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Abstract. Analysis of workflow processes with quantitative aspects like
timing is of interest in numerous time-critical applications. We suggest
a workflow model based on timed-arc Petri nets and study the founda-
tional problems of soundness and strong (time-bounded) soundness. We
explore the decidability of these problems and show, among others, that
soundness is decidable for monotonic workflow nets while reachability is
undecidable. For general timed-arc workflow nets soundness and strong
soundness become undecidable, though we can design efficient verifica-
tion algorithms for the subclass of bounded nets. Finally, we demonstrate
the usability of our theory on the case studies of a Brake System Control
Unit used in aircraft certification, the MPEG2 encoding algorithm, and
a blood transfusion workflow. The implementation of the algorithms is
freely available as a part of the model checker TAPAAL.

1 Introduction

Workflow nets [18, 19] were introduced by Wil van der Aalst as a formalism for
modelling, analysis and verification of business workflow processes. The formal-
ism is based on Petri nets abstracting away most of the data while focusing on
the possible flow in the system. Its intended use is in finding design errors like the
presence of deadlocks, livelocks and other anomalies in workflow processes. Such
correctness criteria can be described via the notion of soundness (see [20]) that
requires the option to complete the workflow, guarantees proper termination and
optionally also the absence of redundant tasks.

After the seminal work on workflow nets, researchers have invested much
effort in defining new soundness criteria and/or improving the expressive power
of the original model by adding new features and studying the related decid-
ability and complexity questions (it is not in the scope of this paper to list all
these works but we refer to [20] for a recent overview). In the present paper we
consider a quantitative extension of workflow nets with timing features, allowing
us to argue, among others, about the execution intervals of tasks, deadlines and
urgent behaviour of workflow processes. Our workflow model is based on timed-
arc Petri nets [3, 9] where tokens carry timing information and arcs are labelled
with time intervals restricting the available ages of tokens used for transition
firing. Let us first informally introduce the model on our running example.



0

in

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

attempts

start 3×

book pay

restart1 restart2 empty success

fail1

[5,5]

fail2

[10,10]

[2, 5]:1 :1 [0, 10]

Fig. 1: Booking-payment workflow with timing constraints

The timed-arc workflow net in Figure 1 describes a simple booking-payment
workflow where a web-service provides a booking form followed by online pay-
ment. Normal flow of the net executes the transition start followed by the transi-
tions book and pay. The whole booking-payment procedure cannot last for more
than 10 minutes and the booking phase takes at least 2 minutes and must be
finished within the first 5 minutes. The process can fail at any moment and the
service allows for three additional attempts before it will terminate with failure.
The workflow net consists of six places drawn as circles and nine transitions
drawn as rectangles. Places can contain timed tokens, like the one of age 0 in
the place in (input place of the workflow). The tokens present in the net form
a marking. Places and transitions are connected by arcs such that arcs from
places to transitions contain time intervals restricting the possible ages of tokens
that can be consumed by transition firing. For simplicity we do not draw time
intervals of the form [0,∞] as they do not restrict the ages of tokens in any way.

In the initial marking of the net, the transition start is enabled as it has a
token in its input place. The transition is urgent (marked with a filled circle),
so no time delay is possible once it gets enabled. After the start transition is
fired, a new token of age 0 arrives to the place booking (initiating the booking
phase) and three new tokens of age 0 arrive to the place attempts (in order to
count the number of attempts we have before the service fails). The transition
fail1 is not enabled as the place attempts, connected to fail1 via the so-called
inhibitor arc, contains tokens, inhibiting fail1 from firing. The transition book is
not enabled either as the token’s age in the place booking does not belong to the
interval [2, 5]. However, after waiting for example 3 minutes, book can fire. This
consumes the token of age 3 from booking and transports it to the place payment ,
preserving its age. This is signalled by the use of transport arcs that contain the
diamond-shaped tips with index :1 (denoting how these arcs are paired).
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At any moment, the booking-payment part of the workflow can be restarted
by firing the transitions restart1 or restart2 . This will bring the token back to
the place booking , reset its age to 0, and consume one attempt from the place
attempts. Once no more attempts are available and the age of the token in the
place booking or payment reaches 5 resp. 10, we can fire the transition fail1 resp.
fail2 and terminate the workflow by placing a token into the output place out .
Note that the places booking and payment contain age invariants ≤ 5 resp. ≤ 10,
meaning that the ages of tokens in these places should be at most 5 resp. 10.
Hence if the service did not succeed within the given time bound, the workflow
will necessarily fail. Finally, if the payment transition was executed within 10
minutes from the service initialization, the transition empty can now repeatedly
remove any remaining tokens from the place attempts and the transition success
terminates the whole workflow. As both the transitions empty and success are
urgent, no further time delay is allowed in this termination phase.

We are concerned with the study of soundness and strong soundness, intu-
itively meaning that from any marking reachable from the initial one, it is always
possible to reach a marking (in case of strong soundness additionally within a
fixed amount of time), having just one token in the place out . Moreover, once
a token appears in the place out , it is mandatory that the rest of the workflow
net does not contain any remaining tokens. One can verify (either manually or
using our tool mentioned later) that the workflow net of our running example is
both sound and strongly sound.

Our contribution. We define a workflow theory based on timed-arc Petri nets,
extend the notion of soundness from [18] to deal with timing features and intro-
duce a new notion of strong soundness that guarantees time-bounded workflow
termination. We study the decidability/undecidability of soundness and strong
soundness and conclude that even though they are in general undecidable, we
can still design efficient verification algorithms for two important subclasses:
monotonic workflow nets (not using any inhibitor arcs, age invariants and ur-
gent transitions) and for the subclass of bounded nets. This contrasts to the
fact that for example the reachability question for monotonic workflow nets is
already undecidable [21]. Moreover, our algorithms allow us to compute the min-
imum and maximum execution times of the workflow. The theory of timed-arc
workflow nets is developed for discrete-time semantics. As remarked in Section 6,
dealing with continuous-time semantics will require different techniques to ar-
gue about soundness of workflow nets. Last but not least, we implemented the
algorithms given in this paper within the open-source tool TAPAAL [5] and suc-
cessfully demonstrate on a number of case studies the applicability of the theory
in real-world scenarios.

Related work. Soundness for different extensions of Petri nets with e.g. inhibitor
arcs, reset arcs and other features have been studied before, leading often to un-
decidability results (for a detailed overview see [20]). We shall now focus mainly
on time extensions of Petri net workflow models. Ling and Schmidt [11] defined
timed workflow nets in terms of Time Elementary Nets (TENs). These nets are
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1-bounded by definition and a net is sound iff it is live and the initial marking
is a home marking in a net that connects the output place of the workflow with
the input one. Du and Jiang [7] suggested Logical Time Workflow Nets (LTWN)
and their compositional semantics. Here liveness together with boundedness is
a necessary and sufficient condition for soundness. Moreover, the soundness of
a well-structured LTWN can be verified in polynomial time. Tiplea et al. [15]
introduced a variant of timed workflow nets in terms of timed Petri nets and
showed the decidability of soundness for the bounded subclass. In subsequent
work [16, 17] they studied the decidability of soundness under different firing
strategies. The papers listed above rely on the model of time Petri nets where
timing information is associated to transitions and not to tokens like in our case.
The two models are significantly different, in particular the number of timing pa-
rameters for time Petri nets is fixed, contrary to the dynamic creation of tokens
with their private clocks in timed-arc Petri nets. We also see several modelling
advantages of having ages associated to tokens as we can for example track the
duration of sequentially composed tasks (via transport arcs) as demonstrated
in our running example. We are not aware of other works developing a work-
flow theory and the corresponding notions of soundness based on timed-arc Petri
nets. Finally, we implement the soundness checks within a user-friendly tool that
permits easy GUI-based debugging of issues in workflows—something that is not
that common for other workflow analysis tools (see [8] for more discussion).

2 Extended Timed-Arc Petri Nets

We shall start with the definition of extended timed-arc Petri nets in the discrete
time setting and later on we recall some basic facts about the extrapolation
technique applicable on this class of nets.

Let N0 = N ∪ {0} and N∞0 = N0 ∪ {∞}. A discrete timed transition system
(DTTS) is a triple (S ,Act ,→) where S is the set of states, Act is the set of

actions and →⊆ S × (Act ∪N0)× S is the transition relation written as s
a→ s′

whenever (s, a, s′) ∈→. If a ∈ Act then we call it a switch transition, if a ∈ N0

we call it a delay transition. We also define the set of well-formed time intervals

as I def
= {[a, b] | a ∈ N0, b ∈ N∞0 , a ≤ b} and its subset I inv def

= {[0, b] | b ∈ N∞0 }
used in age invariants.

Definition 1 (Extended timed-Arc Petri Net). An extended timed-arc
Petri net (ETAPN) is a 9-tuple N = (P, T, Turg , IA,OA, g ,w ,Type, I ) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– Turg ⊆ T is the set of urgent transitions,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA→ I is a time constraint function assigning guards to input arcs,
– w : IA ∪OA→ N is a function assigning weights to input and output arcs,
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– Type : IA ∪ OA → Types is a type function assigning a type to all arcs
where Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that

• if Type(a) = Inhib then a ∈ IA and g(a) = [0,∞],
• if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly

one (t, p′) ∈ OA such that Type((t, p′)) = Transportj,
• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is exactly

one (p, t) ∈ IA such that Type((p, t)) = Transportj,
• if Type((p, t)) = Transportj = Type((t, p′)) then w((p, t)) = w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

Remark 1. Note that for transport arcs we assume that they come in pairs (for
each type Transportj) and that their weights match. Also for inhibitor arcs and
for input arcs to urgent transitions, we require that the guards are [0,∞]. This
restriction is important for some of the results presented in this paper and it
also guarantees that we can use DBM-based algorithms in the tool TAPAAL [5].

The ETAPN model is not monotonic, meaning that adding more tokens
to markings can disable time delays or transition firing. Therefore we define
a subclass of ETAPN where the monotonicity breaking features are not allowed.
In the literature such nets are often considered as the standard timed-arc Petri
net model [3, 9] but we add the prefix monotonic for clarity reasons.

Definition 2 (Monotonic timed-arc Petri net). A monotonic timed-arc
Petri net (MTAPN) is an extended timed arc Petri net with no urgent transitions
(Turg = ∅), no age invariants (I (p) = [0,∞] for all p ∈ P ) and no inhibitor arcs
(Type(a) 6= Inhib for all a ∈ IA).

Before we give the formal semantics of the model, let us fix some notation.

Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be an ETAPN. We denote by •x
def
=

{y ∈ P ∪T | (y, x) ∈ (IA∪OA), Type((y, x)) 6= Inhib} the preset of a transition

or a place x. Similarly, the postset x• is defined as x•
def
= {y ∈ P ∪ T | (x, y) ∈

(IA ∪ OA)}. Let B(N0) be the set of all finite multisets over N0. A marking M
on N is a function M : P −→ B(N0) where for every place p ∈ P and every
token x ∈ M(p) we have x ∈ I (p), in other words all tokens have to satisfy the
age invariants. The set of all markings in a net N is denoted by M(N).

We write (p, x) to denote a token at a place p with the age x ∈ N0. Then
M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a marking M
with n tokens of ages xi in places pi. We define the size of a marking as |M | =∑

p∈P |M(p)| where |M(p)| is the number of tokens located in the place p.

Definition 3 (Enabledness). Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be an
ETAPN. We say that a transition t ∈ T is enabled in a marking M by the

multisets of tokens In = {(p, x1
p), (p, x2

p), . . . , (p, x
w((p,t))
p ) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p

′, x2
p′), . . . , (p

′, x
w((t,p′))
p′ ) | p′ ∈ t•} if
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– for all input arcs except the inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.

∀(p, t) ∈ IA.Type((p, t)) 6= Inhib ⇒ xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |M(p)| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc, the age
of the input token must be equal to the age of the output token and satisfy
the invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj

⇒
(
xi
p = xi

p′ ∧ xi
p′ ∈ I (p′)

)
for 1 ≤ i ≤ w((p, t))

– for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′)) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((p, t)).

A given ETAPN N defines a DTTS T (N)
def
= (M(N), T,→) where states are

the markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M r In) ] Out where ]
is the multiset sum operator and r is the multiset difference operator; we

write M
t→M ′ for this switch transition.

– A time delay d ∈ N0 is allowed in M if
• (x + d) ∈ I(p) for all p ∈ P and all x ∈M(p), and

• if M
t→M ′ for some t ∈ Turg then d = 0.

By delaying d time units in M we reach the marking M ′ defined as M ′(p) =

{x+d | x ∈M(p)} for all p ∈ P ; we write M
d→M ′ for this delay transition.

Let →def
=
⋃

t∈T
t→ ∪

⋃
d∈N0

d→. The set of all markings reachable from a given

marking M is denoted by [M〉 def
= {M ′ | M →∗ M ′}. By M

d,t→ M ′ we denote

that there is a marking M ′′ such that M
d→M ′′

t→M ′.
A marking M is a deadlock if there is no d ∈ N0, no t ∈ T and no marking

M ′ such that M
d,t→ M ′. A marking M is divergent if for every d ∈ N0 we have

M
d→M ′ for some M ′.
In general, ETAPNs are infinite in two dimensions. The number of tokens

in reachable markings can be unbounded and even for bounded nets the ages of
tokens can be arbitrarily large. We shall now recall a few results that allow us to
make finite abstractions for bounded ETAPNs, i.e. for nets where the maximum
number of tokens in any reachable marking is bounded by a constant.
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Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a given ETAPN. In [1] the
authors provide an algorithm for computing a function Cmax : P → (N0 ∪
{−1}) returning for each place p ∈ P the maximum constant associated to this
place, meaning that the ages of tokens in place p that are strictly greater than
Cmax(p) are irrelevant. In particular, places where Cmax(p) = −1 are the so-
called untimed places where the age of tokens is not relevant at all, implying
that all the intervals on their outgoing arcs are [0,∞].

Let M be a marking of N . We split it into two markings M> and M≤ where
M>(p) = {x ∈M(p) | x > Cmax(p)} and M≤(p) = {x ∈M(p) | x ≤ Cmax(p)}
for all places p ∈ P . Clearly, M = M> ]M≤.

We say that two markings M and M ′ in the net N are equivalent, written
M ≡ M ′, if M≤ = M ′≤ and for all p ∈ P we have |M>(p)| = |M ′>(p)|. In other
words M and M ′ agree on the tokens with ages below the maximum constants
and have the same number of tokens above the maximum constant.

The relation ≡ is an equivalence relation and it is also a timed bisimulation
where delays and transition firings on one side can be matched by exactly the
same delays and transition firings on the other side and vice versa.

Theorem 1 ([1]). The relation ≡ is a timed bisimulation.

We can now define canonical representatives for each equivalence class of ≡.

Definition 4 (Cut). Let M be a marking. We define its canonical marking
cut(M) by cut(M)(p) = M≤(p) ]

{
Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸

|M>(p)| times

}
.

Lemma 1 ([1]). Let M , M1 and M2 be markings. Then (i) M ≡ cut(M), and
(ii) M1 ≡M2 if and only if cut(M1) = cut(M2).

Let M and M ′ be two markings. We say that M ′ covers M , denoted by M v
M ′, if M(p) ⊆M ′(p) for all p ∈ P . We write M vcut M

′ if cut(M) v cut(M ′).
For monotonic timed-arc Petri nets we can now show that adding more tokens

to the net does not restrict its possible behaviour.

Lemma 2. Let N be an MTAPN and M,M ′ ∈ M(N) be two of its markings

such that M vcut M ′. If M
d→ M1 (resp. M

t→ M1) then M ′
d→ M ′1 (resp.

M ′
t→M ′1) such that M1 vcut M

′
1 and |M ′| − |M | = |M ′1| − |M1|.

Proof. Let M
d→ M1, resp. M

t→ M1. As M ≡ cut(M) by Lemma 1(i), we can

by Theorem 1 conclude that also cut(M)
d→M2, resp. cut(M)

t→M2, such that
M1 ≡M2. Recall that cut(M) v cut(M ′) by the assumption of the lemma.

– Time delay case (cut(M)
d→ M2). As the net does not contain any nontriv-

ial age invariants and there are no urgent transitions, we know that also

cut(M ′)
d→M3 such that M2 vM3 as time delay preserves the v-relation.
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– Transition firing case (cut(M)
t→M2). As the net does not have any inhibitor

arcs, we can see that also cut(M ′)
t→ M3 by consuming exactly the same

tokens in cut(M ′) as we did in cut(M). Clearly, M2 vM3.

Because cut(M ′) ≡M ′ due to Lemma 1(i), we know by Theorem 1 that M ′
d→

M ′1, resp. M ′
t→ M ′1, such that M3 ≡ M ′1. Hence M1 ≡ M2 v M3 ≡ M ′1. By

Lemma 1(ii) we get cut(M1) = cut(M2) and cut(M3) = cut(M ′1). Observe now
a simple fact that M2 vM3 implies that cut(M2) v cut(M3). This all together
implies that cut(M1) = cut(M2) v cut(M3) = cut(M ′1) which is another way
of saying that M1 vcut M ′1 as required by the lemma. As time delays do not
change the number of tokens in M and M ′ and transition firing adds or removes
an equal number of tokens from both M and M ′, we can also conclude that
|M ′| − |M | = |M ′1| − |M1|. ut

3 Timed-Arc Workflow Nets

We shall now formally define timed-arc workflow nets, introduce the soundness
notion for this class of nets and answer the questions about the decidability of
soundness.

Timed-arc workflow nets are defined similarly as untimed workflow nets [18].
Every workflow net has a unique input place and a unique output place. After
initializing such a net by placing a token into the input place, it should be
guaranteed that any possible workflow execution can be always extended such
that the workflow terminates with just one token in the output place (also known
as the soundness property).

Definition 5 (Extended timed-arc workflow net). An ETAPN N =
(P, T, Turg , IA,OA, g ,w ,Type, I ) is called an Extended Timed-Arc WorkFlow
Net (ETAWFN) if

– there exists a unique place in ∈ P such that •in = ∅ and in• 6= ∅,
– there exists a unique place out ∈ P such that out• = ∅ and •out 6= ∅,
– for all p ∈ P \ {in, out} we have •p 6= ∅ and p• 6= ∅, and
– for all t ∈ T we have •t 6= ∅.

Remark 2. Notice that the conditions •in = ∅ and •out 6= ∅ necessarily imply
that in 6= out. Moreover, we allow the postset of a transition to be empty
(t• = ∅). This is just a technical detail and an equivalent workflow net where all
transitions satisfy t• 6= ∅ can be constructed by introducing a new place pnew

so that any outgoing transition from the start place in puts a token into pnew

and every incoming transition to the final place out consumes the token from
pnew . Now for any transition t with t• = ∅ we add the pair of arcs (pnew , t) and
(t, pnew ) without influencing the behaviour of the net.

Decidability of soundness crucially depends on the modelling features allowed
in the net. Hence we define a subclass of so-called monotonic workflow nets.

8



Definition 6 (Monotonic timed-arc workflow net). A monotonic timed-
arc workflow net (MTAWFN) is an ETAWFN with no urgent transitions, no age
invariants and no inhibitor arcs.

The marking Min = {(in, 0)} of a timed-arc workflow net is called initial.
A marking M is final if |M(out)| = 1 and for all p ∈ P r {out} we have
|M(p)| = 0, i.e. it contains just one token in the place out . There may be several
final markings with different ages of the token in the place out .

We now provide the formal definition of soundness that formulates the stan-
dard requirement on proper termination of workflow nets [19, 20].

Definition 7 (Soundness of timed-arc workflow nets). An (extended or
monotonic) timed-arc workflow net N = (P, T, Turg , IA,OA, g ,w ,Type, I ) is
sound if for any marking M ∈ [Min〉 reachable from the initial marking Min :

a) there exists some final marking Mout such that Mout ∈ [M〉, and
b) if |M(out)| ≥ 1 then M is a final marking.

A workflow is sound if once it is initiated by placing a token of age 0 in the
place in, it has always the possibility to terminate by moving a token to the
place out (option to complete) and moreover it is guaranteed that the rest of the
workflow net is free of any remaining tokens as soon as the place out is marked
(proper completion). We now define a subclass of bounded workflow nets.

Definition 8 (Boundedness). A timed-arc workflow net N is k-bounded for
some k ∈ N0 if any marking M reachable from the initial marking Min satisfies
|M | ≤ k. A net is bounded if it is k-bounded for some k.

A classical result states that any untimed sound net is bounded [18]. This is
not in general the case for extended timed-arc workflow nets as demonstrated
in Figure 2. Nevertheless, we recover the boundedness result for the subclass of
monotonic timed-arc workflow nets.

Theorem 2. Let N an MTAWFN. If N is sound then N is bounded.

Proof. By contradiction assume that N is a sound and unbounded MTAWFN.
Let Min be the initial workflow marking. Now we can argue that there must
exist two reachable markings M,M ′ ∈ [Min〉 such that

i) M vcut M
′, and

ii) |M | < |M ′|.

This follows from the fact that M vcut M ′ iff cut(M) v cut(M ′) and from
Definition 4 where the cut function is given such that each token is placed into
one of the finitely many places, say p, and its age is bounded by Cmax(p) + 1.
Thanks to Dickson’s Lemma [6], saying that every set of n-tuples of natural num-
bers has only finitely many minimal elements, we are guaranteed that conditions
i) and ii) are satisfied for some reachable markings M and M ′.
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Fig. 2: Sound and unbounded extended timed-arc workflow nets

Since N is a sound workflow net, we now use condition a) of Definition 7,
implying that from M we reach some final marking Mout. Assume that this is
achieved w.l.o.g. by the following sequence of transitions:

M
d1→M1

t1→M2
d2→M3

t2→M4 . . .
tn→Mout .

We know that M vcut M
′ and hence by repeatedly applying Lemma 2 also

M ′
d1→M ′1

t1→M ′2
d2→M ′3

t2→M ′4 . . .
tn→M ′out

such that at the end Mout vcut M ′out. The facts that Mout vcut M ′out and
Mout is a final marking imply that |M ′out(out)| ≥ 1. By a repeated application of
Lemma 2 we also get |M ′|−|M | = |M ′out|−|Mout|. By condition ii) of this lemma
we know that |M | < |M ′|, this implies that also |Mout| < |M ′out|. However, now
the place out in M ′out is marked and there is at least one more token somewhere
else in the marking M ′out. This contradicts condition b) of Definition 7. ut

Next we show that soundness for extended timed-arc workflow nets is unde-
cidable. The result has been known for the extension with inhibitor arcs [20],
we prove it (by reduction from two counter Minsky machines) also for urgent
transitions and age invariants.

Theorem 3. Soundness is undecidable for extended timed-arc workflow nets.
This is the case also for MTAWFNs that contain additionally only inhibitor arcs,
age invariants or urgent transitions but not necessarily all of them together.

We now prove decidability of soundness for workflow nets without any in-
hibitor arcs, age invariants and urgency. This contrasts to undecidability of
reachability for this subclass [21]. Algorithm 1 shows how to efficiently check
soundness on this subclass and on the subclass of bounded nets. The algorithm
first performs a standard forward search on the cut-extrapolated marking graph
by using the sets Waiting and Reached for storing the discovered resp. already
explored cut markings, while at the same time computing the shortest path from
the initial marking to the reachable cut-markings in the net. The algorithm will
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Algorithm 1: Soundness checking for timed-arc workflow nets

Input : An MTAWFN or an ETAWFN with a positive integer bound k
N = (P, T, Turg , IA,OA, g ,w ,Type, I ) where in, out ∈ P .

Output: “Not k-bounded” if the workflow net is not monotonic and not
k-bounded; “true” together with the minimum execution time if N is
sound; “false” if N is not sound.

1 begin
2 A marking M has an (initially empty) set of its parents M.parents and a

minimum execution time M.min (initially ∞); Min := {(in, 0)};
3 Waiting := {Min}; Min .min = 0; Reached := Waiting ; Final := ∅;
4 while Waiting 6= ∅ do
5 Remove some marking M from Waiting with the smallest M.min;

6 foreach M ′s.t.M
1→M ′ or M

t→M ′ for some t ∈ T do
7 if N is not monotonic and |M ′| > k then return “Not k-bounded”;
8 M ′

c := cut(M ′); M ′
c.parents := M ′

c.parents ∪ {M};
9 if M

1→M ′ then M ′
c.min := MIN(M ′

c.min,M.min + 1);
10 else M ′

c.min = MIN(M ′
c.min,M.min);

11 if |M ′
c(out)| ≥ 1 then

12 if M ′
c is a final marking then Final := Final ∪ {M ′

c};
13 else return false;

14 else
15 if M ′

c /∈ Reached then
16 if M ′

c is a deadlock then return false;
17 if N is monotonic and ∃M ′′ ∈ Reached . M ′′ vcut M

′
c then

18 return false;
19 Reached := Reached ∪ {M ′

c}; Waiting := Waiting ∪ {M ′
c};

20 Waiting := Final ;
21 while Waiting 6= ∅ do
22 Remove some marking M from Waiting ;
23 Waiting := Waiting ∪ (M.parents ∩ Reached);
24 Reached := Reached rM.parents;

25 if Reached = ∅ then
26 time :=∞; foreach M ∈ Final do time = MIN(time,M.min);
27 return true and time;

28 else
29 return false;

terminate at line 7 if the k bound for a non-monotonic input net N is exceeded
or at line 18 if we find a marking covering another already discovered marking in
case the input net N is monotonic (note that monotonicity is a simple syntactic
property of the net). In case a marking with a token in the output place is dis-
covered, we report a problem if the marking is not a final marking; otherwise we
store the final marking into the set Final (line 12). In case a deadlock non-final
marking is discovered, we immediately return false at line 16.

If the first phase of the algorithm successfully terminates, we initiate in the
second while-loop a backward search from the set Final , checking that all reach-
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able states have a path leading to some final marking. If this is the case, we
return at line 27 that the net is sound together with its minimum execution
time.

Formally, the correctness of the algorithm is introduced by the following
series of lemmas. The next loop invariants can be proved in a straightforward
manner.

Lemma 3 (Loop Invariants). The while-loop in lines 4-19 of Algorithm 1
satisfies the following loop-invariants:

a) Waiting ⊆ Reached,
b) for any marking M ′c ∈ Reached ∪ Final, there exists a computation of the

net Min →∗ M ′ such that M ′c = cut(M ′) and the accumulated delay on the
computation Min →∗ M ′ is equal to M ′c.min, and

c) for any marking M ′c ∈ Reached ∪ Final and any M ∈ M ′c.parents there is a
transition M →M ′ such that M ′c = cut(M ′).

Lemma 4 (End of Phase One). After the first while loop (lines 4-19) of
Algorithm 1 is finished, we have at line 20 that Reached ∪ Final = {cut(M ′) |
Min →∗ M ′}. Moreover, if Min →∗ M ′ then the accumulated delay of this
computation is greater or equal to cut(M ′).min and there is at least one such
computation ending in M ′ where the accumulated delay is equal to cut(M ′).min.

Proof. Let us first argue for the fact Reached∪Final = {cut(M ′) |Min →∗ M ′}.
The inclusion “⊆” follows directly from claim b) of Lemma 3. The inclusion “⊇”
follows from the fact that we search all possible successors of Min ; we do not
provide further arguments as this is a standard graph searching algorithm. The
optimality of the computation of the minimum delay is guaranteed because we
explore the graph from the nodes with the smallest min value (line 5) and this is
(up to the cut-equivalence) essentially the Dijkstra’s algorithm for shortest path
in a graph. ut

Lemma 5 (Not k-bounded). Let N be an MTAWFN or ETAWFN and k > 0.
If Algorithm 1 returns “Not k-bounded” then N is not k-bounded.

Proof. The algorithm returns “Not k-bounded” only at line 7, provided that
the net is not monotonic and there is a marking M ′ reachable in one step from
M ∈Waiting such that |M ′| > k. By claim b) of Lemma 3, we know that there
is a computation from Min to M1 such that M = cut(M1) and we also know
that M → M ′ (line 6). By Lemma 1 and Theorem 1 also M1 → M2 such that
M ′ = cut(M2) and this means that M2 is reachable from Min and at the same
time |M2| > k as cut preservers the number of tokens in a marking. Hence if the
algorithm returns “Not k-bounded” then the net is not k-bounded. ut

Lemma 6 (Return value false). Let N be an MTAWFN or ETAWFN and
k > 0. If Algorithm 1 returns false then N is not sound.

Proof. By a simple analysis of the four places where the algorithm returns false
(lines 13, 16, 18 and 29). ut
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Lemma 7 (Return value true). Let N be an MTAWFN or ETAWFN and
k > 0. If Algorithm 1 returns true then N is sound.

Proof. Assume that the algorithm returned true at line 27 and we shall argue
that N satisfies conditions a) and b) of Definition 7. Condition b) is straightfor-
ward as by Lemma 4 we know that Reached ∪ Final is the set of cut-markings
of all the reachable markings of N and if some of them marks the place out
then this must be a final marking, otherwise the algorithm would return false at
line 13. For condition a) we realise that the set Final contains all final markings
reachable from Min and in the second-phase of the algorithm we run a backward
search and remove from the reachable state-space all markings that have a com-
putation leading to one of the final markings. We return true only if Reached is
empty, meaning that all reachable markings have a computation to some final
marking. This corresponds to condition a). ut

Lemma 8 (Termination). Algorithm 1 terminates on any legal input.

Proof. For non-monotonic nets there are only finitely many canonical markings
with at most k tokens to be explored. For monotonic nets, similar arguments like
in the proof of Theorem 2 imply that there cannot be infinitely many markings
that are incomparable w.r.t. vcut . ut

We can so conclude with the main result claiming decidability of soundness
for workflow nets that are either bounded or monotonic.

Theorem 4. Soundness is decidable for monotonic timed-arc workflow nets and
for bounded extended timed-arc workflow nets.

Given a sound ETAWFN N = (P, T, Turg , IA,OA, g ,w ,Type, I ), we can rea-
son about its execution times (the accumulated time that is used to move a token
from the place in into the place out). Let Min be the initial marking of N and
F(N) be the set of all final markings of N . Let T (N) be the set of all execu-
tion times by which we can get from the initial marking to some final marking.
Formally,

T (N)
def
= {

n−1∑
i=0

di |Min = M0
d0,t0→ M1

d1,t1→ M2
d2,t2→ · · · dn−1,tn−1→ Mn ∈ F(N)} .

The set T (N) is nonempty for any sound net N and the minimum execution
time of N , defined by min T (N), is computable by Algorithm 1 (correctness
follows from Lemma 4).

Theorem 5. Let N be a sound MTAWFN or a sound and bounded ETAWFN.
The minimum execution time of N is computable.

Notice that the set T (N) can be infinite for general timed-arc workflow nets,
meaning that the maximum execution time of N , given by max T (N), is not
always well defined. This issue is discussed in the next section.
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4 Strong Soundness

Soundness ensures the possibility of correct termination in a workflow net, how-
ever, it does not give any guarantee on a timely termination of the workflow.
The notion of strong soundness introduced in this section will provide us with
such guarantees.

In untimed workflows, infinite behaviour can be used to model for instance
repeated queries for further information until a decision can be taken. In a time
setting, we usually have a deadline such that if the information is not acquired
within the deadline, alternative behaviour in the net is executed (compensa-
tion). Consider the workflow nets presented in Figure 3. They represent a simple
customer-complaint workflow where, before a decision is made, the customer can
be repeatedly requested to provide additional information. The net in Figure 3a
is sound but there is no time guarantee by when the decision is reached. On the
other hand, the net in Figure 3b introduces additional timing, requiring that the
process starts within 5 days and the request/provide loop takes no more than
14 days, after which a decision is made. The use of transport arcs enables us to
measure the accumulated time since the place pending was entered the first time.
It is clear that the workflow only permits behaviours up to 19 days in total. In
fact, the net enables infinite executions never reaching any final marking, how-
ever, this only happens within a bounded time interval (producing a so-called
zeno run) and we postulate that such a scenario is unrealistic in a real-world
workflow execution. After disregarding the zeno runs, we are guaranteed that
the workflow finishes within 19 days and we can call it strongly sound.

A formal definition of strong soundness follows. Recall that a marking is
divergent if it allows for arbitrarily long delays.

Definition 9 (Strong soundness of TAWFN). An (extended or monotonic)
timed-arc workflow net N is strongly sound if

a) N is sound,

b) every divergent marking reachable in N is a final marking, and

c) there is no infinite computation starting from the initial marking

{(in, 0)} = M0
d0,t0→ M1

d1,t1→ M2
d2,t2→ · · · where

∑
i∈N0

di =∞.

As expected, strong soundness for general (unbounded) extended workflow
nets is undecidable.

Theorem 6. Strong soundness of ETAWFN is undecidable.

The next lemma shows that strong soundness of bounded nets corresponds
to the property that any execution of the workflow net is time bounded.

Lemma 9. A sound and bounded ETAWFN is strongly sound if and only if the
set of its execution times T (N) is finite.
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Fig. 3: Fragment of customer complaint workflow ([0,∞] guards are omitted)

Proof. “⇐”: By contradiction we assume that T (N) is finite while N is not
strongly sound. This means that either (i) there is a reachable divergent marking
of N that is not a final marking or (ii) the net contains an infinite time-divergent
computation. In case (i) we can reach the divergent marking and perform an
arbitrarily long delay after which (thanks to soundness of N) we can still reach
some final marking. Hence T (N) is clearly infinite, contradicting our assumption.
In case (ii) we can again follow the infinite execution for a sufficiently long time so
that an arbitrary accumulated delay is achieved and again (thanks to soundness
of N) we can reach some final marking, implying that T (N) is again infinite,
contradicting our assumption.

“⇒”: Let N be a strongly sound workflow net. From condition b) of Def-
inition 9 we know that any reachable non-final marking in N cannot diverge.
Moreover, there is a global bound B such that any reachable marking can delay
at most B time units but not more. This is due to the fact that non-divergent
behaviour is guaranteed either by age invariants (that have a fixed upper-bound
limiting the maximum delay) or by urgent transitions with input arcs having
[0,∞] guards only (prohibiting time delay as soon as a marking enables some
urgent transition). Also, it is impossible to have a reachable marking with no
tokens as the net cannot be sound in this case (Definition 5 requires that every
transition has at least one input place).

Let S denote the number of reachable cut-markings in the net N . Hence
any execution from the initial marking to some final one has either length of no
more than S, meaning that its accumulated time duration is at most S ·B, or it
contains the same cut marking twice, forming a loop on the execution. We know
that there must be only zero delays on any such a loop as otherwise we would
be able to repeat the cycle infinitely often, breaking condition c) of Definition 9
(of course, this loop is only on the cut markings but due to Theorem 1 it can be
found also in the real execution of the net with exactly the same delays). This
implies that the loop can be omitted while preserving the accumulated execution
time of the path. So we are guaranteed that the set T (N) is bounded by S · B
and hence it is finite. ut
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Lemma 9 implies that for any bounded and strongly sound net N , the max-
imum execution time is well defined. Notice that for monotonic nets (even ex-
tended with inhibitor arcs), the answer to the strong soundness is always negative
as all reachable markings are divergent.

We shall so focus on bounded ETAWFN where strong soundness is decidable
and the maximum execution time computable, relying on Lemma 9. We prove
this by reducing strong soundness of a given bounded ETAWFN N into a reach-
ability problem on a bounded ETAPN N(c), where c is a nonnegative integer;
the translation is given in Figure 4. The token from the place timer has to move
to the place ready exactly at the time c from the start of the workflow. If the
workflow can finish (by marking the place out) after at least c time units passed,
then we can fire the transition late and mark the place after . If a token is moved
to out earlier, then the urgent transition early will have to fire immediately.

Lemma 10. Let N be a sound ETAWFN. Let Mafter = {(after , 0)} be a mark-
ing in N(c) with one token in the place after. If c ∈ T (N) then N(c) can reach
the marking Mafter . If N(c) can reach the marking Mafter then c′ ∈ T (N) for
some c′ ≥ c.

Proof. If c ∈ T (N) then we perform the execution lasting exactly c time units in
the net N and at the moment c we fire the transition tick , enabling the transition
late and marking the place after . If on the other hand the place after can be
marked then necessarily the token in the place out arrived at time c′ such that
c′ ≥ c, otherwise the urgent transition early had to be fired instead. ut

Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a given bounded ETAWFN.
We can run Algorithm 1 to check for soundness of N . If it is not sound then N
cannot be strongly sound either. Otherwise, let S be the number of non-final cut
markings reachable in N (corresponding to the maximum cardinality of the set
Reached in Algorithm 1). Let B = max{b | p ∈ P, I (p) = [0, b], b 6= ∞} be the
maximum integer number used in any of the age invariants in N .

Lemma 11. A sound and bounded ETAWFN N is strongly sound if and only
if N(S ·B + 1) cannot reach the marking {(after , 0)}.

Proof. If the net N is strongly sound then there is no reachable divergent mark-
ing with the possible exception of final markings. Hence any reachable marking
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either contains some enabled urgent transition (and so no delay is possible) or
the divergent behaviour is avoided by some age invariant, giving us the guaran-
tee that no reachable marking can delay more than B units of time. As there
are S reachable non-final cut markings, we know that any execution of N using
more than S · B units of time must contain a loop with a non-zero time delay
somewhere on the loop. Hence if N(S · B + 1) can mark the place after , then
either there is a reachable divergent marking (and the net is not strongly sound)
or there exists an execution with a non-zero delay loop and by repeating the loop
infinitely often, we get an execution breaking the condition c) of Definition 9 and
the net is not strongly sound either.

On the other hand, if the place after is not reachable in N(S · B + 1) then
it is surely not reachable also for any other c ≥ S ·B + 1, meaning that the set
T (N) is finite by Lemma 10. Now Lemma 9 and the fact that N is sound implies
that N is strongly sound. ut

Theorem 7. Strong soundness of bounded extended timed-arc workflow nets is
decidable and the maximum execution time is computable.

Proof. Let N be a given bounded ETAWFN. We first run Algorithm 1 to check
for soundness of N . If it is not sound, we terminate and announce that N is not
strongly sound. Otherwise, we check whether N(S ·B + 1) can reach a marking
containing just one token in the place after (this check is decidable for bounded
ETAPN [1]). If this is the case, we return that N is not strongly sound due to
Lemma 11. Otherwise the net is sound and we return the maximum accumulated
delay in any marking discovered during the check as the maximum execution time
(correctness follows from Lemma 10, soundness of N and the fact that once a
token appears in the place out in N(S ·B + 1), no further delay is possible). ut

5 Implementation and Experiments

We demonstrate the usability of our framework on three case studies. The stud-
ied workflows were modelled and verified with the help of a publicly available,
open-source tool TAPAAL [5], where the algorithms presented in this paper are
efficiently implemented in C++. The tool provides a convenient GUI support and
one of the main advantages of our tool is the visualization of traces disproving
soundness (see [8] for more discussion on this topic).

In the Brake System Control Unit (BSCU) case study, a part of a Wheel
Braking System (WBS) used for the certification of civil aircrafts in the SAE
standard ARP4761 [14], we discovered in less than 1 second that the workflow is
not sound due to unexpected deadlocks. The authors of [14] were able to detect
these problems asking a reachability query, however, the error traces contra-
dicting soundness were constructed manually. Our implementation allows a fully
automatic detection and visualization of such situations. The workflow model
contains 45 places, 33 transitions and 55 arcs.

In the second case study describing the workflow of MPEG2 encoding algo-
rithm run on a multicore processor (Petri net model was taken from [13]), we
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Fig. 5: TAPAAL screenshot of the workflow analysis tool

verified in about 10 seconds both soundness and strong soundness, and com-
puted the minimum and maximum encoding time for the IBBP frame sequence.
The workflow model contains 44 places, 34 transitions and 82 arcs.

In the third case study, we checked the soundness of a larger blood transfu-
sion workflow [4], the benchmarking case study of the little-JIL language. The
Petri net model was suggested in [2] but we discovered several issues with im-
proper workflow termination that were fixed and then both soundness and strong
soundness was confirmed in about 1 second, including the information about
the minimum and maximum execution times. The workflow model contains 115
places, 94 transitions and 198 arcs.

TAPAAL models of all case studies can be obtained from www.tapaal.net
and Figure 5 shows a screenshot of the GUI in the trace debugging mode for
workflow analysis of the brake system control unit mentioned above.

6 Conclusion

We presented a framework for modelling of timed workflow processes via timed-
arc workflow nets and studied the classical problem of soundness and its exten-
sion to time-bounded (strong) soundness. We provided a comprehensive analy-
sis of decidability/undecidability of soundness and strong soundness on different
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Fig. 6: A net sound in the discrete semantics but unsound in the continuous one

subclasses of timed-arc workflow nets. We also suggested efficient algorithms for
computing minimum and maximum execution times of a given workflow and
implemented all algorithms within the tool TAPAAL [5]. As a result we have a
complete theory for checking soundness on timed workflow nets and contrary to
many other papers studying different variants of workflow processes, we took a
step further by providing efficient implementation of the algorithms, including
a platform independent GUI support for modular design of timed workflow nets
and visual error trace debugging. The tool is open-source and freely available
at www.tapaal.net. The practical usability of the approach was documented on
three industry-inspired case studies, demonstrating a promising potential for
verification of larger timed workflows.

In our study we focused on the discrete semantics of workflow nets that is
often sufficient and allows for modelling of workflows where events can happen in
discrete steps. In case of continuous time semantics (delays are from the domain
of nonnegative real numbers) the situation is, perhaps surprisingly, different.
Consider the workflow net in Figure 6 (as before we do not draw the [0,∞]
intervals). The workflow is clearly sound w.r.t. the discrete semantics as the age
of the token in the place finished can be either 1 or 0, depending on whether
the service was executed early or late, and then either the transition early or
late is enabled and allows us to always reach a final marking. However, in the
continuous semantics we can execute the sequence “init , delay 0.5, service, delay
0.5”, bringing us into a deadlock situation. Hence the decidability of soundness
in the continuous semantics cannot be derived from the results achieved in this
paper. We nevertheless conjecture that soundness is decidable also in this case
and the details are left for future work.
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Appendix

A Proofs from Section 3

Proof (Theorem 3). The proofs are by reduction from the Minsky machine. A
Minsky machine with two nonnegative counters c1 and c2 is a sequence of labelled
instructions

1 : inst1; 2 : inst2; . . . , n : instn

where instn = HALT and each insti, 1 ≤ i < n, is of one of the following forms

– (Inc) i: cj++; goto k
– (Dec) i: if cj=0 then goto k else (cj--; goto `)

for j ∈ {1, 2} and 1 ≤ k, ` ≤ n.
Instructions of type (Inc) are called increment instructions and those of type

(Dec) are called test and decrement instructions. A configuration is a triple
(i, v1, v2) where i is the current instruction and v1 and v2 are the values of the
counters c1 and c2, respectively. A computation step between configurations is
defined in the natural way. If starting from the initial configuration (1, 0, 0) the
machine reaches the instruction HALT then we say it halts, otherwise it loops.
The problem whether a given Minsky machine halts is undecidable [12]. W.l.o.g.
we assume that the machine halts only when both counters are empty (we can
add a few instructions that will always empty the counters before reaching the
halting instruction).

We shall now reduce reachability in Minsky machines into the soundness
problem on ETAWFN. Counters c1 and c2 will be simulated by two places pc1
and pc2 such that the number of tokens in those places represents the value of
the counters. For every instruction label i, 1 ≤ i ≤ n, we add a new control
place pi. At any moment exactly one of the pi places will be marked by a token,
representing the instruction to be executed in the next step.

If we allow urgent transitions, we can create for any given Minsky machine
a workflow net constructed according to the patterns given in Figure 7 (we
only show the encoding of the instructions that manipulate the first counter; the
encoding for the second counter is completely analogous). We also postulate that
the input place is in = p1 and the output place is out = pn. Now, given the initial
marking with one token in p1, the net will faithfully simulate the (deterministic)
computation of the Minsky machine. This is clear for the increment instruction
as the control token moves from pi to pk and the number of tokens in pc1 is
increased by one. For the test and decrement instruction, if pc1 contains at least
one token then the transition tdec

i will be fired with no delay (the transition
is urgent), decreasing the counter by one and moving the control token to p`
as required. Only if the counter c1 is empty (there are no tokens in pc1), we
are allowed to delay one time unit and fire the transition tzero

i such that the
control token is moved to pk. Hence the test and decrement instruction is also
faithfully simulated and there is no possibility of any deadlock situation, meaning
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(b) i: if c1=0 then goto k else (c1--; goto `)

Fig. 7: Simulation of (Inc) and (Dec) instructions with urgent transitions

that either tdec
i or tzero

i can always fire. It is now an easy observation that the
workflow net is sound if and only if the Minsky machine halts.

The reduction for workflow nets that contain only age invariants is more com-
plicated. The reduction idea is based on [10], however, it had to be nontrivially
modified in order to avoid the large number of possible deadlocks introduced in
the reduction.

The counters are now modelled by two places that contain age invariants
ensuring that no tokens can get older than 2, see Figure 8a. The intuition is that
before and after the simulation of any instruction, all tokens in the places pc1
and pc2 are exclusively of age 1. As before the input place is in = p1 and the
output place is out = pn.

Let us now observe that this invariant is preserved after simulating the in-
crement instruction (Figure 8b). Assume that all tokens in the counter places
are of age 1 and that the place pi contains one token of age 0. Before ti can be
fired, one time unit must pass and this guarantees that all tokens in the counter
places will become of age 2. After firing of ti, we also add one token of age 0
to pc1 and moreover, a token of age 0 in the place qi is created. Before we can
proceed and delay one time unit and then fire tgotoi , we must fire the transitions
tresetc1 and tresetc2 once for every token of age 2 in the counter places in order to
reset them all to the age 0, otherwise the age invariant ≤ 2 in the token places
disables the delay of one time unit. Clearly, after the transition tgotoi is fired, all
counter tokens are again of age 1 (including the one added to pc1) and we argued
for a faithful simulation of the increment instruction.

Let us consider now the test and decrement instruction simulated by the net
in Figure 8c. Again, let us assume that all counter tokens are of age 1 and that
there is one token of age 0 in pi. First we wait one time unit and then fire ti,
meaning again that all counter tokens are of age 2. Now all tokens in the place
pc2 can be reset to 0 and if pc1 does not contain any tokens, we can wait one
time unit and fire tzeroi , implying that we place a token to pk as expected and all
counter tokens are again of age 1. If on the other hand pc1 contains some tokens
(all of age 2 as we already mentioned), we must without any delay fire tdeci

consuming one token from pc1 while marking the places q′i and preset
c1 , allowing

now all counter tokens to be reset to 0. After this we can wait one time unit and
fire the transition tendi , while continuing with the execution of the instruction
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pc1

inv: ≤ 2

preset
c1treset

c1[2, 2] [0,∞]
pc2

inv: ≤ 2

preset
c2treset

c1[2, 2] [0,∞]

(a) Simulation of the counters c1 and c2

pi

inv: ≤ 1

preset
c1

inv: ≤ 1

qi

preset
c2

pc1

pk

inv: ≤ 1

ti
[1, 1]

tgoto
i

[0,
∞]

[1, 1]

[0,∞]

(b) i: c1++; goto k

pi

inv: ≤ 1

pc1

inv: ≤ 1

qi

inv: ≤ 1

q′i

preset
c2

preset
c1

pk

inv: ≤ 1

p`

inv: ≤ 1

ti
[1, 1]

tzero
i

[1, 1]

[0,∞]

tdec
i

[2, 2]

[0, 0]

tend
i

[0,∞]

[1, 1]

[0,∞]

(c) i: if c1=0 then goto k else (c1--; goto `).

Fig. 8: Simulation of a Minsky machine by a workflow net with invariants

with label `. All tokens in the counter places are now again of age 1. Notice that
these two scenarios are deterministically determined by the presence or absence
of tokens in pc1 and that there are no deadlock situations possible during the
simulation.

As a result we can see that the net is sound if and only if the Minsky machine
halts. This completes the undecidability proof also for the situation where we
use only age invariants. ut
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B Proofs Related to Algorithm 1

We will refer to phase 1 (lines 2-20) and phase 2 (lines 21-29) of Algorithm 1.

Proof (Lemma 3). The claims a), b) and c) of the invariant are trivially satisfied
the first time the while-loop is entered. Let us assume the invariant holds before
the execution of the body of the while-loop.

The claim a) is easily proved, as markings are only added to Waiting in line
19 of the loop body, and the same marking is also added to Reached in line 19
and no markings are removed from Reached in the body of the loop.

For claim b) notice that in line 5 we remove a marking M from Waiting and
for any successor M ′ of M , the marking M is added to the set of parents of
M ′c = cut(M ′) (line 8). Due to the first invariant, M was already in Reached
in the previous iteration of the loop. Hence there exists a computation Min →∗
M1 such that M = cut(M1) and the accumulated delay of this computation is
M.min. Because M →M ′ (line 6) then also M1 →M2 such that M ′c = cut(M2)
(line 8). Hence Min →∗ M2 and M ′c = cut(M2) as required. The accumulated
delay is updated according to the type of the transition M1 → M2 at lines 9
and 10. If the value M ′c.min changed after this update then the computation
Min →∗ M2 achieves this accumulated delay, otherwise the minimum delay was
achieved in some previous run of the body of the while-loop and it is hence valid
due to the loop invariant.

Finally, the claim c) follows from the fact that markings to M ′c.parents are
only added at line 8 and such markings clearly satisfy the invariant claim. ut

Proof (Lemma 6). Reading the algorithm, one can notice that it returns false in
four lines (lines 13, 16, 18 and 29). Therefore, we have to demonstrate that the
net is not sound in any of those cases.

– Starting with line 13, the algorithm returns false if it finds a marking M ′

from the initial marking of N such that M ′c = cut(M ′) and M ′c has at least
one token in the output place out while it is not a final marking (contains
some additional tokens in other places too). Clearly, it is possible to reach
from Min this marking (up to cut-equivalence) by claim b) of Lemma 3 and
it breaks condition b) of the definition of soundness (Definition 7). Therefore
the net is not sound.

– In line 16, the algorithm returns false if we have found a marking M ′ reach-
able from Min (here we use implicitly claim b) of Lemma 3) such that
M ′c = cut(M ′) and M ′c is a deadlock. As M ′c is a deadlock, M ′ is also a
deadlock (by Theorem 1). The marking M ′ is not a final marking and hence
breaks condition a) of Definition 7. Therefore the net is not sound.

– Let us continue with line 18. Here, we have reached a marking M ′ from the
initial marking of the monotonic net N such that M ′c = cut(M ′) and there
exists a marking M ′′ ∈ Reached such that M ′′ vcut M

′
c and |M ′′| < |M ′c|.

Important to remark here that this situation |M ′′| = |M ′c| cannot happen
since it is avoided due to the if-condition at line 15. Let us suppose that
N is sound. We know due to condition a) of Definition 7 that there is path
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from M ′′ to the final marking of N (Mout). However, by applying Lemma 2
repeatedly (again we reason up to the cut-equivalence), we can follow the
same path from M ′c to a marking M ′out such that |M ′c| − |M ′′| = |M ′out| −
|Mout|. As |M ′′| < |M ′c|, we also know that |Mout| < |M ′out|, which breaks
condition b) of Definition 7, and contradicts that N is sound.

– Finally, we take a look to line 29. Let us recall that Reached contains the
set of cut markings of the reachable markings that are not final (Lemma 4).
Moreover, in the second while-loop, we remove from Reached the parents of
all the cut markings in Waiting until Waiting is empty, running a backward
search from the set Final . Thus, if Reached is not empty after this backward
search terminates means that there is M ′c ∈ Reached such that M ′c = cut(M ′)
for some reachable marking M ′ from Min and there is no path from M ′ to
any final marking. This breaks condition a) of Definition 7 and the net is
not sound. ut

Proof (Lemma 8). There is one while-loop in each phase of the algorithm. The
loop in the first phase is executed as long as Waiting is not empty. We notice
that initially Waiting and Reached are initialised to the same value. For each
iteration of the loop, we remove a marking from Waiting and newly discovered
cut markings are always added to both Waiting and Reached (line 19) but only if
they are not already in Reached (line 15). Markings are never removed from the
set Reached and each canonical marking can appear in Waiting at most once.

For non-monotonic nets, only canonical markings with at most k tokens are
added (line 7) and therefore the set of canonical markings is finite. Thus the
algorithm will terminate as the set Waiting eventually becomes empty.

For monotonic nets, the net could be unbounded and, therefore, the set
Reached would grow above any bound. In this case, we know by similar ar-
guments like in the proof of Theorem 2 that there must exist M , M ′ ∈ [Min〉
such that M vcut M

′ and |M | < |M ′|. However, the algorithm will detect such
a situation at line 17 and terminate.

For the loop in the second phase, notice that Waiting = Final . For each
iteration, a marking is removed from Waiting and the intersection of the set
of parents of the marking M , M.parents and the set Reached is then added to
Waiting . In addition, the set M.parents is removed from Reached . Thus, any
marking can only be added to Waiting once, and as the set Reached is finite
when entering the loop and a marking is removed from Waiting in each iteration,
eventually Waiting = ∅ and the algorithm terminates. ut

C Proofs from Section 4

Proof (Theorem 6). Similarly as in Theorem 3, we reduce the reachability prob-
lem for two-counter Minsky machines into checking strong soundness. We can
use the same construction as in Figure 8 each place pi contains the age invari-
ant ≤ 1 and hence there are no divergent markings. At the same time, before
executing any instruction we have to wait exactly one time unit, hence there is
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no infinite computation of the workflow net that happens during a fixed time
bound. As a result, the workflow net constructed in Figure 8 is sound if and only
if it is strongly sound and the undecidability result in Theorem 3 is valid also
for strong soundness. ut
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