
Height-Deterministic Pushdown Automata

Dirk Nowotka1 and Jǐŕı Srba2?

1 Institut für Formale Methoden der Informatik
Universität Stuttgart, Germany

2 BRICS? ? ?, Department of Computer Science
Aalborg University, Denmark

Abstract. We define the notion of height-deterministic pushdown au-
tomata, a model where for any given input string the stack heights dur-
ing any (nondeterministic) computation on the input are a priori fixed.
Different subclasses of height-deterministic pushdown automata, strictly
containing the class of regular languages and still closed under boolean
language operations, are considered. Several such language classes have
been described in the literature. Here, we suggest a natural and intuitive
model that subsumes all the formalisms proposed so far by employing
height-deterministic pushdown automata. Decidability and complexity
questions are also considered.

1 Introduction

Visibly pushdown automata [3], a natural and well motivated subclass of push-
down automata, have been recently introduced and intensively studied [9, 2, 4].
The theory found a number of interesting applications, e.g. in program ana-
lysis [1, 10] and XML processing [11]. The corresponding class of visibly push-
down languages is more general than regular languages while it still possesses
nice closure properties and the language equivalence problem as well as simula-
tion/bisimulation equivalences are decidable [3, 12]. Several extensions [7, 5] have
been proposed in order to preserve these nice properties while describing a larger
class of systems. These studies have been particularly motivated by applications
in the field of formal verification. However, unlike the natural model of visibly
pushdown automata, these extensions are rather technical and less intuitive.

In this paper we suggest the model of height-deterministic pushdown au-
tomata which strictly subsumes all the models mentioned above and yet possesses
desirable closure and decidability properties. This provides a uniform framework
for the study of more general formalisms.

The paper is organized as follows. Section 2 contains basic definitions. Section
3 introduces height-deterministic pushdown automata, or hpda. It studies the
languages recognized by real-time and deterministic hpda, and proves a number
of interesting closure properties. Section 4 shows that these classes properly
contain the language class of [7] and the classes defined in [3] and [5].
? Partially supported by the research center ITI, project No. 1M0021620808.

? ? ? Basic Research In Computer Science, Danish National Research Foundation.

2 Preliminaries

Let Σ = {a, b, c, . . .} be a finite set of letters. The set Σ∗ denotes all finite words
over Σ. The empty word is denoted by λ. A subset of Σ∗ is called a language.
Given a nonempty word w ∈ Σ∗ we write w = w(1)w(2) · · ·w(n) where w(i) ∈ Σ
denotes the i-th letter of w for all 1 ≤ i ≤ n. The length |w| of w is n and |λ| = 0.
By abuse of notation | · | also denotes the cardinality of a set, the absolute value
of an integer, and the size of a pushdown automaton (see definition below). We
denote by •w the word w(2)w(3) · · ·w(n), and define further •a = λ for every
a ∈ Σ and •λ = λ. Finally, we let Lc abbreviate Σ∗ \ L for L ⊆ Σ∗.

Finite state automata. A finite state automaton (fsa) R over Σ is a tuple
(S, Σ, s0, %, F) where S = {s, t, . . .} is a finite set of states, s0 ∈ S is the initial
state, % ⊆ S × Σ × S is a set of rules, and F ⊆ S is the set of final states. We
call R a deterministic finite state automaton (dfsa) if for every s ∈ S and every
a ∈ Σ there is exactly one t ∈ Σ such that (s, a, t) ∈ %, i.e., the relation % can
be understood as a function % : S×Σ → S. Given a nonempty w ∈ Σ∗ we write
s

w−→
R

t (or just s
w−→ t if R is understood) if either w ∈ Σ and (s, w, t) ∈ % or

there exists an s′ ∈ S such that (s, w(1), s
′) ∈ % and s′

•w−→ t. We say that R
recognizes the language L(R) = {w ∈ Σ∗ | s0

w−→
R

t, t ∈ F}. A language is regular
if it is recognized by some fsa. The class of all regular languages is denoted by
REG.

Finite state transducers. A finite state transducer (fst) T from Σ∗ to a monoid M
(in this paper we have either M = Σ∗ or M = ZZ), is a tuple (S, Σ, M, s0, %, F)
where (S, Σ × M, s0, %

′, F) is an fsa and % = {(s, a,m, t) | (s, (a,m), t) ∈ %′}.
Given w ∈ Σ∗ and m ∈ M , we write s

w,m−→
T

t (or s
w,m−→ t if T is understood)

if either w ∈ Σ and (s, w,m, t) ∈ % or if there exists an s′ ∈ S such that
(s, w(1),m1, s

′) ∈ %, s′
•w,m2−→ t and m = m1 ⊕ m2, where ⊕ is the operation

associated with the monoid M . Given L ⊆ Σ∗, the image of L under T , denoted
by T (L), is the set of elements m such that s0

w,m−→
T

t for some t ∈ F and w ∈ L.

Pushdown automata. A pushdown automaton (pda) A over an alphabet Σ is
a tuple (Q,Σ, Γ, δ, q0, F) where Q = {p, q, r, . . .} is a finite set of states, Γ =
{X, Y, Z, . . .} is a finite set of stack symbols such that Q ∩ Γ = ∅, δ ⊆ Q× Γ ×
(Σ ∪ {ε})×Q× Γ ∗ ∪ Q× {⊥}× (Σ ∪ {ε})×Q× Γ ∗{⊥} is a finite set of rules,
where ⊥ 6∈ Γ (empty stack) and ε 6∈ Σ (empty input word) are special symbols,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. The size |A| of a
pda A is defined as |Q| + |Σ| + |Γ | + {|pXqα| | (p, X, a, q, α) ∈ δ}. We usually
write pX

a7−→
A

qα (or just pX
a7−→ qα if A is understood) for (p, X, a, q, α) ∈ δ.

We say that a rule pX
a7−→
A

qα is a push, internal, or pop rule if |α| = 2, 1, or 0,
respectively. A pda is called real-time (rpda) if pX

a7−→ qα implies a 6= ε. A pda
is called deterministic (dpda) if for every p ∈ Q, X ∈ Γ ∪ {⊥} and a ∈ Σ ∪ {ε}
we have (i) |{qα | pX

a7−→ qα}| ≤ 1 and (ii) if pX
ε7−→ qα and pX

a7−→ q′α′ then
a = ε. A real-time deterministic pushdown automaton is denoted by rdpda.

The set QΓ ∗⊥ is the set of configurations of a pda. The configuration q0⊥
is called initial. The transition relation between configurations is defined by: if
pX

a7−→ qα, then pXβ
a−→ qαβ for every β ∈ Γ ∗. A transition pα

ε−→ qβ is
called ε-transition or ε-move. The labelled transition system generated by A is
the edge-labeled, directed graph (QΓ ∗⊥,

⋃
a∈Σ∪{ε}

a−→). Wherever convenient
we use common graph theoretic terminology, like (w-labeled) path or reachability.
Given w ∈ Σ∗, we write pα

w=⇒
A

qβ (or just pα
w=⇒ qβ if A is understood) if

there exists a finite w′-labeled path from pα to qβ in A such that w′ ∈ (Σ∪{ε})∗
and w is the projection of w′ onto Σ. We say that A is complete if q0⊥

w=⇒
A

qα
for every w ∈ Σ∗. We say that A recognizes the language L(A) = {w ∈ Σ∗ |
q0⊥

w=⇒ pα, p ∈ F}. A language recognized by a pda (dpda, rpda, rdpda) is called
(deterministic, real-time, real-time deterministic) context-free and the class of all
such languages is denoted by CFL, dCFL, rCFL, and rdCFL, respectively.

Pushdown automata may reject a word because they get stuck before they
read it completely, or because after reading it they get engaged in an infinite
sequence of ε-moves that do not visit any final state. They may also scan a
word and then make several ε-moves that visit both final and non-final states
in arbitrary ways. Moreover, in a rule pX

a7−→ qα the word α can be arbitrary.
For our purposes it is convenient to eliminate these “anomalies” by introducing
a normal form.

Definition 1. A pushdown automaton A = (Q,Σ, Γ, δ, q0, F) is normalized if

(i) A is complete;
(ii) for all p ∈ Q, all rules in δ of the form pX

a7−→ qα either satisfy a ∈ Σ or
all of them satisfy a = ε, but not both;

(iii) every rule in δ is of the form pX
a7−→ qλ, pX

a7−→ qX, or pX
a7−→ qY X

where a ∈ Σ ∪ {ε}.

States which admit only ε-transitions (see property (ii)), are called ε-states.

Lemma 1. For every pda (dpda, rpda, rdpda) there is a normalized pda (dpda,
rpda, rdpda, respectively), that recognizes the same language.

3 Height Determinism

Loosely speaking, a pda is height-deterministic if the stack height is determined
solely by the input word; more precisely, a pda A is height-deterministic if all
runs of A on input w ∈ (Σ ∪ {ε})∗ (here, crucially, ε is considered to be a part
of the input) lead to configurations of the same stack height. Given two height-
deterministic pda A and B, we call them synchronized if their stack heights
coincide after reading the same input words (again, this includes reading the
same number of ε’s between two letters). The idea of height-determinism will be
discussed more formally below.

Definition 2. Let A be a pda over the alphabet Σ with the initial state q0, and
let w ∈ (Σ∪{ε})∗. The set N(A,w) of stack heights reached by A after reading
w is {|α| | q0⊥

w−→
A

qα⊥}. A height-deterministic pda (hpda) A is a pda that is

(i) normalized, and
(ii) |N(A,w)| ≤ 1 for every w ∈ (Σ ∪ {ε})∗.

A language recognized by some hpda is height-deterministic context-free. The
class of height-deterministic context-free languages is denoted by hCFL.

Note that every normalized dpda is trivially an hpda.

Definition 3. Two hpda A and B over the same alphabet Σ are synchronized,
denoted by A ∼ B, if N(A,w) = N(B,w) for every w ∈ (Σ ∪ {ε})∗.

Intuitively, two hpda are synchronized if their stacks increase and decrease in
lockstep at every run on the same input. Note that ∼ is an equivalence relation
over all hpda. Let [A]∼ denote the equivalence class containing the hpda A, and
let A-hCFL denote the class of languages {L(A) | A ∈ [A]∼} recognized by any
hpda synchronized with A.

In the following subsections we will study some properties of general, real-
time, and deterministic hpda.

3.1 The General Case

Let us first argue that height-determinism does not restrict the power of pda.

Theorem 1. hCFL = CFL.

The basic proof idea is that for any context-free language L a pda A can be
constructed such that L(A) = L and for every non-deterministic choice of A
a different number of ε-moves is done.

Proof. Let L ∈ CFL. There exists an rpda A = (Q,Σ, Γ, δ, q0, F) with L(A) = L.
We can assume that A is normalized by Lemma 1. Certainly, |N(A,w)| ≤ 1
for every w ∈ Σ∗ does not hold in general. However, we can construct a pda
A′ = (Q′, Σ, Γ, δ′, q0, F) from A such that a different number of ε-moves is
done for every non-deterministic choice of A after reading a letter. In this way
every run of A′ on some input w is uniquely determined by the number of ε-
moves between reading letters from the input. Hence, |N(A,w)| ≤ 1 for every
w ∈ (Σ ∪ {ε})∗ (condition (ii) of the Definition 2) is satisfied.

Formally, over all p ∈ Q and X ∈ Γ ∪{⊥} and a ∈ Σ, let m be the maximum
number of rules of the form pX

a7−→ qα for some q and α. For every qα appearing
on the right-hand side of some rule, we introduce m new states p1

qα, p2
qα, . . . , pm

qα

and for every X ∈ Γ ∪ {⊥} and 1 ≤ i < m we add the rules

pi
qαX

ε7−→ pi+1
qα X and pm

qαX
ε7−→ qα .

Now, for all p ∈ Q, X ∈ Γ ∪ {⊥} and a ∈ Σ, let

pX
a7−→ q1α1, pX

a7−→ q2α2, . . . , pX
a7−→ qnαn

be all rules under the action a with the left-hand side pX; we replace all these
rules with the following ones:

pX
a7−→ p1

q1α1
X, pX

a7−→ p2
q2α2

X, . . . , pX
a7−→ pn

qnαn
X .

Note that A′ is normalized if A is normalized, and that L(A′) = L(A). ut

Theorem 2. Let A be any hpda. Then REG ⊆ A-hCFL.
In particular, if R is a complete dfsa then there exists an hpda B ∈ A-hCFL
such that L(B) = L(R) and |B| = O(|A| |R|). Moreover, if A is deterministic,
then B is deterministic.

Proof. Let L ∈ REG, and let R be a dfsa recognizing L. W.l.o.g. we can assume
that R is complete, that is, for every a ∈ Σ and state r in R there is a transition
r

a−→
R

r′. We construct a pda B as the usual product of (the control part of) A
with R: for all a ∈ Σ, B has a rule (q, r)X a7−→

B
(q′, r′)α if and only if qX

a7−→
A

q′α
and r

a−→
R

r′; for every state r of R, B has an ε-rule (q, r)X ε7−→
B

(q′, r)α if and
only if qX

ε7−→
A

q′α. The final states of B are the pairs (q, r) such that r is a final
state of R. Clearly, we have |B| = O(|A| |R|). Moreover, every run of B on some
w ∈ Σ∗ ends in a final state (q, r) if and only if R is in r after reading w, and
hence, L(B) = L.

Next we show that B is hpda. Firstly, condition (ii) of Definition 2 and com-
pleteness (Definition 1(i)) clearly hold. Secondly, every state of B either ad-
mits only ε-transitions or non-ε-transitions but not both (Definition 1(ii)) since
(p, r)X ε7−→

B
(q, r)α and (p, r)Y a7−→

B
(q′, r′)β implies pX

ε7−→
A

qα and pY
a7−→
A

q′β,
contradicting the normalization of A. Finally, Definition 1(iii) follows trivially
from the fact that A is normalized. It remains to prove A ∼ B, however, this
follows easily because the height of B’s stack is completely determined by A. ut

Note that the pda B in Theorem 2 is real-time (deterministic) if A is real-time
(deterministic). The following closure properties are easily proved using classical
constructions.

Theorem 3. Let A be any hpda. Then A-hCFL is closed under union and in-
tersection.
In particular, let A and B be two hpda with A ∼ B.

(i) The language L(A)∪L(B) is recognized by some hpda C of size O(|A|+ |B|)
such that A ∼ C ∼ B.

(ii) If A and B are deterministic, then the language L(A) ∪ L(B) is recognized
by some deterministic hpda C of size O(|A| |B|) such that A ∼ C ∼ B.

(iii) The language L(A) ∩ L(B) is recognized by some hpda C of size O(|A| |B|)
such that A ∼ C ∼ B. If A and B are deterministic, then C is deterministic.

Moreover, we have in all cases that if both A and B are rpda, then C is an rpda.

3.2 The Real-Time Case

Let rhpda denote a real-time hpda, and let rhCFL denote the class of languages
generated by rhpda. We remark that rhpda contain visibly pushdown automata
introduced in [3] but not vice versa as shown in Example 1 below. A visibly
pushdown automaton A (vpda) over Σ is an rpda together with a fixed partition
of Σ = Σc ∪ Σi ∪ Σr such that if pX

a7−→
A

qY X then a ∈ Σc and if pX
a7−→
A

qX
then a ∈ Σi and if pX

a7−→
A

qλ then a ∈ Σr. By vCFL we denote the class of
languages generated by vpda.

Example 1. Consider the language L1 = {anban | n ≥ 0} which is not recognized
by any vpda; see also [3]. Indeed, a vpda recognizing L1 would have to either
only push or only pop or only change its state whenever the letter a is read, but
then the two powers of a in an input word from a∗ba∗ could not be compared for
most inputs. However, the obvious rdpda that pushes the first block of a’s into
the stack, reads the b, reads the second block of a’s while popping the first block
from the stack, and compares whether they have the same length, is a rhpda
that accepts L1. ut

On the other hand, it is easy to see that not every language accepted by an rpda
can also be accepted by a rhpda. For example, the language of all palindromes
over Σ is in rCFL but not in rhCFL. This follows from the fact that this language
does not belong to rdCFL, and from the fact that rdCFL = rhCFL, which is
proved below in Theorem 4. All together, we get the following hierarchy.

REG (vCFL (rhCFL = rdCFL (rCFL = hCFL = CFL

The next theorem shows that real-time hpda can be determinised. The proof of
this theorem uses the same basic technique as for determinising vpda [3].

Theorem 4. rhCFL = rdCFL.
In particular, we can construct for every rhpda A a deterministic rhpda B such
that L(A) = L(B) and A ∼ B and B has O

(
2n2

)
many states and a stack

alphabet of size O
(
|Σ|2n2

)
where n is the number of pairs of states and stack

symbols of A.

It follows from Theorem 4 and the closure of rdCFL under complement that
a complement Ac exists for every rhpda A. However, the following corollary more
precisely shows that Ac can be chosen to satisfy Ac ∼ A.

Corollary 1. rhCFL is closed under complement.
In particular, for every rhpda A there exists an rhpda B such that L(B) = L(A)c

and A ∼ B and |B| = 2O(|A|2).

The emptiness problem can be decided in time O(n3) for any pda of size n;
see for example [6]. In combination with the previous results we get the bound
on the equivalence problem.

Theorem 5. Language equivalence of synchronized rhpda is decidable.
In particular, let A and B be two rhpda with A ∼ B, and let n = |A| and
m = |B|. We can decide L(A) ?= L(B), in time 2O(n2+m2).

3.3 The Deterministic Case

Contrary to the real-time case, arbitrary hpda cannot always be determinised,
as shown by Theorem 1. For this reason we investigate the synchronization re-
lation ∼ restricted to the class of deterministic pushdown automata. Certainly,
dhCFL = dCFL since every dpda can be normalized by Lemma 1 and then it is
trivially height-deterministic. However, we lay the focus in this section on the
closure of each equivalence class of ∼ under complement. Therefore, we denote
a deterministic hpda by dhpda. The class of languages recognized by some dhpda
synchronized with the dhpda A is denoted by A-dhCFL.

First, we show that, as in the real-time case, every dhpda can be comple-
mented without leaving its equivalence class. The proof is, however, more deli-
cate due to the presence of ε-rules. In fact, the normalization of Definition 1 has
been carefully chosen to make this theorem possible.

Theorem 6. Let A be any dhpda. Then A-dhCFL is closed under complement.
In particular, for every dhpda B there exists a complement dhpda Bc such that
Bc ∼ B and |Bc| = O(|B|).

Proof. Let B = (Q,Σ, Γ, δ, q0, F). Let Q′ ⊆ Q be the set of all ε-states of B and
let Q′′ = Q \Q′. We construct Bc by first defining an dhpda B′ equivalent to B
such that a word is accepted if and only if it can be accepted with a state in Q′′,
that is, a state which allows only non-ε-moves. Then the set of accepting states
is a subset of states in Q′′ that do not accept L(B). This gives the complement
of B.

We will define a dhpda B′ such that B ∼ B′ and L(B′) = L(B) and every
accepting path in the transition system generated by B′ ends in a state in Q′ ∪
(Q′′∩F), that is, when B′ accepts a word w, then B′ shall end in a final state after
reading w with a maximal (and finite by property (i) in Definition 1) number of
ε moves after reading the last letter of w. Note that the completeness property
of B in Definition 1 implies that B is always in a state in Q′′ after reading w
followed by a maximal number of ε-transitions.

Let B′ = (Q × {0, 1}, Σ, Γ, ϑ, q′0, F
′) with F ′ = Q × {1}, and q′0 = (q0, 1) if

q0 ∈ F and q′0 = (q0, 0) otherwise. The set of rules ϑ is defined as follows:

– ((p, i), X, e, (q, 1), α) ∈ ϑ if (p, X, e, q, α) ∈ δ and q ∈ F ,
– ((p, i), X, a, (q, 0), α) ∈ ϑ if (p, X, a, q, α) ∈ δ and q 6∈ F , and
– ((p, i), X, ε, (q, i), α) ∈ ϑ if (p, X, ε, q, α) ∈ δ and q 6∈ F .

where e ∈ Σ∪{ε} and i ∈ {0, 1} and a ∈ Σ. We have now L(B′) = L(B). Indeed,
we have two copies, indexed with 0 and 1, of B in B′ and whenever an accepting
state is reached in B then it is reached in the 1-copy of B in B′ (the first two
items in the definition of ϑ above) and B′ is in an accepting state and both B
and B′ accept the word read so far. The set of accepting states of B′ is only
left when the next letter is read from the input and B reaches a non-accepting
state (the third item in the definition of ϑ above). Otherwise, B′ remains in the
respective copy of B (first and fourth item in the definition of ϑ above). Clearly,
B′ ∼ B.

Now, Bc = (Q× {0, 1}, Σ, Γ, ϑ, q′0, Q
′′ × {0}). ut

The equivalence checking problem for two synchronized dhpda is, like in the
real-time case, decidable.

Theorem 7. Language equivalence of synchronized dhpda is decidable.
In particular, for any dhpda A and B such that A ∼ B, we can decide whether
L(A) ?= L(B) in time O

(
|A|3 |B|3

)
.

4 Other Language Classes — A Comparison

In this section height-deterministic context-free languages are compared to two
other recent approaches of defining classes of context-free languages closed under
boolean operations. In [5], Caucal introduced an extension of Alur and Madhusu-
dan’s visibly pushdown languages [3], and proved that it forms a boolean algebra.
The second class is the one introduced by Fisman and Pnueli in [7]. We show in
this section that rhCFL (which is a proper subclass of dhCFL) properly contains
these two classes.

4.1 Caucal’s class

Caucal’s class is defined with the help of a notion of synchronization, just as
our hCFL class.1 Before we can define Caucal’s synchronization, we need some
preliminaries.

A fst is input deterministic, if (s, a,m, t) ∈ % and (s, a, n, t′) ∈ % implies that
m = n and t = t′. Caucal considers input deterministic transducers from Σ∗

to ZZ (the additive monoid of integers) where every state accepts, i.e., trans-
ducers whose transitions are labeled with a letter from Σ and an integer. When
the transducer reads a word over Σ, it outputs the sum of the integers of the
transitions visited. Notice that if a transducer T is input deterministic then the
set T (w) is a singleton, i.e., a set containing one single integer. By abuse of
notation, we identify T (w) with this integer. We let |T (w)| denote the absolute
value of T (w).

Given an input deterministic fst T from Σ∗ to ZZ and an rpda A over Σ with
initial state q0, we say that A is a T -synchronized pda (T -spda) if q0⊥

w−→
A

pα⊥
implies |α| = |T (w)| for every w ∈ Σ∗ and every configuration pα of A. Let
wSCFL denote the class of all languages that are recognized by some T -spda for
some T . (See also Caucal’s introduction of wSCFL in [5].)

Theorem 8. wSCFL (rhCFL.
In particular, the language

L3 = {ambnw | m > n > 0, |w|a = |w|b, w(1) = a if w 6= λ}

belongs to rhCFL but not to wSCFL.

1 In fact, Caucal’s class was the starting point of our study.

4.2 Fisman and Pnueli’s class

We define the class of M -synchronized pda, which is the formalism used by
Fisman and Pnueli in their approach to non-regular model-checking [7].

Let M = (∆, Γ, δ) be a 1-rdpda, let R = (Q,Σ × Γ, q0, %, F) be a dfsa, and
let φ : Σ → ∆ be a substitution. The cascade product M ◦φ R is the rdpda
(Q,Σ, Γ, δ′, q0, F) with qX

a7−→ %(q, (a,X))δ(φ(a), X) for all q ∈ Q, a ∈ Σ and
X ∈ Γ ∪ {⊥}. An rdpda A is called M -synchronized (M -spda) if there exists
a substitution φ and a dfsa R such that A = M ◦φ R. Let 1SCFL denote the
class of all languages that are recognized by some M -spda for some 1-rdpda M .
See also Fisman and Pnueli’s introduction of 1SCFL in [7].

Theorem 9. 1SCFL (rhCFL.
In particular, the language

L4 = {anban | n ≥ 0} ∪ {anca2n | n ≥ 0}

belongs to rhCFL but not to 1SCFL.

5 Conclusion

We have introduced several (sub)classes of the class of context-free languages
that are closed under boolean operations. Our key technical tools are height-
deterministic pushdown automata (hpda) and synchronization between hpda.
These notions are inspired by and generalize Caucal’s work on real-time syn-
chronized pushdown graphs [5]. In fact, our results can be seen as an extension
of Caucal’s ideas to pushdown automata with ε-transitions. This extension has
turned out to be rather delicate. Both Theorem 2 (REG ⊆ A-hCFL) and Theo-
rem 6 (A-hCFL is closed under complement) depend crucially on the normaliza-
tion of Definition 1 which had to be carefully chosen. In a sense, one of the con-
tributions of the paper is to have worked out the right notion of normalization.
We have also showed that language equivalence of real-time height-deterministic
pushdown automata is decidable in EXPTIME.

Both this paper and Caucal’s have been also inspired by Alur and Madhusu-
dan’s work on visibly pushdown automata, initiated in [3]. From an automata-
theoretic point of view, we have extended the theorem of [3], stating that visibly
pushdown automata are closed under boolean operations, to deterministic hpda.
This is rather satisfactory, because deterministic hpda recognize all determin-
istic context-free languages, while visibly pda are far from it. Remarkably, the
extension is be achieved at a very low cost; in our opinion, height-deterministic
pda are, at least from the semantical point of view, as natural and intuitive as
visibly pda.

Acknowledgments. The authors are deeply indebted to Javier Esparza who con-
tributed to this work in many ways. We also thank to the anonymous referees
for their useful remarks.

References

1. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In Proceedings of the 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’04), volume 2988 of
LNCS, pages 467–481. Springer-Verlag, 2004.

2. R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly
pushdown languages. In Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP’05), volume 3580 of LNCS, pages
1102–1114. Springer-Verlag, 2005.

3. R. Alur and P. Madhusudan. Visibly pushdown languages. In ACM Symposium
on Theory of Computing (STOC’04), pages 202–211. ACM Press, 2004.

4. V. Bárány, Ch. Löding, and O. Serre. Regularity problems for visibly pushdown
languages. In Proceedings of the 23rd Annual Symposioum on Theoretical Aspects
of Computer Science (STACS’06), volume 3884 of LNCS, pages 420–431. Springer-
Verlag, 2006.

5. D. Caucal. Synchronization of pushdown automata. In Developments in Laguage
Theory (DLT’06), volume 4036 of LNCS, pages 120–132, Berlin, 2006. Springer-
Verlag.

6. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Computer Aided Verification (CAV’00),
number 1855 in LNCS, pages 232–247, Berlin, 2000. Springer-Verlag.

7. D. Fisman and A. Pnueli. Beyond regular model checking. In Foundations of
Software Technology and Theoretical Computer Science (FST&TCS’01), volume
2245 of LNCS, pages 156–170, Berlin, 2001. Springer-Verlag.

8. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

9. Ch. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings
of the 24th International Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’04), volume 3328 of LNCS, pages 408–
420. Springer-Verlag, 2004.

10. A. Murawski and I. Walukiewicz. Third-order idealized algol with iteration is de-
cidable. In Proceedings of the 8th International Conference on Foundations of Soft-
ware Science and Computation Structures (FOSSACS’05), volume 3441 of LNCS,
pages 202–218, 2005.

11. C. Pitcher. Visibly pushdown expression effects for XML stream processing. In
Proceedings of Programming Language Technologies for XML (PLAN-X), pages
5–19, 2005.

12. J. Srba. Visibly pushdown automata: From language equivalence to simulation
and bisimulation. In Proceedings of the 15th Annual Conference of the European
Association for Computer Science Logic (CSL’06), volume 4207 of LNCS, pages
89–103. Springer-Verlag, 2006.

A Proofs from Sections 2 and 3

Lemma 1. For every pda (dpda, rpda, rdpda) there is a normalized pda (dpda,
rpda, rdpda, respectively), that recognizes the same language.

Proof. We proceed as follows. Given a pda A, we construct pda A1, A2, A3

recognizing the same language as A such that A1 satisfies (iii), A2 satisfies (iii)
and (ii), and A3 satisfies (iii), (ii), and (i), respectively. It will follow immediately
from the constructions that if A is real-time or deterministic then so is A3. In
what follows, the components of the automata A1, A2 and A3 will be indexed
accordingly, i.e., for example the set of control states of A1 will be denoted by
Q1, the set rules of A2 will be denoted by δ2 etc.

For A1, we first use the standard construction that yields an automaton A′

equivalent to A but in which every rule pX
a7−→ qα satisfies |α| ≤ 2. Then, we

construct A1 as described in Lemma 10.2 of [8]; A1 has Q1 = Q′ × Γ as the
set of states and is defined to satisfy the property that pXα

w=⇒
A

qY β holds iff
[p, X]α w=⇒

A
1

[q, Y]β does. It also follows from the lemma that if A is deterministic,
then so is A1 (actually, the lemma is stated for dpda, but the construction works
in general).

The pda A2 is the final result of the following procedure: For every pair
of rules of A1 of the form pX

a7−→ qα and pY
ε7−→ rβ such that a ∈ Σ, add

a state pX not in A2 and new rules pX
ε7−→ pXX and pXX

a7−→ qα to A1,
and remove the rule pX

a7−→ qα from δ1. Clearly, A2 satisfies (ii) and, since A1

satisfies (iii) so does A2. Observe also that if A1 is deterministic, then X 6= Y
and, for example, pX

a7−→ qα and pX
b7−→ q′α′ is replaced by pX

ε7−→ pXX and
pXX

a7−→ qα and pXX
b7−→ q′α′, and so A2 is also deterministic.

The pda A3 is obtained by adding to A2 a dead state d, the rules dX
a7−→ dX

for every X ∈ Γ ∪{⊥} and a ∈ Σ, a rule pX
a7−→ dX for every non-ε-state p ∈ Q

and every X ∈ Γ ∪ {⊥} and a ∈ Σ whenever pX
a7−→ qα is not already in δ2

for some q and α, and, if A is non-deterministic, a rule pX
ε7−→ dX for every

ε-state p ∈ Q. Obviously, this construction does not violate the properties (ii)
and (iii) nor does it change the accepted language for δ2 ⊆ δ3 and every added
rule leads to the dead state d. Moreover, we have q0⊥

w=⇒ qα for every w ∈ Σ∗,
and hence, satisfying property (i), if A2 is not deterministic and the labeled
transition system generated by A2 does not contain an infinite ε-path reachable
from q0⊥. This is the only case left. Next, we will show that A2 can be suitably
modified in order to avoid infinite ε-paths.

Assume that A2 is deterministic. We show how a dpda A′
2 with L(A′

2) =
L(A2) can be constructed from A2 such that infinite ε-paths are avoided. We
proceed as in the proof of Lemma 10.3 of [8]. We add to A2 a non-final state
d′ and a final state f , rules d′X

a7−→ d′X for every X ∈ Γ ∪ {⊥} and a ∈ Σ,
rules fX

ε7−→ d′X for every X ∈ Γ ∪ {⊥}, and a further set of rules according
to the following criterion. For every rule pX

ε7−→ qα of A2 such that the labelled
transition system generated by A2 contains an infinite ε-labelled path whose first
edge goes from pX to qα, add a new rule pX

ε7−→ fX to A′
2 if the path visits some

final state, and a rule pX
ε7−→ d′X otherwise (and remove the corresponding old

one). Clearly, A′
2 inherits properties (ii) and (iii) from A2, and it is deterministic.

It is also easy to see that A′
2 and A2 recognize the same language. It remains

to show that the labelled transition system of A′
2 contains no ε-labelled infinite

paths. Assume that it does. By construction the path does not visit the states
d′ or f , and so it is also a path of the transition system of A2. Let pXα be any
configuration of the path such that α has minimal length. Then, by the definition
of the semantics of a pushdown automaton, the infinite sequence of rules applied
from pXα can also be applied from pX, and so the transition systems of A2

and A′
2 also have an infinite ε-labelled path starting at pX. It follows that A′

2

contains a rule of the form pX
ε7−→ qα, contradicting the definition of A′

2. ut

Theorem 3. Let A be any hpda. Then A-hCFL is closed under union and in-
tersection.
In particular, let A and B be two hpda with A ∼ B.

(i) The language L(A)∪L(B) is recognized by some hpda C of size O(|A|+ |B|)
such that A ∼ C ∼ B.

(ii) If A and B are deterministic, then the language L(A) ∪ L(B) is recognized
by some deterministic hpda C of size O(|A| |B|) such that A ∼ C ∼ B.

(iii) The language L(A) ∩ L(B) is recognized by some hpda C of size O(|A| |B|)
such that A ∼ C ∼ B. If A and B are deterministic, then C is deterministic.

Moreover, we have in all cases that if both A and B are rpda, then C is an rpda.

Proof. (i) Let A = (Q,Σ, Γ, δ, q0, F) and B = (S, Σ, ∆, ϑ, s0, G) such that
A ∼ B. Consider the automaton C = (Q] S] {p}, Σ, Γ] ∆, ρ, p, F] G)
where] denotes the disjoint union of sets, and ρ = (δ] ϑ) ∪ {(p,⊥, a, p′, α) |
(q0,⊥, a, p′, α) ∈ δ or (s0,⊥, a, p′, α) ∈ ϑ}. We have that L(C) = L(A) ∪ L(B)
and C has size O(|A|+ |B|) and A ∼ C ∼ B.

(ii) and (iii) Consider the automaton C = (Q× S,Σ, Γ ×∆, ρ, (q0, s0),H)
where we define ρ = {((q, s), (X, Y), a, (r, t), (α, β)) | (q, X, a, r, α) ∈ δ and
(s, Y, a, t, β) ∈ ϑ}. Since A ∼ B, the stacks of A and B run in lockstep on
any input word. Moreover, C is normalized since both A and B are normal-
ized (see also the proof of Theorem 2). We have that L(C) = L(A) ∩ L(B) if
H = {(q, s) | q ∈ F and s ∈ G}, and L(C) = L(B) ∪ L(C) if H = {(q, s) |
q ∈ F or s ∈ G}. The size of C is O(|A| |B|). Moreover, A ∼ C ∼ B and C is
deterministic if both A and B are deterministic. ut

Theorem 4. rhCFL = rdCFL.
In particular, we can construct for every rhpda A a deterministic rhpda B such
that L(A) = L(B) and A ∼ B and B has O

(
2n2

)
many states and a stack

alphabet of size O
(
|Σ|2n2

)
where n is the number of pairs of states and stack

symbols of A.

Proof. Clearly, rhCFL ⊇ rdCFL since by Lemma 1 every rdpda can be normal-
ized and then it is trivially height-deterministic.

Let A = (Q,Σ, Γ, δ, q0, F) be an rhpda. We describe a construction of a deter-
ministic rhpda B such that L(B) = L(A). The main idea of this proof is a subset

construction where B postpones the handling of a push transition of A until the
corresponding pop transition occurs. All possible push transitions of A at a given
configuration and input symbol are stored by B on the stack. The states and the
stack symbols of B have two components S and R where in S (the “summary”
set) all pairs of pairs of states and stack symbols of A are stored which are the
beginning and end points of transition paths between the occurrence of a push
transition and its corresponding pop and R (the “reachable” set) contains all
pairs of states and stack symbols of A reachable from q0. The sets S and R are
appropriately updated at every transition of B as defined below. This procedure
follows the proof idea from [3] for the closure of visibly pushdown automata
under determinisation.

For example, a push transition stores the sets S and R of the current state
of B (encoded into a stack symbol) onto the stack and goes to a new state
containing S ′ and R′ where the summary S ′ is initialized by the identity relation
IdP , where P = Q× (Γ ∪ {⊥}), and the set R′ of the reachable pairs of states
and topmost stack symbols is updated by the states and topmost stack symbols
reachable from R in A. When the corresponding pop transition occurs, the sets
S and R of the current state in C are updated to S ′′ and R′′, respectively,
where S ′′ contains the beginning and end points of the paths that where stored
at the previous push transition in S ′ extended by the actual push transitions
in B, the transition paths taken between this push-pop pair (kept in S), and the
transitions that the current pop transition causes in A. Note that it is crucial that
the stack height is only controlled by the input and not by the non-deterministic
choices A might take, that is, both A and B run in lock-step w.r.t. their stack
heights.

We now formally define an rdpda B = (S, Σ, ∆, ϑ, s0, G) with L(B) = L(A).
Let P = Q × (Γ ∪ {⊥}) and let S = 2P×P × 2P , ∆ = 2P×P × 2P × Σ, s0 =
(IdQ×{⊥}, {(q0,⊥)}) and G = {(S,R) ∈ S | R ∩ (F × (Γ ∪ {⊥})) 6= ∅}. The
transition relation ϑ is given by:

Internal: ((S,R), X, a, (S ′,R′), X) ∈ ϑ where
– S ′ = {(x, (q, Y)) | ∃(r, Y) ∈ P : (x, (r, Y)) ∈ S, (r, Y, a, q, Y) ∈ δ} and
– R′ = {(q, Y) | ∃(p, Y) ∈ R : (p, Y, a, q, Y) ∈ δ},

Push: ((S,R), X, a, (IdP ,R′′), (S,R, a)X) ∈ ϑ where
– R′′ = {(q, Z) | ∃(p, Y) ∈ R : (p, Y, a, q, ZY) ∈ δ},

Pop: ((S,R), (S ′,R′, a), b, (S ′′,R′′), λ) ∈ ϑ where
– S ′′ = {(x, y) | ∃z : (x, z) ∈ S ′, (z, y) ∈ Update} and
– R′′ = {x | ∃y ∈ R′ : (y, x) ∈ Update} with
– Update = {((p, Y), (q, Y)) | ∃(r, Z), (r′, Z) ∈ P : (p, Y, a, r, ZY) ∈ δ and

((r, Z), (r′, Z)) ∈ S and (r′, Z, b, q, λ) ∈ δ}.

Note that B is real-time (no ε rules are introduced) and normalized (B is
complete if A is complete). Moreover, B is deterministic and therefore (together
with normalization) height-deterministic. We have that A ∼ B since internal,
push, and pop transitions in A are mapped to internal, push, and pop transitions
in B, respectively. ut

Corollary 1. rhCFL is closed under complement.
In particular, for every rhpda A there exists an rhpda B such that L(B) = L(A)c

and A ∼ B and |B| = 2O(|A|2).

Proof. Assume a given rhpda A. By Theorem 4 there is some deterministic rhpda
B = (Q,Σ, Γ, δ, q0, F) that recognizes L(A) and B ∼ A. Because B is complete
and deterministic, the dpda C = (Q,Σ, Γ, δ, q0, Q \ F) satisfies L(C) = L(A)c

and C ∼ B ∼ A. ut

Theorem 5. Language equivalence of synchronized rhpda is decidable.
In particular, let A and B be two rhpda with A ∼ B, and let n = |A| and
m = |B|. We can decide L(A) ?= L(B), in time 2O(n2+m2).

Proof. By Theorem 3 and 4 and Corollary 1 we can construct an rhpda C of size
O

(
2n2+m2

)
such that L(C) =

(
L(A)∩L(B)c

)
∪

(
L(A)c∩L(B)

)
and A ∼ C ∼ B.

Now L(A) = L(B) iff L(C) = ∅. Since the emptiness problem for pda can be
solved in cubic time, the results follow. ut

Theorem 7. Language equivalence of synchronized dhpda is decidable.
In particular, for any dhpda A and B such that A ∼ B, we can decide L(A) ?= L(B)
in time O

(
|A|3 |B|3

)
.

Proof. By Theorem 3 and 6 we can construct an dhpda C of size O (|A| |B|)
such that L(C) =

(
L(A) ∩ L(B)c

)
∪

(
L(A)c ∩ L(B)

)
and A ∼ C ∼ B. Now

L(A) = L(B) iff L(C) = ∅. Since the emptiness problem for pda can be solved
in cubic time, the result follows. ut

B Proof of Theorem 8

Remark 1. Caucal’s arguments in [5] are graph theoretical and motivate very
well the use of an fst from Σ∗ to ZZ. However, considering context-free lan-
guages only, increments and decrements of single stack symbols are sufficient to
recognize any language in wSCFL.

Indeed, consider some T -spda A. The increment and decrement of the stack
length at any step is bounded by some finite k depending on T . Let us sketch
the construction of an fst T ′ and an T ′-spda A′ such that L(A) = L(A′) and T ′

is from Σ∗ to {−1, 0, 1}. Let Q × {0, 1, . . . , k} be the set of states and Γ 2k be
the set of stack symbols of A′ where Q and Γ are the sets of states and stack
symbols of A, respectively. The idea is that a stack symbol of A′ stores at least
the topmost k and at most the topmost 2k stack symbols of a configuration of
A (given the stack is large enough; short stacks are handled as special cases).
When k+n, with 0 ≤ n ≤ k, stack symbols of a configuration pα of A are stored
in the topmost stack symbol of a configuration of A′, then A′ is in the state
(p, n).

Let us consider the following examples of rules for push and pop transi-
tions. Let X = (x1, . . . , x2k) be a stack symbol of A′. Let pxk+n

a7−→ qy1 · · · ym

be a rule in A so that m + n > k. Then A′ contains a rule (p, n)X a7−→
(q, m + n − k − 1)Y Z where we define Z = (x1, . . . , xk+n−1, y1, . . . , yk−n+1)
and Y = (xk+1, . . . , xk+n−1, y1, . . . , yk−n+1,ym, z, z, . . . , z) where z ∈ Γ is
an arbitrary chosen stack symbol. If A pops m symbols (where now m > n) with
a rule py1 · · · ym

a7−→ qλ, then A′ has the rule (p, n)X a7−→ (q, k + n−m)λ where
xk+n−i+1 = yi for all 1 ≤ i ≤ m. Other cases can be coded accordingly.

The transducer T ′ can be constructed from T in a similar fashion. Let S
be the state set of T then S × {0, . . . , k − 1} is the state set of T ′. For every
rule s

a,m−→ t in T there are the rules (s, n)
a,kn−→ (t, (m + n) mod k) in T ′ for all

1 ≤ n ≤ k with kn = −1 if m + n < 0, kn = 0 if 0 ≤ m + n < k, and kn = +1 if
m + n ≥ k. Hence, we can w.l.o.g. assume that % ⊆ S ×Σ × {−1, 0,+1} × S in
the fst T ′.

In this section we consider an rdcfl L3 which is not in wSCFL. In order to
show this we argue that for any rdpda A in order to recognize L3 it is necessary
that A must control its stack movement depending on the stack content. Obvi-
ously, A cannot be T -synchronized since T is an fst reading the same input as
A but has only finite memory.

The following lemma formalizes the rather obvious fact that on input an any
fst from Σ∗ to ZZ can only produce either unboundedly large (small) output
for growing n with a lower (upper) bound k on all outputs or all outputs are
bounded from above and below by k and −k, respectively, where k depends on T
only.

Lemma 2. Let T be a complete fst from Σ∗ to ZZ. Then one of the following
holds for any a ∈ Σ.

1. ∃k : ∀n : −k < T (an) and ∀m : ∃n : T (an) > m.
2. ∃k : ∀n : T (an) < k and ∀m : ∃n : T (an) < −m.
3. ∃k : ∀n : −k < T (an) < k.

Proof. Let s0
a,m1−→ s1

a,m2−→ s2 · · ·
a,mn−→ sn be the run of T on an, and let ` be

the number of states of T . The claim is trivial for all n < `. Assume n ≥ `.
There exists an `′ < ` such that s`′ = s`. Let i =

∑`
j=`′+1 mj . Clearly, the

cases 1, 2, and 3 follow from i > 0, i < 0, and i = 0, respectively, where
k = ` ·max{|m1|, |m2|, . . . , |m`|} is a witness. ut

Only languages over Σ = {a, b} are considered for the rest of this section.

Example 2. The following language is in wSCFL; see also [5].

L = {w | |w|a = |w|b} (1)

Indeed, the following rpda A is T -synchronized, where we define T by the tuple
({s}, Σ, ZZ, s, {(s, a, 1, s), (s, b,−1, s)}), and A recognizes L. Let A be defined as
({q0, q1, q2}, Σ, {X, Y }, δ, q0, {q0}) where

δ = {(q0,⊥, a, q1, X⊥), (q0,⊥, b, q2, X⊥),
(q1, X, a, q1, Y X), (q1, Y, a, q1, Y Y), (q1, X, b, q0, λ), (q1, Y, b, q1, λ),
(q2, X, b, q2, Y X), (q2, Y, b, q2, Y Y), (q2, X, a, q0, λ), (q2, Y, a, q2, λ)} .

Theorem 8. wSCFL (rdCFL.
In particular the language

L3 = {ambnw | m > n > 0, |w|a = |w|b, w(1) = a if w 6= λ}

belongs to rdCFL but not to wSCFL.

Proof. It has already been shown in [5] that wSCFL ⊆ rdCFL. Consider now
the language L3. We will show that L3 6∈ wSCFL but L3 ∈ rdCFL next.

Let us give the proof idea first. Note that L3 is similar to L in Example 2
which is in wSCFL. However, the witness automaton given in Example 2 relies
on the particular feature of T -synchronized automata that the absolute value of
T (v) for some v ∈ Σ∗ is taken to determine the stack height. This means that T
might for example give a decreasing value, translated into pop transitions from
a stack of positive height, for an input sequence long enough so that negative
numbers are reached, translated then into push transitions after the empty stack
was hit. In fact, this feature must be used by any T -synchronized automaton
recognizing L. However, this feature, necessary for recognizing the suffix of words
in L3 after the first a and b sequences, is not available for recognizing L3 since
recognizing ambn with m > n enforces an arbitrarily high stack for suitable
m and n. Hence, the general stack movement cannot change from shrinking to
growing of arbitrary length within the same sequence of input symbols.

Let us be more precise. Assume there exists a T -spda A = (Q,Σ, Γ, δ, q0, F)
such that L(A) = L3.

For every ` > 0 there exists an m such that q0⊥
am

−→
A

qα with |α| > `.
Indeed, if A’s stack height is bounded by some constant after reading an arbitrary
sequence of a’s (that is there are only finitely many configurations of A after
reading a sequence of a’s) then there exist m1 < m2 such that q0⊥

am1
−→

A
qα and

q0⊥
am2
−→

A
qα. However, now both am1bm2−1ab 6∈ L3 and am2bm2−1ab ∈ L3 are

either accepted or rejected by A; a contradiction. We consider for the rest of this
proof words in amΣ∗ such that A is, after reading am, in a configuration from
which the bottom of the stack is not reached anymore when reading of the rest
of the word (this can be done because A is an rpda).

Next, we show that A cannot decide for all w ∈ {aibjakb` | i, j, k, ` > 0} if
ambw ∈ L3 or not. Assume on the contrary that A ends in a final state exactly
if ` = i− j + k.

Since A is T -synchronized, Lemma 2 implies that A can only either grow
(shrink) its stack size over all bounds or change it only within a fixed bound
when reading a sequence of some letter. Surely, the latter alternative leads to
a contradiction since then A can be only in a finite number of different config-
urations after reading a sequence of a letter. Let us take the reading of bj as
example. Then there exist j1 6= j2 such that A is in the same configuration after
reading ambaibj1 and ambaibj2 , respectively, and we have that both ambaibj1akb`

and ambaibj2akb` are either accepted or rejected by A (for any k and `); a con-
tradiction. The rest of our proof argument distinguishes the cases 1 and 2 of
Lemma 2 for every power of a’s and b’s in aibjakb`.

Assume that T follows case 1 of Lemma 2 when ai is read. If T follows case 1
of Lemma 2 when bj is read, then consider the input word ambaibjab where i
and j can be chosen large enough such that the equality of i and j is not testable
by A since the size of i is stored on the stack but cannot be accessed (except for
the κ topmost symbols for some κ fixed by T) when bjab is read. If T follows
case 2 of Lemma 2 when bj is read, then let j′ be the smallest natural such that
|β| > |β′| where q0⊥

amb−→ pβ and pβ
aibj′

−→ p′β′. Now, j can be chosen large enough
such that j − j′ can be neither stored (in the κ topmost symbols) on the stack
(for some fixed κ depending on T)nor in Q × Γ . However, then ` = i − j + k
cannot be tested without knowing j.

Assume that T follows case 2 of Lemma 2 when ai is read. Then i can be
chosen large enough so that the value of i is neither stored on the stack nor
stored in Q× Γ . Then ` = i− j + k cannot be tested without knowing i.

Hence, A cannot recognize for every w ∈ {aibjakb` | i, j, k, ` > 0} whether or
not ambw is in L3, and we have L3 6∈ wSCFL.

However, the rdpda ({q0, . . . , q3}, Σ, {X, Y, Z}, δ, q0, {q1}) with

δ = {(q0,⊥, a, q0, X⊥), (q0, X, a, q0, XX), (q0, X, b, q1, λ),
(q1, X, b, q1, λ), (q1, X, a, q2, Y Z), (q1, Z, a, q2, Y Z), (q1, Z, b, q3, Y Z)
(q2, Y, a, q2, XY), (q2, X, a, q2, XX), (q2, Y, b, q1, λ), (q2, X, b, q2, λ),
(q3, Y, b, q3, XY), (q3, X, b, q3, XX), (q3, Y, a, q1, λ), (q3, X, a, q3, λ)}

recognizes L3, and hence, L3 ∈ rdCFL. ut

C Proof of Theorem 9

Theorem 9. 1SCFL (rdCFL.
In particular, the language

L4 = {anban | n ≥ 0} ∪ {anca2n | n ≥ 0}

belongs to rdCFL but not to 1SCFL.

Proof. Clearly, 1SCFL ⊆ rdCFL follows from the definitions. Consider now the
language L4. Assume that there exists an M -spda A such that L(A) = L4.
Comparing two arbitrary powers of letters in a word cannot be done with finite
memory, that is, the finite control of A can only recognize L4 if the stack content
reflects the comparison of the number of a’s before and after the single letter
b or c. So, when the first series of a’s is read the stack has to grow in order to
encode n. When the second series of a’s is read, the information about n has to
be accessed (that is popped) in order to compare it to the number of a’s after b
or c. In that process the same configuration qα (of the 1-rdpda M that controls
the stack movement of A) is sooner or later met in both cases b and c where
q⊥ ak

−→ qXα. From that point on M behaves exactly in the same way for at least
the next O(n) a’s that are read from the input. If {anban | n ≥ 0} is recognized
by A then also all the information about the first series of a’s (except a fixed

finite part) has been popped. So, the series of the first sequence of a’s cannot be
used both for comparing it with ban and ca2n.

However, the rdpda ({q0, p, r, s, t, q}, {a, b}, {X, Y }, δ, q0, {q}) with

δ = {(q0,⊥, a, p,⊥), (q0,⊥, b, q,⊥), (q0,⊥, c, q,⊥),
(p,⊥, a, p,X⊥), (p, X, a, p,XX), (p,⊥, b, r,⊥), (p, X, b, r, X),
(p,⊥, c, s,⊥), (p, X, c, s, X),
(r, X, a, r, λ), (r,⊥, a, q,⊥), (s,⊥, a, t,⊥), (t,⊥, a, q,⊥),
(s,X, a, s, Y), (s, Y, a, s, λ)}

recognizes L4, and hence, L4 ∈ rdCFL. ut

