
On the Power of Labels in Transition Systems

Jǐŕı Srba?

BRICS??

Dept. of Computer Science, University of Aarhus, Denmark
srba@brics.dk

Abstract. In this paper we discuss the role of labels in transition sys-
tems with regard to bisimilarity and model checking problems. We sug-
gest a general reduction from labelled transition systems to unlabelled
ones, preserving bisimilarity and satisfiability of µ-calculus formulas.
We apply the reduction to the class of transition systems generated
by Petri nets and pushdown automata, and obtain several decidabil-
ity/complexity corollaries for unlabelled systems. Probably the most
interesting result is undecidability of strong bisimilarity for unlabelled
Petri nets.

1 Introduction

Formal methods for verification of infinite-state systems have been an active
area of research with a number of positive decidability results. In particular,
verification techniques for concurrent systems defined by process algebras like
CCS, ACP or CSP, pushdown systems, Petri nets, process rewrite systems and
others have attracted a lot of attention. There are two central questions about
decidability (complexity) of equivalence and model checking problems:

– Equivalence checking (see [Mol96]):
Given two (infinite-state) systems, are they equal with regard to some equiv-
alence notion?

– Model checking (see [BE97]):
Given an (infinite-state) transition system and a formula φ of some suitable
logic, does the system satisfy the property described by φ?

Both these problems have an interesting and unifying aspect in common. They
can be defined independently on the computational model by means of labelled
transition systems. All the models mentioned above give rise to a certain type
of (infinite) labelled transition system and this is considered to be their desired
semantics. Equivalence and model checking problems can be defined purely in
terms of these transition systems.

In the first part of the paper we discuss the role of labels of such transition
systems. There are two aspects of the branching structure described by a labelled
? The author is supported in part by the GACR, grant No. 201/00/0400.

?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

transition system T . First, given a state of T , there can be several outgoing edges
with different labels. Second, given a state of T and a label a, there can be several
outgoing edges under the same label a. We claim that for our purposes only the
second property is the essential one. In other words, given a labelled transition
system, we can construct another transition system where all edges are labelled
by the same label, i.e., the labels are in fact completely irrelevant. We call such
systems unlabelled transition systems. What is important is the fact that our
construction preserves the answers to both the questions we are interested in
— equivalence checking (and we have chosen strong bisimilarity as the notion
of equivalence) and model checking with action-based modal µ-calculus as the
chosen logic for expressing properties of labelled transition systems.

In the second part we focus on two specific classes of infinite-state systems,
namely Petri nets and pushdown systems. Petri nets are a typical example of fully
parallel models of computation, whereas pushdown systems can model sequential
stack-like process behaviours. Both Petri nets and pushdown systems generate
(in general infinite) labelled transition systems. The question is whether the
transformed unlabelled transition systems (given by the construction mentioned
in the previous paragraph) are still definable by the chosen formalism of Petri
nets resp. pushdown automata. The answer is shown to be positive for both our
models — there are even polynomial time transformations. This implies several
decidability/complexity results about bisimilarity and model checking problems
for unlabelled Petri nets and pushdown systems.

Probably the most interesting corollary is the application of the transforma-
tion to Petri nets. We prove that strong bisimilarity for unlabelled Petri nets
(where the set of labels is a singleton set) is undecidable. This is stronger re-
sult than undecidability of strong bisimilarity for labelled Petri nets given by
Jancar [Jan95]. The undecidability for unlabelled Petri nets contrasts to a pos-
itive decidability result for the subclass of Petri nets which are deterministic
[Jan95,Vog92], i.e., for any marking M and a label a there is at most one out-
going transition from M labelled by a. This again demonstrates that the role
of labels is not important for decidability questions and what is crucial is the
branching structure induced by transitions with the same label.

Note: full and extended version of this paper appears as [Srb01].

2 Basic definitions

Definition 1 (Labelled transition system). A labelled transition system is
a triple T = (S,Act,−→) where S is a set of states (or processes), Act is a
set of labels (or actions) such that S ∩ Act = ∅, and −→⊆ S × Act × S is a
transition relation, written α

a−→ β for (α, a, β) ∈−→.

In what follows we assume that Act is a finite set. As usual we extend the
transition relation to the elements of Act∗. We also write α −→∗ β iff ∃w ∈ Act∗
such that α w−→ β. A state β is reachable from a state α, iff α −→∗ β. Moreover,
we write α 6−→ for α ∈ S iff there is no β ∈ S and a ∈ Act such that α a−→ β.
We call a labelled transition system normed iff ∀s ∈ S. ∃s′ ∈ S: s −→∗ s′ 6−→.

Definition 2. Let T = (S,Act,−→) be a labelled transition system and s ∈ S.
By Ts we denote a labelled transition system restricted to states of T reachable
from s. More precisely, Ts = (Ss,Act,−→s) where Ss = {s′ ∈ S | s −→∗ s′} and
s1

a−→s s2 iff s1
a−→ s2 and s1, s2 ∈ Ss.

Now, we introduce the notion of (strong) bisimilarity.

Definition 3 (Bisimulation). Let T = (S,Act,−→) be a labelled transition
system. A binary relation R ⊆ S × S is a relation of bisimulation iff whenever
(α, β) ∈ R then for each a ∈ Act:
– if α a−→ α′ then β

a−→ β′ for some β′ such that (α′, β′) ∈ R

– if β a−→ β′ then α
a−→ α′ for some α′ such that (α′, β′) ∈ R.

Two states α, β ∈ S are bisimilar in T , written α ∼T β, iff there is a bisimulation
R such that (α, β) ∈ R.

Bisimilarity has also an elegant characterisation in terms of bisimulation games
[Tho93,Sti95]. A bisimulation game on a pair of states α, β ∈ S is a two-player
game of an “attacker” and a “defender”. The attacker chooses one of the states
and makes an a−→-move for some a ∈ Act. The defender must respond by making
an a−→-move from the other state under the same label a. Now the game repeats,
starting from the new processes. If one player cannot move, the other player wins.
If the game is infinite, the defender wins. States α and β are bisimilar iff the
defender has a winning strategy (and non-bisimilar iff the attacker has a winning
strategy).

Definition 4 (Unlabelled transition system). Let T = (S,Act,−→) be a
labelled transition system. We call T unlabelled transition system whenever Act
is a singleton set, i.e., |Act| = 1.

Remark 1. If it is the case that |Act| = 1 then (for our purposes) we simply write
−→ instead of a−→. We also forget about the second component in the definition
of a labelled transition system, i.e., we can denote an unlabelled transition system
by T = (S,−→) where −→⊆ S × S.

We define a powerful logic for labelled transition systems — modal µ-calculus.

Definition 5 (Syntax of modal µ-calculus). Let Var be a set of variables
and Act a set of action labels such that Var ∩ Act = ∅. The syntax of modal
µ-calculus is defined as follows:

φ ::= tt | X | φ1 ∧ φ2 | ¬φ | 〈a〉φ | µX.φ
where tt stands for “true”, X ranges over Var and a over Act. There is a stan-
dard restriction on the formulas: we consider only formulas where each occur-
rence of a variable X is within a scope of an even number of negation symbols.

Given a labelled transition system T = (S,Act,−→), we interpret a formula φ
as follows. Assume a valuation Val : Var → 2S .

[[tt]]Val,T = S
[[X]]Val,T = Val(X)

[[φ1 ∧ φ2]]Val,T = [[φ1]]Val,T ∩ [[φ2]]Val,T
[[¬φ]]Val,T = S r [[φ]]Val,T

[[〈a〉φ]]Val,T = {s | ∃s′. (s a−→ s′ ∧ s′ ∈ [[φ]]Val,T)}
[[µX.φ]]Val,T =

⋂{S′ ⊆ S | [[φ]]Val[S′/X],T ⊆ S′}
Here Val[S′/X] stands for a valuation function such that Val[S′/X](X) = S′

and Val[S′/X](Y) = Val(Y) for X 6= Y . We say that a formula φ is satisfied in a
state s of T , and we write T, s |= φ, if for all valuations Val we have s ∈ [[φ]]Val,T .
Remark 2. The logic defined above without the fixed-point operator µX.φ is
called Hennessy-Milner logic [HM85].

3 From labelled to unlabelled transition systems

In this section we present a transformation from labelled transition systems to
unlabelled ones, preserving bisimilarity and satisfiability of µ-calculus formulas.

Let T = (S,Act,−→) be a labelled transition system. We define a trans-
formed unlabelled transition system T̂ = (Ŝ,−→). We reuse the relation symbol
−→ without causing confusion, since in the system T it is a ternary relation and
in T̂ it is a binary relation. W.l.o.g. assume that Act = {1, 2, . . . , n} for some
n > 0. We define the system T̂ = (Ŝ,−→) as follows:

Ŝ = S ∪ {rk(s,a,s′) | 0 ≤ k ≤ a ∧ s
a−→ s′} ∪ {dks | s ∈ S ∧ 0 ≤ k ≤ n}

−→ = {(s, r0(s,a,s′)), (r0(s,a,s′), s
′) | s a−→ s′} ∪

{(rk(s,a,s′), rk+1
(s,a,s′)) | s

a−→ s′ ∧ 0 ≤ k < a} ∪
{(s, d0

s) | s ∈ S} ∪ {(dks , dk+1
s) | s ∈ S ∧ 0 ≤ k < n}.

For a better understanding of the transformation take a look at Figure 1 where
a way how to transform a transition s

a−→ s′ is drawn. The idea consists in
splitting each transition s a−→ s′ labelled by a ∈ N0 with an intermediate state
(the r0(s,a,s′) state) out of which goes a newly added linear path of length a. The
ds states add a linear path of length n + 1 to each state from S and serve for
distinguishing the r-states from the original ones.

Notice that if T is a finite-state system then the size of T̂ is polynomially
bounded by the size of T . In fact, we could add only one linear path of length
n+1 with appropriate links into the path starting in the states from S and in the
r0-states. However, for technical convenience in Section 4, we use the previously
described construction.
Remark 3. It is an easy observation that T̂ is a normed transition system.

3.1 Bisimilarity

Let T = (S,Act,−→) be a labelled transition system and let s ∈ S. We define
a set of finite norms of s by N (s) = {|w| | ∃s′ ∈ S : s w−→ s′ 6−→} where |w| is
the length of w. The following proposition is a standard one.

/. -,() *+s
a ///. -,() *+s′

��/. -,() *+dn
s

. . .oo /. -,() *+d0s
oo /. -,() *+d0

s′
// . . . ///. -,() *+dn

s′

/. -,() *+s

OO

///. -,() *+r0(s,a,s′) //

��

/. -,() *+s′

OO

/. -,() *+r1(s,a,s′) ///. -,() *+r2(s,a,s′) // ///. -,() *+ra
(s,a,s′)

Fig. 1. Transformation of a transition s
a−→ s′

Proposition 1. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈
S. Then s1 ∼T s2 implies that N (s1) = N (s2).

Our aim is to show that for a pair of states s1 and s2 of a labelled transition
system T holds that s1 ∼T s2 if and only if s1 ∼T̂ s2.
Lemma 1. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈ S
be a pair of states. If s1 ∼T s2 then s1 ∼T̂ s2.

Proof. We can naturally define a wining strategy for the defender in T̂ under
the assumption that s1 ∼T s2. Details can be found in [Srb01]. ut
Before showing the other implication, we prove the following property.

Property 1. The attacker in T̂ has a winning strategy from any pair of states
s1, s2 ∈ Ŝ such that s1 6∈ S and s2 ∈ S, or s1 ∈ S and s2 6∈ S.

Proof. Assume w.l.o.g. that s1 6∈ S and s2 ∈ S. The other case is symmetric.
There are three possibilities if s1 6∈ S.

– Let s1 = dks for some s ∈ S and 0 ≤ k ≤ n, or s1 = rk(s,a,s′) for some
s, s′ ∈ S, a ∈ Act and 0 < k ≤ a. In both these cases n + 1 6∈ N (s1) and
n + 1 ∈ N (s2). Because of Proposition 1 we get s1 6∼T̂ s2 and the attacker
in T̂ has a winning strategy.

– Let s1 = r0(s,a,s′) for some s, s′ ∈ S and a ∈ Act. Now the attacker has

the following winning strategy in T̂ . He makes a move r0(s,a,s′) −→ r1(s,a,s′).

Assume a defender’s answer s2 −→ s′2 for an arbitrary s′2 ∈ Ŝ. Obviously
either n ∈ N (s′2) or n+ 2 ∈ N (s′2) and max [N (r1(s,a,s′))] < n. Again, using
Proposition 1, the attacker has a winning strategy. ut

Lemma 2. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈ S
be a pair of states. If s1 ∼T̂ s2 then s1 ∼T s2.

Proof. Knowing that the defender has a winning strategy in T̂ from s1 and s2,
we establish a winning strategy for the defender in T from s1 and s2. Suppose

that the attacker’s move in T is si
a−→ s′i for i ∈ {1, 2}. Then it is possible to

perform a series of two moves si −→ r0(si,a,s′i)
−→ s′i in T̂ . Because of Property 1,

the defender in T̂ has a response to this series of moves only by performing
s3−i −→ r0(s3−i,b,s′3−i)

−→ s′3−i for some b ∈ Act and s′3−i ∈ S where

s′1 ∼T̂ s′2. (1)

Notice that a = b, otherwise the attacker has a winning strategy in T̂ from
r0(si,a,s′i)

and r0(s3−i,b,s′3−i)
by performing a move r0(si,a,s′i)

−→ r1(si,a,s′i)
. Using

Property 1, the defender must answer with r0(s3−i,b,s′3−i)
−→ r1(s3−i,b,s′3−i)

. How-

ever, the attacker has a winning strategy now since a − 1 ∈ N (r1(si,a,s′i)
) and

a− 1 6∈ N (r1(s3−i,b,s′3−i)
) whenever a 6= b — Proposition 1. This implies that the

defender in T can perform s3−i
a−→ s′3−i and because of (1), the defender in T

has a winning strategy from s′1 and s′2. Thus s1 ∼T s2. ut
By Lemma 1 and Lemma 2 we can conclude with the following theorem.

Theorem 1. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈ S

be a pair of states. Let T̂ be the corresponding unlabelled transition system. Then

s1 ∼T s2 if and only if s1 ∼T̂ s2.

3.2 Model checking

We turn our attention to the model checking problem now. We show that there
is a polynomial time transformation of any µ-calculus formula φ into φ̂ such that
T, s |= φ iff T̂ , s |= φ̂. When interpreting a µ-calculus formula on an unlabelled
transition system T̂ , we write ♦ instead of 〈a〉, since a ∈ Act is the only label
and hence it is irrelevant. We also define a dual operator � as �φ ≡ ¬♦¬φ and
ff as ff ≡ ¬tt.

Let T = (S,Act,−→) be a labelled transition system such that Act =
{1, 2, . . . , n} and let T̂ = (Ŝ,−→) be the corresponding unlabelled system. First
of all, we write a formula L(a) such that

[[L(a)]]Val′,T̂ = {r0(s,a,s′) | ∃s, s′ ∈ S : s a−→ s′} (2)

for any valuation Val′ : Var → 2Ŝ . We define L(a) ≡ ♦n+1tt ∧ ♦(�aff∧♦a−1tt)
where ♦0φ ≡ φ and ♦k+1φ ≡ ♦(♦kφ), and similarly �0φ ≡ φ and �k+1φ ≡
�(�kφ). Let T̂ , s1 |= L(a). The left subformula in L(a), namely ♦n+1tt, ensures
that the state s1 is not of the form rk(s,b,s′) for k > 0, nor of the form dks for
k ≥ 0. The second subformula in the conjunction says that there is a one step
transition from s1, reaching a state s′1 of the form r1(s,b,s′) — should s′1 ∈ S, or s′1
be of the form r0(s,b,s′), or s′1 be of the form d0

s, then the formula �aff can never
be satisfied. Moreover, the formula �aff guarantees that there are at most a− 1

transitions from r1(s,b,s′) and the formula ♦a−1tt finally ensures that at least a−1
transitions can be performed from r1(s,b,s′). Hence a = b and (2) is established.

Let us now consider another formula defined by State ≡ ♦tt ∧ �♦ntt.
Obviously, [[State]]Val′,T̂ = S for any valuation Val′ : Var → 2Ŝ . We are now

ready to define φ̂ for a given µ-calculus formula φ. The definition follows:

t̂t = tt ∧ State
X̂ = X ∧ State

φ̂1 ∧ φ2 = φ̂1 ∧ φ̂2 ∧ State
¬̂φ = ¬φ̂ ∧ State

µ̂X.φ = (µX.φ̂) ∧ State
〈̂a〉φ = ♦

(L(a) ∧ ♦φ̂
) ∧ State.

Theorem 2. Let T = (S,Act,−→) be a labelled transition system and s ∈ S.
Let φ be a µ-calculus formula. Then

T, s |= φ if and only if T̂ , s |= φ̂.

Proof. By structural induction on φ it is provable that

[[φ]]Val,T = [[φ̂]]Val′,T̂

for arbitrary valuations Val : Var → 2S and Val′ : Var → 2Ŝ such that Val(X) =
Val′(X) ∩ S for all X ∈ Var. Full proof can be found in [Srb01]. ut
Remark 4. Let us consider temporal operatorsEFφ and EGφ defined by EFφ ≡
µX.φ ∨ 〈−〉X and EGφ ≡ ¬µX.¬φ ∨ (¬〈−〉¬X ∧ 〈−〉tt) such that 〈−〉φ ≡∨
a∈Act 〈a〉φ. We define the transformed formulas ÊFφ (using only EF opera-

tor) and ÊGφ (using only EG operator) as follows:

ÊFφ = EFφ̂ ∧ State
ÊGφ = EG

((State ∨ ∨
a∈Act L(a)

) ∧ State =⇒ φ̂
)

∧ State.
Note that still [[φ̂]]Val′,T̂ ⊆ S for any formula φ and any valuation Val′ : Var →
2Ŝ . Let s ∈ S. Then T, s |= EFφ iff T̂ , s |= ÊFφ. If moreover Ts satisfies
condition

∀s′ ∈ Ss. ∃s′′ ∈ Ss. ∃a ∈ Act : s′ a−→ s′′ (3)

then T, s |= EGφ iff T̂ , s |= ÊGφ. This enables to transform formulas of even
weaker logics than modal µ-calculus (such as Hennessy-Milner logic, possibly
equipped with the operator EF , respectively EG) into unlabelled formulas of
the same logic. Hennessy-Milner logic with the operators EF and EG is called
unified system of branching-time logic (UB) [BAMP83] and the fragments of UB
containing only the operatorEFφ (EGφ) are referred to as EF -logic (EG-logic).

Similarly, the until operatorsE [φUψ] and A [φUψ] of CTL [CE81] — defined
by E [φUψ] ≡ µX.ψ∨ (φ∧〈−〉X) and A [φUψ] ≡ µX.ψ∨ (

φ∧〈−〉tt∧¬〈−〉¬X)

— can be transformed:

̂E [φUψ] = E [(State =⇒ φ̂) U ψ̂] ∧ State
̂A [φUψ] = χ̂AU where χAU = ¬

(
E [¬ψ U (¬φ ∧ ¬ψ)] ∨ EG(¬ψ)

)
.

In the case of A [φUψ] we use the equivalence A [φUψ] ⇐⇒ χAU from [CES86].
Again, for any s ∈ S it holds that T, s |= E [φUψ] iff T̂ , s |= ̂E [φUψ]. Moreover
T, s |= A [φUψ] iff T̂ , s |= ̂A [φUψ] under the assumption of condition (3). This
enables to transform also the logic CTL.

4 Applications

In this section we show how the previous results can be applied to bisimilar-
ity/model checking of infinite-state systems. We focus in particular on a typical
representative of parallel models — Petri nets (see e.g. [Pet81]) — and sequen-
tial processes — pushdown systems (see e.g. [Mol96]). We have to show that
the class of transition systems generated by these models is closed under the
transformation from labelled to unlabelled systems as presented in the previous
section.

First of all, we remind the reader of the fact that our transformation works
immediately for finite-state transition systems. In the following corollary we
consider the model checking problem with these logics: Hennessy-Milner logic,
EF -logic, EG-logic, UB, CTL and modal µ-calculus.

Corollary 1. Let T = (S,Act,−→) be a finite-state labelled transition system,
i.e., |S|, |Act| < ∞. There is a polynomial time reduction from the bisimilarity
(model) checking problem for T to the bisimilarity (model) checking problem for
T̂ , where T̂ is an unlabelled (and finite-state) transition system.

Proof. Immediately from Theorem 1, Theorem 2 and Remark 4. In the case of
EG-logic, UB and CTL we can ensure the validity of condition (3) of Remark 4
by adding a self-loop s u−→ s (u is a fresh action) to every state s ∈ S such that
s 6−→. This does not influence satisfiability of EG, UB and CTL formulas. ut

4.1 Petri nets

It is a well known fact that the bisimilarity checking problem is undecidable
for labelled Petri nets [Jan95]. The technique of the proof is based on a reduc-
tion from the counter machine of Minsky and the labelling is essential for the
reduction. It is also known that bisimilarity is decidable for the class of Petri
nets which are deterministic up to bisimilarity [Jan95], i.e., F -deterministic nets
of Vogler [Vog92]. Bisimilarity between a labelled Petri net and a finite-state
system is decidable [JM95,JKM98] and EXPSPACE-hard (see e.g. comments in
[May00]).

Model checking of even weak temporal logics on labelled transition systems
generated by Petri nets is quite pessimistic. The only decidable logic is (trivially)

Hennessy-Milner logic. The EF -logic is undecidable [Esp97] and model checking
with EG is also undecidable, even for BPP [EK95] — BPP is a strict subclass
of labelled Petri nets where each transition has exactly one input place.

Definition 6 (Labelled Petri net). A labelled Petri net is a tuple N =
(P, T, F, L, λ), where P is a finite set of places, T is a finite set of transitions
such that T ∩ P = ∅, F ⊆ (P × T) ∪ (T × P) is a flow relation, L is a finite set
of labels and λ : T → L is a labelling function.

A marking M of a net N is a mapping M : P → N0, i.e., each place is assigned
a nonnegative number of tokens. We define •t = {p | (p, t) ∈ F} and t• = {p |
(t, p) ∈ F} for a transition t ∈ T . We say that t ∈ T is enabled in a marking
M iff ∀p ∈ •t. M(p) > 0. If t is enabled in M then it can be fired, producing a
marking M ′ such that:

– M ′(p) = M(p) for all p ∈ (
P r (•t ∪ t•)) ∪ (•t ∩ t•)

– M ′(p) = M(p) − 1 for all p ∈ •tr t•
– M ′(p) = M(p) + 1 for all p ∈ t• r •t.

Then we write M [t〉M ′. W.l.o.g. we assume that if M [t1〉M ′ and M [t2〉M ′, then
λ(t1) 6= λ(t2) for any pair of markings M , M ′ and transitions t1, t2.

Definition 7 (Labelled transition system T (N)).
Let N = (P, T, F, L, λ) be a labelled Petri net. We define a corresponding la-
belled transition system T (N) as T (N) = ([P → N0], L,−→) where M a−→ M ′

whenever M [t〉M ′ and a = λ(t) for M,M ′ ∈ [P → N0] and t ∈ T .

Now, we define unlabelled Petri nets.

Definition 8 (Unlabelled Petri net). An unlabelled Petri net is a labelled
Petri net N = (P, T, F, L, λ) such that |L| = 1.

Remark 5. Whenever |L| = 1, let us say L = {a}, we omit L and λ from the
definition of the net N and instead of M a−→ M ′ in T (N) we simply write
M −→ M ′.

Let N = (P, T, F, L, λ) be a labelled Petri net. W.l.o.g. assume that L =
{1, . . . , n} for some n > 0. We construct an unlabelled Petri netN ′ = (P ′, T ′, F ′)
and a mapping ψ : (P → N0) → (P ′ → N0) such that ̂T (N)M1 and T (N ′)ψ(M1)

are isomorphic unlabelled transition systems for any marking M1 of N . Let us
recall that ̂T (N)M1 is the transition system restricted to markings reachable
from M1 and T (N ′)ψ(M1) is restricted to markings reachable from ψ(M1) — see
Definition 2. The net N ′ is defined as follows:

P ′ = P ∪ {pkt | t ∈ T ∧ 0 ≤ k ≤ λ(t)} ∪ {pc} ∪ {dk | 0 ≤ k ≤ n}
T ′ = {tin, tout | t ∈ T } ∪ {lkt | t ∈ T ∧ 0 ≤ k < λ(t)} ∪ {lk | 0 ≤ k ≤ n}
F ′ = {(p, tin) | (p, t) ∈ F} ∪ {(tout, p) | (t, p) ∈ F} ∪

{(tin, p0
t), (p

0
t , t

out) | t ∈ T } ∪
{(pkt , lkt), (lkt , pk+1

t) | t ∈ T ∧ 0 ≤ k < λ(t)} ∪
{(pc, tin), (tout, pc) | t ∈ T } ∪
{(pc, l0)} ∪ {(lk, dk), (dk, lk+1) | 0 ≤ k < n} ∪ {(ln, dn)}.

GFED@ABCp1

,,YYYYYYYYYYYYYYYYYYYYYY GFED@ABCq1

.

.

.
t

22fffffffffffffffffffff

,,XXXXXXXXXXXXXXXXXXXXX .
.
.

GFED@ABCpk1

22eeeeeeeeeeeeeeeeeeeeee

��

GFED@ABCqk2

l0 //GFED@ABCd0 // l1 // . . . //GFED@ABCdn

GFED@ABCp1

**UUUUUUUUUUUUUU GFED@ABCpc

yyrrrrrr

jjUUUUUUUUUUUUUU GFED@ABCq1

.

.

.
tin //GFED@ABCp0t

//

��

tout

44iiiiiiiiiiiiii

**UUUUUUUUUUUUUU

eeKKKKKK
.
.
.

GFED@ABCpk1

44iiiiiiiiiiiiii
l0t

ttiiiiiiiiiiiiii GFED@ABCqk2

GFED@ABCp1t
// l1t //GFED@ABCp2t

// · · · //GFED@ABCp
λ(t)
t

Fig. 2. Transformation of a transition t

In this construction each transition t with input places p1, . . . , pk1 and output
places q1, . . . , qk2 is transformed into a set of transitions shown in Figure 2. Now,
we give the mapping ψ. Let M ∈ (P → N0). Then ψ(M) : P ′ → N0 is defined
by

ψ(M)(p) =

1 if p = pc

M(p) if p ∈ P

0 otherwise.

Lemma 3. Let N = (P, T, F, L, λ) be a labelled Petri net and N ′ = (P ′, T ′, F ′)
the unlabelled Petri net defined above. Then ̂T (N)M1 and T (N ′)ψ(M1) are iso-
morphic unlabelled transition systems for any M1 ∈ [P → N0].

Proof. Assume that ̂T (N)M1 = (S1,−→1) and T (N ′)ψ(M1) = (S2,−→2). Recall
that S1 ⊆ [P → N0] ∪ {rk(M,λ(t),M ′) | M [t〉M ′ ∧ 0 ≤ k ≤ λ(t)} ∪ {dkM | M ∈
[P → N0] ∧ 0 ≤ k ≤ n} and S2 ⊆ [P ′ → N0]. We define a mapping f : S1 → S2

by

f(s1) =

ψ(s1) if s1 ∈ [P → N0]
M if s1 = rk(M,λ(t),M ′) such that M [t〉M ′

M if s1 = dkM such that M ∈ [P → N0]

where

M(p) =

M(p) if p ∈ P r •t
M(p) − 1 if p ∈ •t
1 if p = pkt
0 otherwise

and M(p) =

M(p) if p ∈ P

1 if p = dk

0 otherwise.

Let s1 −→1 s
′
1 for some s1, s′1 ∈ S1. It can be easily seen that f(s1) −→2 f(s′1).

On the other hand, let M2 −→2 M ′
2 and M2 = f(s1) for some s1 ∈ S1 and

M2,M
′
2 ∈ S2. Then there exists s′1 ∈ S1 such that M ′

2 = f(s′1) and s1 −→1 s
′
1.

This implies that f is surjective and moreover f is trivially injective. Hence,
̂T (N)M1 and T (N ′)ψ(M1) are isomorphic unlabelled transition systems. ut

Theorem 3. Let N be a labelled Petri net, and M1,M2 a pair of markings in
N and φ a µ-calculus formula. There is a polynomial time reduction producing
an unlabelled and normed Petri net N ′, a pair of markings ψ(M1), ψ(M2) in N ′

and a µ-calculus formula φ̂ such that

M1 ∼T (N) M2 if and only if ψ(M1) ∼T (N ′) ψ(M2)

and

T (N),M1 |= φ if and only if T (N ′), ψ(M1) |= φ̂.

Proof. By Lemma 3 and Theorems 1 and 2. Normedness is by Remark 3. ut

Since the bisimilarity checking problem and model checking problems with EF -
logic and EG-logic are undecidable [Jan95,Esp97,EK95] for labelled Petri nets,
we obtain the following undecidability results for unlabelled and normed Petri
nets. In the case of model checking problems we use Remark 4 and the fact
that undecidability of model checking with EG-logic can be proved by standard
“weak” simulation of a 2-counter machine and we can easily ensure the validity
of condition (3) for the Petri net simulating the 2-counter machine.

Corollary 2. Bisimilarity checking problem for unlabelled and normed Petri
nets is undecidable.

Corollary 3. Model checking problems with EF -logic and EG-logic for unla-
belled and normed Petri nets are undecidable.

Since the bisimilarity checking problem between a labelled Petri net and a finite-
state system is EXPSPACE-hard (see comments e.g. in [May00]), we get also
the following corollary.

Corollary 4. Bisimilarity checking problem between an unlabelled and normed
Petri net and a finite-state system is EXPSPACE-hard.

4.2 Pushdown systems

It is known that the bisimilarity checking problem for pushdown processes is
decidable [Sén98] and PSPACE-hard [May00]. PSPACE-hard is also the bisim-
ilarity checking problem between a pushdown process and a finite-state system
[May00] — this problem is moreover in EXPTIME [JKM98].

Model checking pushdown processes with modal µ-calculus is decidable and
EXPTIME-complete [Wal96]. This means that the model checking problem with
EF -logic, EG-logic and CTL is also in EXPTIME. The model checking prob-
lems with these logics are PSPACE-hard — see e.g. [May98]. Moreover, model
checking with EF -logic and CTL is known ([Wal00]) to be PSPACE-complete
and EXPTIME-complete, respectively. The exact complexity of model check-
ing with EG-logic is unknown, however, it seems to be EXPTIME-complete by
modification of arguments from [Wal00].

Definition 9 (Pushdown system). A pushdown system ∆ is a tuple ∆ =
(Q,Γ,Act,−→∆) where Q is a finite set of control states, Γ is a finite stack
alphabet such that Q ∩ Γ = ∅, Act is a finite input alphabet, and −→∆⊆
Q × Γ × Act × Q × Γ ∗ is a finite (|−→∆ | < ∞) transition relation, written
pA

a−→∆ qα for (p,A, a, q, α) ∈−→∆.

Definition 10 (Labelled transition system T (∆)).
Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system. We define a corresponding
labelled transition system T (∆) as T (∆) = (S,Act,−→) where S = {pβ | p ∈
Q ∧ β ∈ Γ ∗} and pβ a−→ qγ iff β = Aβ′, γ = αβ′ and pA a−→∆ qα.

Our aim is to transform ∆ into an unlabelled pushdown system such that bisim-
ilarity and model checking are preserved. For technical convenience, we assume
from now on that Γ contains a distinct “dummy” symbol Z such that pZ 6−→
for any p ∈ Q. Then trivially

p1β1 ∼T (∆) p2β2 if and only if p1β1Z ∼T (∆) p2β2Z (4)

T (∆), p1β1 |= φ if and only if T (∆), p1β1Z |= φ (5)

for any p1, p2 ∈ Q, β1, β2 ∈ Γ ∗ and a µ-calculus formula φ. In particular, all
reachable states from pβZ are of the form qβ′Z where p, q ∈ Q and β, β′ ∈ Γ ∗.

Definition 11 (Unlabelled pushdown system). An unlabelled pushdown
system is a pushdown system ∆ = (Q,Γ,Act,−→∆) such that |Act| = 1.

Remark 6. Whenever |Act| = 1, let us say Act = {a}, we omit Act from the
definition of the pushdown system∆ and instead of pA a−→∆ qα we simply write
pA −→∆′ qα where ∆′ = (Q,Γ,−→∆′) and −→∆′⊆ Q× Γ ×Q× Γ ∗.

Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system such that Z ∈ Γ is the
“dummy” stack symbol. W.l.o.g. assume that Act = {1, . . . , n} for some n > 0.
We construct an unlabelled pushdown system ∆′ = (Q,Γ ′,−→∆′) where Γ ⊆ Γ ′

pAβZ
a // qαβZ

��
pDnAβZ pD0AβZoo qD0αβZ // qDnαβZ

pAβZ

OO

// pX0
(pA,a,qα)βZ //

		

qαβZ

OO

pX1
(pA,a,qα)βZ // pX2

(pA,a,qα)βZ // pXa
(pA,a,qα)βZ

Fig. 3. Transformation of a transition pAβZ
a−→ qαβZ

such that ̂T (∆)p1α1Z and T (∆′)p1α1Z are isomorphic unlabelled transition sys-
tems for any p1 ∈ Q and α1 ∈ Γ ∗. Again, see Definition 2 for the notation of
transition systems restricted to reachable states from p1α1Z. The system ∆′ is
defined as follows:

Γ ′ = Γ ∪ {Xk
(pA,a,qα) | pA

a−→∆ qα ∧ 0 ≤ k ≤ a} ∪ {Dk | 0 ≤ k ≤ n}
−→∆′ = {(p,A, p,X0

(pA,a,qα)), (p,X0
(pA,a,qα), q, α) | pA a−→∆ qα} ∪

{(p,Xk
(pA,a,qα), p,X

k+1
(pA,a,qα)) | pA

a−→∆ qα ∧ 0 ≤ k < a} ∪
{(p,A, p,D0A) | p ∈ Q ∧ A ∈ Γ} ∪
{(p,Dk, p,Dk+1) | p ∈ Q ∧ 0 ≤ k < n}.

Notice that in particular pXa
(pA,a,qα)βZ 6−→ and pDnβZ 6−→ for any β ∈ Γ ′∗.

Graphical representation showing the transformation of pAβZ a−→ qαβZ where
β ∈ Γ ∗ and pA a−→∆ qα can be seen in Figure 3.

Lemma 4. Let ∆ = (Q,Γ,Act,−→∆) be a pushdown system containing Z ∈ Γ .
Let ∆′ = (Q,Γ ′,−→∆′) be the unlabelled pushdown system defined above. Then

̂T (∆)p1α1Z and T (∆′)p1α1Z are isomorphic unlabelled transition systems for any
p1 ∈ Q and α1 ∈ Γ ∗.

Proof. Immediately from the construction. Notice that it is important that any
reachable state in T (∆′)p1α1Z ends with Z. In particular, from any state of the
form pβZ where p ∈ Q and β ∈ Γ ∗ (even if β = ε) the following transition is
possible in T (∆′): pβZ −→ pD0βZ. ut
Theorem 4. Let ∆ be a pushdown system, and p1β1, p2β2 a pair of states in
T (∆) and φ a µ-calculus formula. There is a polynomial time reduction producing
an unlabelled and normed pushdown system ∆′, a pair of states ψ(p1β1), ψ(p2β2)
in T (∆′) and a µ-calculus formula φ̂ such that

p1β1 ∼T (∆) p2β2 if and only if ψ(p1β1) ∼T (∆′) ψ(p2β2)

and
T (∆), p1β1 |= φ if and only if T (∆′), ψ(p1β1) |= φ̂.

Proof. Directly from Lemma 4 together with (4) and (5) — producing the map-
ping ψ such that ψ(pβ) = pβZ for p ∈ Q and β ∈ Γ ∗ — and from Theorems 1
and 2. Normedness is because of Remark 3. ut
Since the bisimilarity checking problem between a pushdown system and a finite-
state system is PSPACE-hard [May00] (this is trivially also a lower bound for
two pushdown systems), and because the model checking problems with CTL
and Hennessy-Milner logic are EXPTIME-complete resp. PSPACE-complete
[Wal00,May98], we obtain the following corollaries. In the case of CTL we use
Remark 4 and the fact that we can easily ensure the validity of condition (3)
similarly as in the proof of Corollary 1.

Corollary 5. Bisimilarity checking problem between an unlabelled and normed
pushdown system and a finite-state system (or another unlabelled and normed
pushdown system) is PSPACE-hard.

Corollary 6. Model checking problems with CTL and Hennessy-Milner logic for
unlabelled and normed pushdown systems are EXPTIME-complete and PSPACE-
complete, respectively.

The bisimilarity checking problem between a pushdown system and a finite-state
system is in EXPTIME [JKM98] and PSPACE-hard [May00]. In order to estab-
lish its containment in e.g. PSPACE, it is enough to show it for unlabelled and
normed pushdown systems.

Acknowledgements: I would like to thank Mogens Nielsen for his kind super-
vision and Daniel Polansky for his comments and suggestions.

References

[BAMP83] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching
time. Acta Informatica, 20(3):207–226, 1983.

[BE97] O. Burkart and J. Esparza. More infinite results. Bulletin of the Euro-
pean Association for Theoretical Computer Science, 62:138–159, June 1997.
Columns: Concurrency.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logic of Programs Work-
shop, volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications: A practical
approach. ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[EK95] J. Esparza and A. Kiehn. On the model checking problem for branching
time logics and basic parallel processes. In International Conference on
Computer-Aided Verification (CAV’95), volume 939 of LNCS, pages 353–
366, 1995.

[Esp97] J. Esparza. Decidability of model-checking for infinite-state concurrent sys-
tems. Acta Informatica, 34:85–107, 1997.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the Association for Computing Machinery, 32(1):137–161,
1985.

[Jan95] P. Jancar. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148(2):281–301, 1995.

[JKM98] P. Jancar, A. Kucera, and R. Mayr. Deciding bisimulation-like equivalences
with finite-state processes. In Proceedings of the Annual International Col-
loquium on Automata, Languages and Programming (ICALP’98), volume
1443 of LNCS. Springer-Verlag, 1998.

[JM95] P. Jancar and F. Moller. Checking regular properties of Petri nets. In
Proceedings of CONCUR’95, volume 962 of LNCS, pages 348–362. Springer-
Verlag, 1995.

[May98] R. Mayr. Strict lower bounds for model checking BPA. In Proceedings of
the MFCS’98 Workshop on Concurrency, volume 18 of ENTCS. Springer-
Verlag, 1998.

[May00] R. Mayr. On the complexity of bisimulation problems for pushdown au-
tomata. In IFIP International Conference on Theoretical Computer Science
(IFIP TCS’2000), volume 1872 of LNCS. Springer-Verlag, 2000.

[Mol96] F. Moller. Infinite results. In Proceedings of CONCUR’96, volume 1119 of
LNCS, pages 195–216. Springer-Verlag, 1996.

[Pet81] J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-
Hall, 1981.

[Sén98] G. Sénizergues. Decidability of bisimulation equivalence for equational
graphs of finite out-degree. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science(FOCS-98), pages 120–129. IEEE Com-
puter Society, 1998.

[Srb01] J. Srba. On the power of labels in transition systems. Technical Report
RS-01-19, BRICS Research Series, 2001.

[Sti95] C. Stirling. Local model checking games. In Proceedings of the 6th Inter-
national Conference on Concurrency Theory (CONCUR’95), volume 962 of
LNCS, pages 1–11. Springer-Verlag, 1995.

[Tho93] W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer sci-
ence (extended abstract). In Proceedings of the 4th International Joint Con-
ference CAAP/FASE, Theory and Practice of Software Development (TAP-
SOFT’93), volume 668 of LNCS, pages 559–568. Springer-Verlag, 1993.

[Vog92] W. Vogler. Modular construction and partial order semantics of Petri nets,
volume 625 of LNCS. Springer-Verlag, 1992.

[Wal96] I. Walukiewicz. Pushdown processes: Games and model checking. In In-
ternational Conference on Computer-Aided Verification (CAV’96), volume
1102 of LNCS, pages 62–74, 1996. To appear in Information and Compu-
tation.

[Wal00] I. Walukiewicz. Model checking CTL properties of pushdown systems. In
Proceedings Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’00), volume 1974 of LNCS, pages 127–138. Springer-
Verlag, 2000.

