S a=⇒ q′iγ′S for some γ′ ∈ {C1, C2}∗. Now the attacker can check
the invariant that value(γ) = value(γ′) by using the rules qiX

c−→ equal X and
q′iX

c−→ equal X .

q′iX
a−→ t′iX q′iX

a−→ uiX

qiX
a−→ uiX uiX

τ−→ tiX uiX
e−→ uiX

uiC1
τ−→ ui uiC2

τ−→ ui

uiX
τ−→ uiC1X uiX

τ−→ uiC2X

tiX
c−→ equal X t′iX

c−→ equal X

These rules are completely symmetric to the previous ones. In the bisimula-
tion game starting from qiγS and q′iγ′S, if the attacker plays q′iγ′S a−→ t′iγ′S,
the defender must choose some γ ∈ {C1, C2}∗ and play qiγS

a=⇒ tiγS. The at-
tacker can again check whether value(γ) = value(γ′). The current states become
tiγS and t′iγ′S satisfying value(γ) = value(γ′) = value(γ) = value(γ′).

The third part of the rewrite rules defined below is here to perform a branch-
ing according to whether Cr occurs in γ and γ′ or not. The correctness is dis-
cussed later.

tiCr
a−→ pk t′iCr

a−→ p′k

tiC3−r
b−→ pjC3−r t′iC3−r

b−→ p′jC3−r

tiS
b−→ pjS t′iS

b−→ p′jS

tiC3−r
d−→ emptyr C3−r t′iC3−r

d−→ empty′r C3−r

Finally, we add one extra rule to distinguish whether the last instruction
halt was reached. Recall that X ranges over the set {C1, C2, S}.

pnX
halt−→ pnX

Lemma 2. Let (Li, v1, v2) ∈ Conf be such that Ii is the ‘test and decrement’
instruction

Li: if cr = 0 then goto Lj else cr := cr − 1; goto Lk

and let γ, γ′ ∈ {C1, C2}∗ be such that value(γ) = value(γ′) = (v1, v2). Assume a
bisimulation game played from the pair

piγS and p′iγ
′S.

a) The attacker has a strategy such that he either wins, or after three rounds
the players reach the states
1. pkγS and p′kγ′S — if vr 6= 0 and (Li, v1, v2)↪→(Lk, v′1, v′2) — where

value(γ) = value(γ′) = (v′1, v
′
2), or

2. pjγS and p′jγ′S — if vr = 0 and (Li, v1, v2)↪→(Lj , v1, v2) — where
value(γ) = value(γ′) = (v1, v2).

b) The defender has a strategy such that he either wins, or after three rounds
the players reach the states
1. pkγS and p′kγ′S — if vr 6= 0 and (Li, v1, v2)↪→(Lk, v′1, v

′
2) — where

value(γ) = value(γ′) = (v′1, v′2), or
2. pjγS and p′jγ′S — if vr = 0 and (Li, v1, v2)↪→(Lj , v1, v2) — where

value(γ) = value(γ′) = (v1, v2).

piγS

a

��

p′
iγ

′S

a

��
qiγS

a

��

c // equal γS q′iγ′S

a

��

c // equal γ′S

tiγS
c // equal γS t′iγ′S

c // equal γ′S

Fig. 3. Instruction ‘test and decrement’ — first two rounds

Proof. We begin with part a). First two rounds of the bisimulation game are
depicted in Figure 3. The game starts from piγS and p′iγ

′S such that value(γ) =
value(γ′) = (v1, v2). We show that after two attacker’s moves the players ei-
ther reach a pair tiγS and t′iγ′S such that γ, γ′ ∈ {C1, C2}∗ and value(γ) =
value(γ′) = (v1, v2), or the attacker has an immediate winning strategy. The at-
tacker starts by playing piγS

a−→ qiγS. The defender must respond by playing
p′iγ

′S a=⇒ q′iγ′S for some γ′ ∈ {C1, C2}∗ because of the following remark.

Remark 2. The defender’s a=⇒-answer must start with the transition p′iγ
′S a−→

u′
iγ

′S, followed by a finite number of τ -labelled transitions using the rules that
enable to remove an arbitrary part of the stack γ′S and add an arbitrary sequence
from the symbols C1 and C2. Thus the defender can reach the state u′

iγ
′S for any

sequence γ′ ∈ {C1, C2}∗. Also note that he must finish the sequence of τ -moves
by u′

iγ
′S τ−→ q′iγ′S. If not, then the attacker has an immediate winning move in

the next round by playing u′
iγ

′S e−→ u′
iγ

′S to which the defender has no answer
because there is no e=⇒-move from qiγS.

The bisimulation game continues from the states qiγS and q′iγ′S. Whenever
value(γ) 6= value(γ′) then the attacker plays qiγS

c−→ equal γS to which the
defender has only one possible answer q′iγ′S c−→ equal γ′S. Now the attacker
has a winning strategy because of Proposition 2.

Let us so assume that value(γ) = value(γ′). In the second round the at-
tacker switches the states and performs the move q′iγ′S a−→ t′iγ′S. The game
is now completely symmetric to the situation in the first round. The defender
must answer with qiγS

a=⇒ tiγS for some γ ∈ {C1, C2}∗ such that value(γ) =
value(γ′) = (v1, v2).

In the third round played from tiγS and t′iγ′S the attacker’s strategy splits
into two parts, according to whether vr 6= 0 or vr = 0.

1. Let vr 6= 0 and hence (Li, v1, v2)↪→(Lk, v′1, v
′
2). See Figure 4.

• If γ = Crγ for some γ then the attacker plays tiγS
a−→ pkγS and the

defender must answer by t′iγ′S a−→ p′kγ′S where γ′ = Crγ′. (If γ′ =
C3−rγ′ then the attacker wins immediately since t′iγ′S cannot perform

tiCrγS

a

��

t′iCrγ′S

a

��
pkγS p′

kγ′S

Fig. 4. Case vr 6= 0, i.e., (Li, v1, v2)↪→(Lk, v′
1, v

′
2)

tiγS

b

��

d // emptyr γS t′iγ′S

b

��

d // empty′rγ′S

pjγS p′
jγ′S

Fig. 5. Case vr = 0, i.e., (Li, v1, v2)↪→(Lj , v1, v2)

any a=⇒-move.) Now the players reached the pair pkγS and p′kγ′S as
required. Obviously value(γ) = value(γ′) = (v′1, v

′
2).

• If γ = C3−rγ for some γ then the attacker plays tiγS
d−→ emptyr γS

to which the defender has only one possible answer (if any), namely
t′iγ′S d−→ empty′r γ′S. Since value(γ) = value(γ′) = (v1, v2) and vr 6= 0,
the attacker has a winning strategy because of Proposition 3.

• The case γ = ε is impossible since we assume that vr 6= 0.
2. Let vr = 0 and hence (Li, v1, v2)↪→(Lj, v1, v2). See Figure 5. The assump-

tion vr = 0 implies that γ, γ′ ∈ {C3−r}∗. Hence the attacker can play
tiγS

b−→ pjγS and the defender has only one answer t′iγ′S b−→ p′jγ′S. The
players reached the pair pjγS and p′jγ′S as required. Recall that value(γ) =
value(γ′) = (v1, v2).

Let us now prove part b). First two rounds can be seen again in Figure 3. The
initial states are piγS and p′iγ

′S such that value(γ) = value(γ′) = (v1, v2).
We claim that the defender has a strategy such that he either wins, or after two
rounds the players reach the states tiC

vr
r C

v3−r

3−r S and t′iC
vr
r C

v3−r

3−r S (for definitions
of Cvr

r and C
v3−r

3−r see Notation 1). In the first round the attacker has three
possible moves: (i) piγS

a−→ qiγS, (ii) piγS
a−→ u′

iγS or (iii) p′iγ
′S a−→ u′

iγ
′S.

The moves (ii) and (iii) are good for the defender since he can immediately win by
playing (ii) p′iγ

′S a=⇒ u′
iγS or (iii) piγS

a=⇒ u′
iγ

′S. Obviously, two syntactically
equal states are also weakly bisimilar. Hence we can assume that the attacker’s
first move is piγS

a−→ qiγS. The defender answers by p′iγ
′S a=⇒ q′iC

vr
r C

v3−r

3−r S.
Recall that value(γ) = (v1, v2) and thus the attacker loses by taking (i) qiγS

c−→
equal γS or (ii) q′iC

vr
r C

v3−r

3−r S
c−→ equal Cvr

r C
v3−r

3−r S as his next move since the
defender can respond by playing (i) q′iC

vr
r C

v3−r

3−r S
c−→ equal Cvr

r C
v3−r

3−r S or (ii)

qiγS
c−→ equal γS. The pair of states equal γS and equal Cvr

r C
v3−r

3−r S is weakly
bisimilar because of Proposition 2 and the defender has a winning strategy.

From the pair qiγS and q′iC
vr
r C

v3−r

3−r S we have a symmetric situation to the
previous one. So after the second round either the defender can win, or he can
force the attacker to reach the states tiC

vr
r C

v3−r

3−r S and t′iC
vr
r C

v3−r

3−r S. Now the
game splits into two parts according to whether vr 6= 0 or vr = 0.

1. Let vr 6= 0 and hence (Li, v1, v2)↪→(Lk, v′1, v′2). See Figure 4. Then there is
a unique continuation of the game reaching the states pkCvr−1

r C
v3−r

3−r S and
p′kCvr−1

r C
v3−r

3−r S. Obviously value(Cvr−1
r C

v3−r

3−r) = (v′1, v
′
2).

2. Let vr = 0 and hence (Li, v1, v2)↪→(Lj, v1, v2). See Figure 5. Consider the
game starting from tiC

v3−r

3−r S and t′iC
v3−r

3−r S (note that Cvr
r = C0

r is the empty
string here). There is either a continuation of the game such that the players
reach the states pjC

v3−r

3−r S and p′jC
v3−r

3−r S, and value(Cv3−r

3−r) = (v1, v2) — or

the attacker performs the d−→-move but then the defender wins because of
Proposition 3.

ut

We arrived at the point where we are ready to prove our main theorem.

Theorem 1. Weak bisimilarity of pushdown processes is undecidable.

Proof. Let R be a Minsky machine and let ∆ be the pushdown automaton
constructed above. We prove that R halts if and only if p1S 6≈ p′1S.

Assume that R halts, i.e., (L1, 0, 0)↪→∗(Ln, v1, v2) for some v1, v2 ∈ N. Then
the attacker has a winning strategy starting from p1S and p′1S. Using repeatedly
Lemma 1 and part a) of Lemma 2 we can easily see that the attacker either wins,
or the players reach the states pnγS and p′nγ′S for some γ, γ′ ∈ {C1, C2}∗ such
that value(γ) = value(γ′) = (v1, v2). From the pair pnγS and p′nγ′S the attacker

immediately wins by playing pnγS
halt−→ pnγS to which the defender has no

answer from p′nγ′S. Hence p1S 6≈ p′1S.
On the other hand if R diverges, i.e., there is an infinite computation starting

from (L1, 0, 0), the defender has a winning strategy. Using repeatedly Lemma 1
and part b) of Lemma 2 he can force the attacker to simulate the computation of
R in the bisimulation game. Because the computation of R is infinite, so is the
bisimulation game starting from p1S and p′1S. Since any infinite bisimulation
game is won by the defender (Definition 1), we get that p1S ≈ p′1S. ut

Let us now study the rewrite rules defined above to see whether we can prove
the even stronger undecidability result for the normed subclass of pushdown pro-
cesses. As it can be observed, the pushdown processes p1S and p′1S are almost
normed. There are only a few exceptions: computations of the pushdown au-
tomaton from p1S and p′1S can get stuck with nonempty stacks by reaching e.g.
the states p′nγ′S, equal1S, equal2S, empty1S, or there is an infinite loop where
only the increment instructions appear.

It would be easy to fix these problems by adding some extra rules but we
didn’t want to confuse the reader by mentioning these rules during the develop-
ment of the undecidability proof. In fact, we can derive undecidability of weak
bisimilarity for normed pushdown processes from the following lemma.

Lemma 3. Let ∆ be a pushdown automaton, and (p1α1, ∆) and (p2α2, ∆) a
pair of processes. We can construct in polynomial time a pushdown automaton
∆′ and a pair of normed processes (p1α

′
1, ∆

′) and (p2α
′
2, ∆

′) such that

(p1α1, ∆) ≈ (p2α2, ∆) if and only if (p1α
′
1, ∆

′) ≈ (p2α
′
2, ∆

′).

Proof. Let ∆ be a pushdown automaton with the set of control state Q, stack
symbols Γ and actions Act. We define ∆′ with the corresponding sets Q′ def=
Q ∪ {pd}, Γ ′ def= Γ ∪ {D} and Act′ def= Act ∪ {f} such that pd, D and f are new
symbols. In particular, D is the symbol for a new bottom of the stack. Let ∆′ def=
∆ ∪ {pX

f−→ pd | p ∈ Q and X ∈ Γ ′} ∪ {pdX
τ−→ pd | X ∈ Γ ′}. We define

α′
1

def= α1D and α′
2

def= α2D. Obviously, (p1α
′
1, ∆

′) and (p2α
′
2, ∆

′) are normed
processes. The validity of (p1α1, ∆) ≈ (p2α2, ∆) iff (p1α

′
1, ∆

′) ≈ (p2α
′
2, ∆

′) is
easy to see from the fact that (pdγ, ∆′) ≈ (pdγ

′, ∆′) for any γ, γ′ ∈ Γ ′∗. ut
Corollary 1. Weak bisimilarity of normed pushdown processes is undecidable.

Remark 3. Observe that the construction in Lemma 3 gives immediately a poly-
nomial time reduction from weak bisimilarity between pushdown processes and
finite-state processes to the normed instances of the problems. It is also easy
to see that it preserves the property of being weakly regular, i.e., (p1α1, ∆) is
weakly regular iff (p1α

′
1, ∆

′) is weakly regular.

4 Conclusion

We proved that weak bisimilarity of pushdown processes is undecidable. This
result confirms that decidability issues for weak bisimilarity are more complex
than those for strong bisimilarity, even though not many examples of infinite-
state systems which give similar conclusions have been found so far. In particular,
the decidability questions of weak bisimilarity for BPA and BPP are still open.
Another interesting problem is decidability of strong/weak regularity for PDA.

Remark 4. It is obvious that the presented reduction from 2-counter machines to
weak bisimilarity of pushdown processes can be extended to work for an arbitrary
number of counters and hence we think that the problem lies beyond arithmetical
hierarhy: the technique of Jančar [10] for showing high undecidability of weak
bisimilarity for Petri nets can be adapted also to our case.

In the following table we provide a summary of the state of the art for bisi-
milarity problems of pushdown processes. The notation ∼ FS (≈ FS) stands for
strong (weak) bisimilarity checking between pushdown processes and finite-state
processes.

PDA normed PDA

strong bisimilarity
decidable [19]

EXPTIME-hard [13]
decidable [22]

EXPTIME-hard [13]

weak bisimilarity undecidable undecidable

∼ FS
∈ PSPACE [13]

PSPACE-hard [14]
∈ PSPACE [13]

PSPACE-hard [14], Remark 5

≈ FS
∈ PSPACE [13]

PSPACE-hard [14]
∈ PSPACE [13]

PSPACE-hard [14], Remark 3

strong regularity
?

PSPACE-hard [14]
∈ P [4], Remark 6

NL-hard [20]

weak regularity
?

PSPACE-hard [14]
?

PSPACE-hard [14], Remark 3

Remark 5. The reduction from [14] (Theorem 8) uses unnormed processes but
can be modified to work also for the normed case. An important observation is
that the stack size of the PDA from Theorem 8 is bounded by the number of
variables in the instance of QSAT from which the reduction is done.

Remark 6. Strong regularity of normed PDA is equivalent to the boundedness
problem. Boundedness (even for unnormed PDA) is decidable in polynomial time
using the fact that the set of all reachable configurations of a pushdown process
is a regular language L and a finite automaton recognizing L can be constructed
in polynomial time [4].

Acknowledgement. I would like to thank my advisor Mogens Nielsen for his
comments and suggestions. I also thank Marco Carbone for useful remarks, Petr
Jančar for drawing my attention to high undecidability issues mentioned in Re-
mark 4, and Richard Mayr for several discussions concerning Remark 5. Finally,
my thanks go to the anonymous referees for their detailed reviews.

References

[1] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite struc-
tures. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process
Algebra, chapter 9, pages 545–623. Elsevier Science, 2001.

[2] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for basic
parallel processes. In Proc. of CONCUR’93, volume 715 of LNCS, pages 143–157.
Springer-Verlag, 1993.

[3] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable
for all context-free processes. Information and Computation, 121:143–148, 1995.

[4] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proc. of CAV’00, volume 1855 of LNCS,
pages 232–247. Springer-Verlag, 2000.

[5] J.F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra.
Information and Computation, 115(2):353–371, 1994.

[6] Y. Hirshfeld. Bisimulation trees and the decidability of weak bisimulations. In
Proc. of INFINITY’96, volume 5 of ENTCS. Springer-Verlag, 1996.

[7] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for decid-
ing bisimilarity of normed context-free processes. Theoretical Computer Science,
158(1–2):143–159, 1996.

[8] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm for de-
ciding bisimulation equivalence of normed basic parallel processes. Mathematical
Structures in Computer Science, 6(3):251–259, 1996.

[9] H. Hüttel. Undecidable equivalences for basic parallel processes. In Proc. of
TACS’94, volume 789 of LNCS, pages 454–464. Springer-Verlag, 1994.

[10] P. Jančar. High undecidability of weak bisimilarity for Petri nets. In Proc. of
CAAP’95, volume 915 of LNCS, pages 349–363. Springer-Verlag, 1995.

[11] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimulation. In
Proc. of ICALP’96, volume 1099 of LNCS, pages 478–489. Springer-Verlag, 1996.

[12] P. Jančar and F. Moller. Checking regular properties of Petri nets. In Proc. of
CONCUR’95, volume 962 of LNCS, pages 348–362. Springer-Verlag, 1995.

[13] A. Kučera and R. Mayr. On the complexity of semantic equivalences for pushdown
automata and BPA. In Proc. of MFCS’02, LNCS. Springer-Verlag, 2002. To
appear.

[14] R. Mayr. On the complexity of bisimulation problems for pushdown automata.
In Proc. of IFIP TCS’00, volume 1872 of LNCS. Springer-Verlag, 2000.

[15] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[16] M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
[17] D.M.R. Park. Concurrency and automata on infinite sequences. In Proc. of 5th

GI Conference, volume 104 of LNCS, pages 167–183. Springer-Verlag, 1981.
[18] G. Sénizergues. The equivalence problem for deterministic pushdown automata is

decidable. In Proc. of ICALP’97, volume 1256 of LNCS, pages 671–681. Springer-
Verlag, 1997.

[19] G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of
finite out-degree. In Proc. of FOCS’98, pages 120–129. IEEE Computer Society,
1998.

[20] J. Srba. Strong bisimilarity and regularity of basic process algebra is PSPACE-
hard. In Proc. of ICALP’02, LNCS. Springer-Verlag, 2002. To appear.

[21] C. Stirling. Local model checking games. In Proc. of CONCUR’95, volume 962
of LNCS, pages 1–11. Springer-Verlag, 1995.

[22] C. Stirling. Decidability of bisimulation equivalence for normed pushdown pro-
cesses. Theoretical Computer Science, 195(2):113–131, 1998.

[23] C. Stirling. Decidability of weak bisimilarity for a subset of basic parallel processes.
In Proc. of FOSSACS’01, volume 2030 of LNCS, pages 379–393. Springer-Verlag,
2001.

[24] W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer science
(extended abstract). In Proc. of TAPSOFT’93, volume 668 of LNCS, pages 559–
568. Springer-Verlag, 1993.

[25] R.J. van Glabbeek. Comparative Concurrency Semantics and Refinement of Ac-
tions. PhD thesis, CWI/Vrije Universiteit, 1990.

[26] R.J. van Glabbeek. The linear time—branching time spectrum. In Proc. of
CONCUR’90, volume 458 of LNCS, pages 278–297. Springer-Verlag, 1990.

