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Abstract. This paper takes you behind the scenes of the Model Checking Con-
test (MCC), an annual competition focusing on the behavioral analysis of asyn-
chronous systems using state-space exploration and model checking techniques.
The MCC is part of a thriving group of scientific events dedicated to provide a
fair evaluation of formal analysis tools, with the goal to push forward the state of
the art and provide insights into the evolution of the involved technologies and
approaches. We give details on the organization of the competition and on the
ways we manage models and formulas. We also take a look at the evolution of
the results over the 2018—2023 period, using the wide variety of data we collect
each year, and report on the impact the MCC had on the competing tools.

1 Introduction

The Model Checking Contest (MCC) is an annual competition that benchmarks and
compares model checking tools. Since its inception in 2011, the MCC has consistently
been held alongside the Petri nets conference. However, for the second time, the 2023
edition is a part of the TOOLympics, held under the umbrella of the European Joint
Conferences on Theory and Practice of Software (ETAPS).

Scientific competitions like the MCC play a crucial role in the progress of their
respective fields. These competitions improve reproducibility and provide a basis for
comparing various techniques. They also encourage the development of mature tools,
★ Corresponding author
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a trend exemplified by the SAT, SMT, and recently, the SV competitions. The MCC
is no exception, pushing tool developers to innovate and optimize their tools for better
performance.

The MCC focuses on the model checking of concurrent systems. The concurrency
in system semantics is an essential aspect of modern computing, given the prevalence of
multicore and distributed CPU architectures. Petri nets, with their well-grounded theory
and wealth of structural results, offer an ideal formalism for capturing this concurrency
and the associated complexity.

In the MCC, model checking seeks to determine if a system satisfies a given property.
This could range from safety conditions or invariants to more complex specifications
expressed in Computation Tree Logic (CTL) or Linear Temporal Logic (LTL) [14]. The
contest also examines global properties such as deadlock detection or liveness, along
with metrics on the state space and place markings bounds. These examinations are
not purely academic; they reflect practical questions that users might pose about their
systems.

Over its decade-long run, the MCC has established itself as a reputable and mature
competition. The accumulated data across these years presents a rich source for tracking
the evolution and progression of model checking tools and techniques. This paper dives
into this data, presenting insights and analyses that shed light on the state of model
checking today.

The goal of this paper is to provide an overview on this event as it was operated in
2023 (after more than a decade of experience), to discuss results of the 2023 edition and
to present some observations based on the results for the period 2018-2023.

The paper is structured as follows: section 2 sets the definitions of the terms we use
and the categories of the MCC; section 3 presents an in depth analysis of the models
used as benchmarks and presents how models are collected; section 4 presents the
process used to generate formulas that are used as queries in LTL or CTL examinations;
section 5 contains subsections for each tool that participated recently (since 2021),
with some insight on their strengths and weaknesses provided by the respective tool
authors; section 6 presents the result of the 2023 edition of the MCC; section 7 presents
a retrospective analysis of the evolution of the contest and its results since 2018 and
section 8 concludes the paper with some perspectives for improving future editions of
the MCC.

2 Main Definitions within the Model Checking Contest

Let us first define the vocabulary and concepts used in the Model Checking Contest and
in this paper.13

Tools. The primary aim of the Model Checking Contest is the evaluation of various
tools. Developers submit their tools to contend for medals across diverse categories.
While tools can be submitted in multiple configurations or variants, they are deemed as
part of a single “family”. Within this family, only the top-performing variant vies for a

13 More details can also be found in the 2019 report on the MCC [62].
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podium position, i.e., being among the top three. However, scores of other variants and
those of “reference tools” (see section 6.1) are shared for informational purposes only.

Models and Model Instances. Every participating tool in a specific MCC edition is
evaluated against a consistent benchmark suite. The community updates this benchmark
annually, comprising models and model instances:

– A model symbolizes either an academic or industrial problem, modeled using
(possibly Colored) Petri nets and provided in the PNML standard format [51].

– Each model may have multiple model instances which are variants with differing
configurations. These changes typically include scaling the initial marking, changes
in the structure and scaling the definition of color domains for colored nets. This
lets us assess how tools behave when the model is scaled up in complexity.

Some models are simply Petri nets (abbreviated as PT nets in this paper standing for
Place Transitions Nets [71]) with integer arc weights and place markings. Other models
are colored nets expressed as Symmetric Petri nets [35].

When models are provided as colored nets, the MCC also provides an equivalent
PT net computed using the unfolding technique [61]. Some colored model instances
however do not have such an equivalent PT net because the resulting net is too large (see
Sect. 3 for details).

Each year, the community contributes with new models that are called “surprise
models”. Model instances from previous years are kept in the benchmark as “known
models”.

Examinations. Tools are tasked with processing examinations on the model instances.
An examination encompasses one or more queries that yield either Boolean or numeric
outcomes. If a tool is unable to resolve a query or examination, it can respond with “do
not compete” or “cannot compute”.

For 2023, the following six examinations were:

– StateSpace examination, where the tool must generate the state space of the system
and provide four metrics on the state space of the Petri net: the number of nodes
(states) and edges (transitions) in the marking graph, the bound on the number of
tokens in any given place, the bound on the total number of tokens in any given
reachable state. This category is the oldest category of the MCC, it was introduced
in the very first edition of the MCC in 2011.

– Global Properties examination, where the tool must answer by a Boolean whether
the model instance satisfies five global properties: can the net deadlock, are some
place markings invariant (stable marking), is the net one-safe, is it quasi-live (are
all transitions fireable at least once) and is the net live. These global properties are
all model specific, and while they could be expressed as a set of reachability or
CTL queries (one per place or transition) there exist some more effective strategies
that can be applied such as structural reductions. While Reachability Deadlock was
introduced in 2013, the four other queries were only introduced in 2020.
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– Upper Bounds examination, where the tool must provide the maximum number of
tokens that can mark a given set of places in any reachable marking. There are 16
such queries per model instance and the queries are generated randomly each year.

– Reachability examination, where the tool must provide a Boolean answer to queries
that are either an invariant (𝐴𝐺𝑝) or a test for reachability of a given situation
(𝐸𝐹𝑝). The predicate 𝑝 is a Boolean combination of comparisons between markings
of places (for Cardinality) or fireability of certain transitions (Fireability). 14 The
reachability problem is a core problem in model-checking, and is known to be
decidable for Petri nets (despite unbounded places). The Reachability examination
was introduced in the very first MCC in 2011. It is an examination that typically has
more participants than any other, and is thus a highly contested category.

– CTL examination, where the tool must provide a Boolean answer to queries that
are expressed in Computation Tree Logic (CTL). Again 16 formulas are cardinality
based and 16 are fireability based. The category was introduced in 2013.

– LTL examination, where the tool must provide a Boolean answer to queries that are
expressed as a Linear-time Temporal Logic (LTL) formula. Again 16 formulas are
cardinality based and 16 are fireability based. The category was introduced in 2013.

For the Upper Bounds, Reachability, CTL and LTL examinations a new set of
formulas is generated every year, so even if the model is a “known model” the formulas
are always unknown to the competitors.

Runs. A “run” means a tool’s execution applied to a specific model instance for a
designated examination. For instance, computing the 16 Cardinality-based CTL formulas
for the model instance named Philosophers-PT-001000 constitutes a run. Every run is
allotted a maximum of 1 hour, except for the Global Properties, which are given half
that time for each of the five queries. These runs are constrained to utilize up to 4 CPU
cores and 16 GB of RAM.

To ensure uniform comparison metrics such as execution time and memory usage, all
tools for a given model instance/examination combination are run on the same machine,
despite parallel evaluations across multiple computers or clusters.

3 The Models in the Benchmark

The models in the MCC benchmark are enriched every year with new models provided
by the community in reply to a “Call for Models”, but models from previous years are
kept in the benchmark. In this section we provide an analysis of the models used in the
2023 edition of the Model Checking Contest and their evolution since 2018.

3.1 Evolution of Models between 2018 and 2023

The MCC benchmark is composed of both colored nets (COL) and place transition nets
(PT). Each model comes with a description that explains its origins and the nature of
the problem that it tries to capture.

14 In a given run of a tool, 16 such queries are submitted. So with 16 Cardinality queries and 16
Fireability queries we have 32 reachability queries per model instance in total.
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Models Instances
PT

Year PT COL Total COL Native From COL Total Total
2018 69 20 89 180 614 153 767 947
2019 71 22 93 193 666 159 825 1 018
2020 80 23 103 213 837 179 1 016 1 229
2021 90 24 114 230 985 196 1 181 1 411
2022 103 24 127 230 1 191 196 1 387 1 617
2023 105 27 132 252 1 208 218 1 426 1 678

Fig. 1: Evolution of the number of models and model instances in the MCC benchmark.

Table 1 shows there were in 2023 a total of 132 models in the benchmark, up from
89 in 2018. From these models, a larger number of instances is produced thanks to their
parameters. We reach to a total of 1678 instances in 2023. While the MCC provides
equivalent PT nets for COL specifications, some larger scalable COL instances cannot
be unfolded due to the explosion in the size of the resulting PT net. Note that there are
some COL model instances without a corresponding PT net (e.g. in 2023, only 218 out
of 252 COL instances had an associated “PT from COL” version).

3.2 Analysis of the Benchmark Models in 2023

So far, the 132 models featured by the MCC have been submitted by 60 different authors,
from 12 countries. This number of contributors leads to a wide variety of models, whether
in terms of their origins or the way they are built. Since the MCC benchmark currently
covers a wide scope of models, we provide here a broad classification of the models
according to 14 application domains. For each domain, we also give (in brackets) its
numbers of colored models, PT models and models designed within the context of
industrial projects.

– Biology and Chemistry (11 PT – 1 industrial): Angiogenesis, CircadianClock, Dif-
fusion2D, DNAWalker, EGFr, ERK, GPPP, MAPK, MAPKbis, PaceMaker, Phase-
Variation, ViralEpidemic.

– Business Process and Automation (3 COL, 15 PT – 7 industrial): BugTracking,
BusinessProcesses, CryptoMiner, FamilyReunion, FMS, HealthRecord, Hospital-
Triage, HouseConstruction, IBM (4 models), Kanban, Medical, ProductionCell,
ParamProductionCell, RobotManipulation, UtilityControlRoom.

– Distributed Memory and Related Algorithms (2 COL, 6 PT – 1 industrial): CAN-
Construction, CANInsertWithFailure, LeafsetExtension, MultiCrashLeafsetExten-
sion, QuasiCertifProtocol, SatelliteMemory, SharedMemory, StigmergyCommit.

– Elections or Consensus (1 COL, 4 PT – 2 industrial): Election2020, HirschbergSin-
clair, NeoElection, Raft, StigmergyElection.

– Games (1 COL, 4 PT): DLCRound, DLCShifumi, NQueens, Solitaire, Sudoku.
– Hardware (2 COL, 8 PT – 5 industrial): ARMCacheCoherence, ASLink, Discov-

eryGPU, GPUForwardProgress, NoC3x3, Ring, SafeBus, TokenRing, UtahNoC,
Vasy2003.
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– Operating Systems or Middleware (2 COL, 2 PT): PolyORBLF, PolyORBNT,
SimpleLoadBalancer, SmallOperatingSystem.

– IoT, Cloud, Reconfiguration (5 PT – 3 industrial): CloudDeployment, CloudOps-
Management, CloudReconfiguration, Planning, SmartHome.

– Mutual Exclusion (6 COL, 10 PT): Anderson, DatabaseWithMutex, Dekker, Dou-
bleLock, EisenbergMcGuire, FunctionPointer, GlobalResAllocation, LamportFast-
MutEx, Peterson, Philosophers, PhilosophersDyn, ResAllocation, RwMutex, Swim-
mingPool, Szymanski, TwoPhaseLocking.

– Network Protocols (3 COL, 9 PT): CSRepetitions, Echo, HexagonalGrid, Hy-
percubeGrid, HypertorusGrid, IOTPpurchase, NeighborGrid, PermAdmissibility,
SquareGrid, TCPcondis, TriangularGrid, VehicularWifi.

– Security (7 PT – 7 industrial): DES, ShieldIIPs, ShieldIIPt, ShieldPPPs, ShieldPPPt,
ShieldRVs, ShieldRVt.

– Synchronisations and Message Passing (9 PT): ClientsAndServers, DBSingle-
ClientW, DLCflexbar, FlexibleBarrier, MultiwaySync, RingSingleMessageInMbox,
SemanticWebServices, ServersAndClients, SieveSingleMsgMbox.

– Academic and Synthetic Models (4 COL, 9 PT): DoubleExponent, Eratosthenes,
DrinkVendingMachine, JoinFreeModules, Murphy, PGCD, Referendum, RefineWMG,
RERS (4 models).

– Transportation Systems (3 COL, 6 PT – 3 industrial) AirplaneLD, AutoFlight,
AutonomousCar, BART, BridgeAndVehicles, CircularTrains, EnergyBus, Parking,
Railroad.
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Fig. 2: Log scale box plots of Places, Transitions, and Arcs for PT, unfolded PT from
colored models, and all PT nets (including unfolded). The central line of the box
represents the median, while the box itself spans the interquartile range (IQR) from the
first to the third quartile, covering the middle 50% of the values. Whiskers stretch out
to 1.5 times the IQR. Any values exceeding the whiskers are considered outliers and
depicted as individual points.

In this section, we delve into the core characteristics of PT model instances in the
benchmark, visualized through box plots. Figure 2 showcases the distribution for three
principal metrics in the MCC 2023 models: the count of arcs, places, and transitions.
Given the significant variance in model sizes, a logarithmic scale was adopted.
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For clarity, we have excluded COL model sizes from this visualization, as their pre-
unfolding sizes are not directly comparable to PT net dimensions (e.g. whiskers range
up to 100 places or transitions at most).

We separate the PT models into “native PT” (Fig. 2a) that were provided in this
format, and “PT from COL” (Fig. 2b) that are produced from the COL models up to a
certain size. The rightmost plot Fig. 2c merges both of these subcategories. While these
plots show that on average models unfolded from COL are larger than native PT nets (in
number of arcs), their structure can be expected to be more symmetric, and the largest
PT instances in the benchmark are native PT.

The larger PT models in the MCC thus contain up to 104 places (with some outliers
reaching 105 or more), up to 105 transitions (with some outliers reaching 106), and up
to a few million arcs. These plots illustrate the wide variability in the structure size and
complexity of PT models.

3.3 A Study of PT Model Instances
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Fig. 3: Distribution of the types of instances provided for each edition of the competition.

Figure 3 offers a yearly breakdown of all PT instances since the MCC’s inception,
into five mutually exclusives categories. From 2011 to 2023, the first two categories,
presented below, accounted for 42% to 58% of PT instances, stabilizing around 50%
after 2014:

– Unbounded nets (Black): These nets have an infinite number of reachable markings
because of unbounded places, where tokens can accumulate indefinitely. Though
they were exceedingly rare before 2020, they now represent 5.4% of all PT instances.
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– Bounded, but non-ordinary or non-safe nets (Blue): These are bounded nets that are
not ordinary, meaning arc weights can exceed 1, or that are not one-safe, meaning
there is at least one reachable marking having several tokens in the same place15.

The remaining instances are ordinary and one-safe nets, which means they can be
expressed as NUPNs (for “Nested-Unit Petri Nets” [45]), an extension of Petri Nets
bringing them modularity and hierarchy through a structure of sequential processes
(called units), nested in the form of a tree, representing their parent-child relationships.
MCC instances are provided in the PNML file format, which enables this NUPN infor-
mation to be provided through an additional “tool specific” section16. These instances
are divided into the following three categories:

– Original NUPNs (Green): These are NUPNs stemming from models written in high-
level specification languages, which feature the concept of concurrent processes.
These processes have been directly translated into NUPN units. In 2023, they
constitute 72% of the NUPN instances.

– Decomposed NUPNs (Yellow): These models had their NUPN structures inferred
and appended retrospectively, using the 22 decomposition approaches of nets into
networks of automata [31], which internally leverage SAT solvers, SMT solvers, and
tools for graph coloring and finding maximum cliques17. To determine, for a given
Petri Net, which NUPN structures are possible, these decomposition approaches
depend on the efficient computation of the concurrent place relation [29]. Since
2021, a striking 95.2% of the ordinary and safe instances, lacking an initial NUPN
structure, have been upgraded in this manner.

– Non-NUPNs (Red): These nets are ordinary and safe, but they are not described
using NUPNs. As of 2021, only ten instances of this category remain, owing to
various reasons such as the presence of only trivial decomposition possibilities18,
or their extensive sizes (at present, no participing tool can handle such instances).

4 Formulas in the Benchmark

4.1 The Need and Purpose for Formula Generation

The MCC faces a dichotomy. Whereas models are handcrafted and reused from one
year to the next, formulas are randomly generated and changed for each edition of the
competition.

In model checking, formulas define the properties of systems, setting clear criteria
on the behaviors and conditions a system must meet or avoid. However, even though the

15 It should be noted that some instances are not ordinary, yet are safe, because their initial
markings are safe, and all their non-ordinary arcs are connected to dead transitions.

16 See https://mcc.lip6.fr/nupn.php and https://cadp.inria.fr/man/nupn.html for further details
about NUPN file formats.

17 Notice that subproblems invoked by these decompositions have been used to provide benchmark
for the Model Counting Competition [49,28], for the SAT Competition [50,30], and for the
SMT-Comp [22,27].

18 Which provide no additional information to their underlying Petri nets, see [45, Prop. 11].

https://mcc.lip6.fr/nupn.php
https://cadp.inria.fr/man/nupn.html
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model forms allow for the declaration of behavioral properties, very few models come
with any predefined formulas, and none of the models come with formulas covering all
the examinations of the MCC. This poses a challenge that was solved by relying on an
automated process for generating new formulas, under the supervision of a dedicated
“formula board”.

There are some benefits to this situation. Although custom formulas might better
align with the model’s purpose, a static set of such formulas risks tool over-fitting for
known properties. This regular update ensures model checking tools face novel chal-
lenges, fostering innovation and avoiding tool stagnation. Notably, the MCC requires 32
formulas for each model instance that span across reachability, CTL, and LTL examina-
tions. This led to the production of 90 912 formulas in 2018, and this number increased
to 161 088 by 2023.

Next, we describe the process used for the generation of formulas for the Reacha-
bility, CTL, and LTL examinations. While the Upper Bounds examination also utilizes
formulas, its generation approach is direct, primarily consisting of selecting places from
a net without repetition.

Generation of Reachability and CTL formulas using Citili. Reachability and CTL
formulas are generated using the tool Citili19 since 2020. For a given model, Citili
proceeds as follows in order to generate one formula.

1. Generate a generic CTL (or Reachability) formula with abstract atoms by randomly
selecting operators from a set of allowed operators, up to a given depth.

2. Verify that the formula is acceptable by analyzing its syntax, otherwise generate
another one:

– ensure that it is not in another class of formulas (e.g. it has tree operators for a
CTL formula)

– perform limited checks for triviality of the formula (e.g. tautologies)
3. Instantiate each abstract atom with a concrete one corresponding to the type of

formula we want (Cardinality or Fireability).

Building on this, Citili employs the subsequent methodology to generate a challeng-
ing formula set of a predefined size (currently set at 16):

1. Generate an initial batch of formulas (currently 32).
2. Set up a rudimentary model checker for each formula:

– Limit exploration to a set number of states (presently 2 000).
– Keep formulas that do not produce a result and classify them as challenging.

3. If the stipulated time has not been exhausted and the challenging formula set is
below the target size (currently 16), the process returns to step 1.

4. When the time threshold is reached, Citili generates additional formulas to populate
the set of challenging formulas. This additional set may include trivial formulas,
since they are not subject to any filtering.

19 Available from https://github.com/mcc-petrinets/citili

https://github.com/mcc-petrinets/citili
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Generation of LTL Formulas with the Aid of Spot. The inclusion of a diverse set
of LTL formulas is essential to provide a thorough, representative benchmark. In their
seminal work, Manna and Pnueli introduced a categorization of LTL formulas, identify-
ing six distinct categories: Reactivity, Recurrence, Persistence, Obligation, Safety, and
Guarantee [66]. A balanced representation of these categories ensures that overfitting is
avoided and provides a broad coverage of the temporal behaviors in the examination.

Since 2019, we use the following two tools from the SPOT platform [43], in the
MCC, to achieve balanced and non-trivial formula generation:

– ltlrand: This tool generates random LTL formulas using a predefined set of LTL
operators and a designated formula depth. Notably, ltlrand ensures the generated
formulas are not trivially reducible, enhancing the complexity of the evaluation
process.

– ltlfilt: Once the formulas are procured using ltlrand, ltlfilt categorizes each formula
based on Manna and Pnueli’s classification. This classification step ensures the
formulas offer a well-rounded representation across all LTL categories.

Currently, there is no mechanism akin to a “trivial model checker” to evaluate the
generated LTL formulas on the first few states of a model instance. However, such an
addition can be considered for future improvements, potentially enhancing the quality
of formula generation further.

4.2 Analysis of Formulas in 2023

We study in this section a classification of the properties of the MCC into those that can
be disproved by exhibiting a counter-example (CEX), and those that must be proved to
hold over all reachable configurations or paths (INV). This classification reflects the one
for SAT/SMT competitions [50] into SAT (and a model is provided, corresponding to
CEX) or UNSAT (which corresponds to INV in our classification).

We study this classification for Global Properties, Reachability and LTL properties.
These notions are not applicable to the other categories (CTL, Upper Bounds, State
Space). We can only classify a property as being INV or CEX if there is a verdict of at
least one tool, so properties no tool could answer are left as Unknown (UNK).

– For “OneSafe” CEX corresponds to existence of a place whose marking can exceed
1,

– for “ReachabilityDeadlock” CEX corresponds to existence of a deadlocked state,
– for “StableMarking” CEX corresponds to existence of a place whose marking never

varies,
– for “QuasiLiveness” CEX corresponds to existence of a transition that can never be

fired,
– for “Liveness” CEX corresponds to existence of a transition that is not live.
– For “Reachability” properties, an “AG (p)” formula (an invariant that must be true

of all states) is a CEX if it is false, and an “EF (p)” formula (a test to see if we can
reach a state satisfying 𝑝) is a CEX if it is true.

– For “LTL” properties, a false property is a CEX (and we can exhibit a run that does
not satisfy the property) and a true property is an INV.
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Fig. 4: Distribution of INV vs CEX properties across the different examinations; UNK
corresponds to the situation where no tool answered (thus, classification is unknown).

Figure 4 presents the distribution of INV vs CEX for the relevant examinations.
For global properties, the result is purely model-dependent, and in some cases, even

instance-dependent. It shows that 56% of the models are one-safe, and that 63% of
models contain a deadlock. The models in majority (71%) contain stable places, but
most of them (70%) do not contain dead transitions. Only 17% of the models are known
to be live, probably due to the abundance of workflow like nets with start and end
activities, and models featuring some non repeatable initialization step.

For both Reachability and LTL, there is a clear bias overall for CEX, i.e. properties
that can be disproved with a single trace or state. The bias towards CEX is much stronger
on Fireability queries (74% of CEX in both reachability and LTL) than on Cardinality
queries (52% of CEX for reachability and 65% for LTL). The distribution does evolve
from year to year since the properties are generated, but only by a few percent so that
qualitatively these observations hold since 2018.

The overall bias towards CEX might skew the results of MCC in favor of tools
efficient at bug finding (e.g. directed walks) with respect to strategies that are better at
proving the system correct (INV), although this is typically a harder problem to solve.

5 Participating Tools

This section presents in more detail the tools that have participated in the MCC since
2021: LoLA, SMPT, TINA.tedd, Enpac, ITS-Tools, TAPAAL, GreatSPN.

5.1 EnPAC

Overview and Evolution EnPAC (Enhanced Petri-net Analyser and Checker) is a
model-checking tool for large concurrent systems modeled as PT nets or their colored
extension (COL models). It can evaluate arbitrary queries specified in linear temporal
logic (LTL). We started at the end of 2018 and developed an initial version to participate
in MCC’2019, which initially supported PT nets. From 2019 to 2020, we extended its
capability to colored Petri nets. We directly analyze colored nets without unfolding them
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to PT nets, which is different from other tools. And we investigated several existing algo-
rithms to improve efficiency, of which the on-the-fly method [46] makes huge progress.
From 2020 and 2021, we added encoding strategies (one-safe net encoding, NUPN en-
coding [45], and P-invariant encoding [85]), and we developed bitwise operations to read
and write encoded states, which made encoding strategies more efficient. Additionally,
we added heuristic information into Büchi automata so that the counterexample search
always follows the shortest path to an acceptable state. From 2021 to 2022, we developed
a method where fireable transitions are no longer stored in each state but dynamically
generated each time to save memory further.

MCC Impact The biggest benefit of participating in MCC is that it allows us to know
what our weaknesses are. For example, from the result of MCC’2020, we found that
EnPAC generally computed faster than other tools but consumed much more memory.
Therefore, in the following year, we focused on encoding strategies. We also investigated
how to read and write an encoded state using only bit operations, which not only
improved memory usage but also reduced the time penalty due to encoding. At present,
we recognized the advantages of parallelism shown in MCC and are paying more
attention to the sequential-to-parallel bottleneck to extend EnPAC to be parallel.

Availability and Contributors

– Homepage URL:
1. https://github.com/Tj-Cong/EnPAC_2021 (for PT nets)
2. https://github.com/Tj-Cong/EnPAC_CPN_2021 (for colored nets).

– License Type: MIT License.
– Affiliation: Tongji University, Shanghai, China.
– Tool Authors: Zhĳun Ding, Cong He, Shuo Li.
– Relevant Publications and Contributions: [48]

5.2 GreatSPN

Overview and Evolution GreatSPN is an open source framework for Petri nets mod-
eling and analysis. It has several tools for drawing, computing, and verifying different
types of Petri nets, either through a graphical interface or through commands. One of
the tools is starMC [11], a symbolic model checker that uses Multivalued Decision
Diagrams (MDD) to generate the state space and check CTL/LTL/CTL∗ properties. The
MDD data structure employed is developed separately in the Meddly library20, devel-
oped at Iowa State university. GreatSPN supports several Petri net formats, including
PT nets, generalized stochastic Petri nets, and colored Petri nets.

20 https://github.com/asminer/meddly

https://github.com/Tj-Cong/EnPAC_2021
https://github.com/Tj-Cong/EnPAC_CPN_2021
https://github.com/asminer/meddly
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MCC Impact The starMC model checker of GreatSPN has been adapted to compete
in all categories of the MCC, albeit it does not have optimized implementations for
all of them. The competition for which GreatSPN has the most advanced solution is
StateSpace generation. The efficient generation of the symbolic reachability graph in
GreatSPN is a combination of different factors:

– The representation adopts MDDs to encode the state space;
– The tool uses a specialized saturation algorithm with implicit transition relation

firings to list all the reachable states;
– An effective heuristic for static variables reordering of the Petri net places in the

MDD encoding is used; This heuristic is based on linear algebra properties [9] of
the Petri net incidence matrix, and has proven to be highly general and scalable.

GreatSPN also performs model checking of CTL and CTL∗ properties. LTL expressions
can also be checked as CTL∗ expression. This choice is however suboptimal, since it
encounters a significant reduction in the performances.

Availability and Contributors
– Homepage URL: https://github.com/greatspn/SOURCES
– License Type: GPLv2.
– Affiliation: University of Torino, Italy.
– Tool Authors: Initially started by Giovanni Chiola, the framework has seen contri-

butions from several developers over its long history. The current main contributors
and maintainers are Elvio G. Amparore and Marco Beccuti.

– Relevant Publications and Contributions: See [8] for a recent description of the
stochastic functionalities of the tool, and [11] for the symbolic model checking
algorithms.

5.3 ITS-Tools
Overview and Evolution ITS-Tools [77] is a model-checker using a portfolio of di-
verse strategies that include symbolic methods based on hierarchical Set Decision Dia-
grams [81], constraint based reasoning using the SMT solver Z3 [69] to over-approximate
the state space, fast pseudo-random walks to under-approximate it, partial order reduc-
tion leveraging the tool LTSMin [59,63], as well as advanced structural reduction rules
to reduce the size of the system [79].

The engine has specific support for colored nets using skeleton over-approxima-
tions [83] where possible as well as symmetry aware unfoldings that can bypass the model
size explosion due to large domains. The LTL engine benefits from several strategies
unique to ITS-Tools such as length-sensitivity analysis [70]. For Global Properties and
Upper Bounds ITS-Tools benefits from a dedicated set of strategies [80].

MCC Impact ITS-Tools currently participates in all categories of the MCC. It has
participated since the very first edition in 2011 and almost continuously since. While
until 2019 Petri net support was offered through a translation to Instantiable Transition
Systems (ITS) [77] that give their name to the tool, dedicated Petri net support was
gradually introduced to better compete in the MCC.

https://github.com/greatspn/SOURCES
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Availability and Contributors

– Homepage URL: https://github.com/lip6/ITSTools
– License Type: GPL, EPL
– Affiliation: LIP6, Sorbonne Université, CNRS
– Tool Authors: Yann Thierry-Mieg with other contributors
– Relevant Publications and Contributions: [77,79,70,80]

5.4 LoLA

Overview and Evolution LoLA (a Low Level Petri net Analyzer) is a model checker
for place/transition Petri nets. Its was first released in 1998. LoLA can analyze the state
space using stubborn set [82,74], symmetry [75], coverability graph [73], and sweep-
line [36,76] reductions. Many formula classes are evaluated by tailored search routines
and specific versions of reduction techniques [65,64]. Elements of Petri net theory are
used for speeding up verification [84]. Before actual verification, both net and query are
simplified using net reduction and abstraction methods [83], as well as Petri net structure
theory. LoLA can run several alternative techniques on a query, organized by a portfolio
manager [89].

LoLA started as a reachability checker that was soon extended with a CTL model
checker. Later, an LTL model checker was added. Then, specific routines for many classes
of CTL formulas followed. Most recently, a reduction engine, the portfolio manager, and
a skeleton abstraction method became part of LoLA.

MCC Impact Before the MCC was launched, development of LoLA was mostly driven
by our own research. LoLA was the vehicle to generate the “experimental results” table
on the second but last page of every paper. LoLA was used in real applications as long as
they saw the available techniques fit for their purpose. However, there was no substantial
impact of applications to the performance of LoLA.

Through the MCC, we had the opportunity to earn scientific reputation for imple-
menting methods invented by somebody else. This way, the tool grew much more mature
and complete. The very competitive nature of the contest pushed us into implementing
all the little tricks, and doing all the little optimizations that would have been difficult to
publish in a purely theoretical paper. Being quite successful in the MCC, LoLA received
a lot of additional attention. The MCC generates very productive exchange of thoughts
between tool developers.

Availability and Contributors

– Homepage URL: https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/
– License Type: GPL
– Affiliation: Universität Rostock, Institut für Informatik, Germany
– Tool Authors: Main author is Karsten Wolf. Contributors are mentioned in the

source code.
– Relevant Publications and Contributions: [87,86,88,85]

https://github.com/lip6/ITSTools
https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/
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5.5 SMPT

Overview and Evolution SMPT (for Satisfiability Modulo Petri Net) is a model
checker [4] that participates in the Reachability examination of the MCC since 2021.
The tool started as a portfolio of methods to experiment with symbolic, SMT-based
model checking techniques, and was designed to be easily extended. Some of its dis-
tinctive features are: an adaptation of the Property Directed Reachability (PDR) method
for PT nets [5]; and its ability to generate verdict certificates for invariants. It also in-
tegrates an approach combining integer linear systems and structural reductions, like
in TINA.tedd [16], but adapted to the verification of reachability properties. We give
a formal definition of this approach in [2,7], where it is called polyhedral reduction,
and show how it can be applied to different symbolic methods (BMC, 𝑘-induction and
PDR), and to more general problems, such as computing the concurrency relation of
safe nets [3,6].

At its core, SMPT acts as a front-end to SMT solvers. Since 2022, we added several
structural methods, such as invariant checking based on the so-called “state equation
method” or with the addition of extra constraints during the verification process, based on
results from Petri net theory: structural invariants; traps; invariants originating from the
NUPN specification; etc. We also started experimenting with methods based on random
walks, which relies on a simulation tool called walk, part of the TINA toolbox [18].
SMPT was again improved in 2023 with the addition of a dedicated method [1] able
to transform, in most cases, an initial query (a pair made of a model instance and a
reachability formula) into an equivalent query on a reduced, simplified version of the
model. It is also the first edition of the MCC where we experimented with formula
simplification methods.

MCC Impact Our participation in the MCC had the effect of transforming what was
supposed to be a simple prototype, used for experiments, into a standalone verification
tool. It helped us better automate the use of our tool, adding options that simplify the
use of SMPT by non-experts and that simplify building strategies to use our portfolio of
methods more effectively. It also helped increase the interoperability and the reliability of
SMPT, leading us to support use cases that we did not originally envision. For instance
supporting models with markings that cannot be represented using 32 bits integers.
Finally, it motivated us to expand the perimeter of our tool, and to consider the use of
methods outside SMT-based approaches, like random walks, which have been used very
effectively by competing tools when checking CEX formulas. By being able to quickly
identify classes of queries that are solved more efficiently with other methods, we are
able to better focus our efforts on what is, we believe, the strong point of SMPT; the
verification of “difficult” invariants (that we could roughly define as INV formulas that
are not implied by the state equation).

Availability and Contributors

– Homepage URL: https://github.com/nicolasAmat/SMPT
– License Type: GNU GPL v3.0
– Affiliation: LAAS-CNRS

https://github.com/nicolasAmat/SMPT
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– Tool Authors: Nicolas Amat
– Relevant Publications and Contributions: [2,4]

5.6 TAPAAL

Overview and Evolution The model checker TAPAAL verifies Timed-Arc Petri nets
and is developed at AALborg University in Denmark. The tool was first released in 2008
(see [34,41]), where it provided a graphical interface for modelling and simulating of
timed-arc Petri nets as well as a translation to the UPPAAL-style timed automata while
using UPPAAL as the backend engine [33,52]. In 2011, TAPAAL released its standalone
continuous-time engine [42] for reachability and liveness properties. A discrete-time
version of this engine [12,56] was released in 2012. Finally, in 2014 TAPAAL released
its own dedicated untimed engine [53] with which it started to participate in the Model
Checking Contest.

Initially, TAPAAL participated in the reachability/deadlock category and in 2016
it entered the CTL category with its own on-the-fly CTL model checking algorithm
based on dependency graphs [40]. A year later, TAPAAL participated also in the upper-
bounds category and finally in 2021 it extended its model checking capabilities to
LTL [58]. Nowadays, TAPAAL competes in all categories except state-space size anal-
ysis. TAPAAL also supports Petri games [54,26,24] and a new release (in preparation)
will allow the user to model and verify timed-arc colored Petri games. All verification
engines are supported by a GUI that enables us to model, simulate and verify the differ-
ent extensions of Petri nets, import and export nets in PNML format, create automatic
graphical layout, analyze timed workflow nets [67] and many other features.

MCC Impact TAPAAL’s participation in the MCC initiated a significant program-
ming and theoretical research. We have developed a specialised unfolding frontend for
our engine in order to deal with colored nets and invented a number of optimization
techniques to speedup the unfolding process [19,20]. In order to store the large state
space of reachable markings, we designed a novel data structure PTrie [55] that pro-
vides a good compromize between the space efficiency while allowing for fast access
times. To efficiently deal with large, randomly generated queries, we carry on an ex-
tensive query simplification algorithm [23] as a preprocessing step. This step allows us
to simplify, using linear programming, verification queries by identifying subformulae
that can never/always be satisfied. Perhaps the most beneficial technique is based on
structural reductions [25] that are being continuously improved throughout TAPAAL
development. Similarly, new partial order reduction techniques, both for the reachability
queries as well as LTL [25,58], showed a significant improvement. Finally, the MCC
benchmark helped us to develop competitive heuristic search strategies [53,44].

Availability and Contributors

– Homepage URL: http://www.tapaal.net
– License Type: The GUI is licensed under Open Source Licence 3.0, reduction

to timed automata and discrete verification engine is licenced under BSD and

http://www.tapaal.net
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continuous-time and untimed engines are licenced under GPL version 2 and 3,
respectively.

– Affiliation: Department of Computer Science, Aalborg University, Denmark.
– Tool Authors: The development is supervised by Peter G. Jensen, Kenneth Y.

Jørgensen and Jiří Srba. A complete list of contributors can be obtained at: https:
//www.tapaal.net/about/.

– Relevant Publications and Contributions: [44,57,20,58,19,25,38,23,55,39]

5.7 TINA.tedd

Overview and Evolution Tedd is a symbolic model-checker part of the TINA toolbox
(TIme Petri Net Analyzer) [17], a set of analysis tools supporting various extensions of
Petri nets and Time Petri nets developed at LAAS-CNRS since 1981. TINA provides
a wide range of tools for state space generation, structural analysis, model checking, or
simulation. It only competes in the StateSpace competition at the MCC.

Tedd plays a role similar to other state-exploration tools provided in TINA, called
sift and tina, but based on the use of decision diagrams instead of explicit methods.
It is officially part of the TINA release since version 3.7.0 and relies on a dedicated
implementation of hierarchical Set Decision Diagrams [81] developed together with
Alexandre Hamez. While it only provides support for a limited class of reachability
properties, such as finding dead states and transitions, it implements new methods based
on the combined use of integer linear systems and structural reductions [15,16] for
efficiently counting the number of reachable states and the maximal number of tokens
in the marking of places. We credit our uninterrupted first place in the StateSpace
examination since 2019 to this new equational technique.

The most important change in the last few years is the move from a sequential
portfolio (until 2020) to a parallel portfolio, where we combine tedd with the sift and
tina tools at the beginning of each run. Explicit methods can sometimes be faster when
there are a few markings, and we are not able to find a good variable order with our
symbolic approach. They are also useful for detecting unbounded models. In particular,
tina is able to identify all the unbounded model instances found in the current benchmark.

MCC Impact Beyond enhancing the interoperability and the reliability of our tools,
the MCC had a crucial influence on the design and the enhancement of our state space
generation technique based on structural reductions, that was first experimented in the
2018 edition of the contest. Since then, we have used new models in this benchmark to
experiment with possible reduction rules. More generally, the set of models provided
in the MCC have become an invaluable benchmark for testing our tools and comparing
new techniques with existing approaches. The MCC benchmark offers many qualities
in this respect, because of its impartiality, its representativeness for a large class of
use cases, and its scalability (since many models are parameterized). Our participation
to the MCC also motivated us to add several tools to our public release, such as an
open-source unfolder for colored models [37], and a new dedicated tool, called reduce,
that implements the reduction system presented in [16].

https://www.tapaal.net/about/
https://www.tapaal.net/about/
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Availability and Contributors

– Homepage URL: https://projects.laas.fr/tina/
– License Type: TINA is freeware; it is closed source, but binary distributions may

be freely installed and used.
– Affiliation: LAAS-CNRS
– Tool Authors: Bernard Berthomieu with other contributors
– Relevant Publications and Contributions: [17]

6 Results of the MCC in 2023

6.1 Reference Tools

For the first time during the 2023 edition, the MCC introduced the concept of “Reference
Tools”. It means tools that are not part of the main competition, and therefore cannot
obtain medals, but which are scored and evaluated on the same benchmark. Reference
tools may be submitted without the requirement that the submitter be an author of
the tool. To test this new opportunity, Y. Thierry-Mieg developed a driver to retro-fit
some tools that have competed in previous editions of the MCC. The Reference Tools
submitted in 2023 are Marcie, PNMC, LoLA, Smart and LTSMin. All of them have
participated before in the MCC but were not submitted as competitors in 2023.

To ensure the fairest possible comparison, the latest stable release of each tool is
paired with a driver21 that provides an unfolding for colored models using ITS-Tools if
the back-end tool does not support them natively. The driver also includes a reduction
mode, where the model is first processed by ITS-Tools using the strategy described in [78]
that uses an SMT solver, some random or directed walks and structural reductions to
produce a simpler Petri net and/or formula. The reference tools benefiting from this
preprocessing step are indicated with the “+red” suffix.

6.2 Scoring of Tools in 2023

Participating Tools. All together there were fifteen participating tools. Fourteen coming
from submissions and one synthetic tool (see below), made from the winners of the
previous competition.

– Submitted tools: GreatSPN, ITS-Tools, SMPT, TAPAAL, tedd.
– Reference tools: Marcie, PNMC, LoLA, Smart, LTSMin.
– Enriched reference tools (including the preprocessing step of [78]): LoLa+red,

LTSMin+red, Marcie+red, Smart+red. These tools, since they are enriched are
considered to be participants but, since the preprocessing technology they embed is
issued from ITS-Tools, they are considered as a variant (i.e. only the best variant can
appear in the podium of each examination). In 2020, a previous experience (called
ITS-LoLA but reported as being LoLA+red in figure 5) already associated the 2020
version of the preprocessing phase with the 2020 version of LoLA.

21 Source files are available at: https://github.com/yanntm/MCC-Drivers

https://projects.laas.fr/tina/
https://github.com/yanntm/MCC-Drivers
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The fifteenth tool is the winner of the previous year; it is not a participating tool but
a way to see how participants have evolved since the previous edition. This “virtual tool”
called 2022-gold changes from examination to examination. It is tedd for StateSpace,
ITS-Tools for GlobalProperties and UpperBounds, and TAPAAL for Reachability, CTL
and LTL formulas. Of course, these tools are in their setting of the previous edition so
that we can measure the progression compared to the winner of the previous edition, as
it deals with the new benchmark.

Finally, we introduce BVT (Best Virtual Tool): the results for this tool are computed
as the union of the results from all other participants. So if at least one tool answered a
given query, so did the BVT.

Basics of score computation. The scoring follows some basic rules:

– Each examination has its own and separated scoring,
– The maximum score of the model having the largest number of instances (41) is

approximatively the double of those with only one instance to limit the bias between
models in the scoring,

– Since “surprise” models have never been encountered by tools, their scoring is
applied a multiplier to give them a bit more importance than “known” models (even
if for those, formulas are recomputed every year),

– For each miscalculated result, a penalty of twice the expected score is applied.

The scoring multiplier for the “surprise” models change regularly ; they are detailed
in a rule document provided at an early stage of the MCC. The rules for 2023 are
presented here : https://mcc.lip6.fr/2023/pdf/rules.pdf.

The scoring of tools. Table 1 summarizes the results for the MCC’2023. It is divided
into three parts. The first one depicts scores of competing tools. Then, we report scores
from the reference tools. Finally, we show the results of 2022-gold and BVT.

Below each score line, we show the score as a percentage of the one of BVT. This
is a way to outline how tools are positioned compared to BVT. We can also see the
evolution compared to the winner of 2022 in each examination.

We note from Table 1 that:

– In several cases, enriched reference tools are positioned on the podium: 1𝑠𝑡 for
Reachability formulas and 2𝑛𝑑 for CTL formulas.

– The preprocessing step is quite successful by increasing the original score of refer-
ence tools. The only decrease observed is for LTSMin (-3%) for StateSpace, which is
not an examination for which much improvements are expected for these techniques.

– Winners always increase their score compared to the 2022 ones. Nevertheless,
2022-gold always remain second or third place in the scoring.

Fully detailed results are available on the official web site of the MCC [60]. It details
scores but also provide full results tables, as well as execution traces (when relevant),
cactus plots to summarize tools’ behavior, scatter plots to compare memory and time
consumption, etc.

https://mcc.lip6.fr/2023/pdf/rules.pdf
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14 479 DNC DNC 16 699 12 794 DNC 8 806 11 825 10 853 DNC 9 073 11 468 10 209 9 535 16 632 17 734
81,64% — — 94,16% 72,14% — 49,66% 66,68% 61,20% — 51,16% 64,67% 57,57% 53,77% 93,78% 100%

Global 62 230 DNC 88 642 DNC 108 501 107 384 104 280 105 084 102 776 93 651 9 767 11 018 DNC 22 481 93 632 111 287
Properties 55,92% — 79,65% — 97,50% 96,49% 93,70% 94,43% 92,35% 84,15% 8,78% 9,90% — 20,20% 84,14% 100%

13 390 DNC 19 851 DNC 21 844 20 746 20 974 21 782 21 270 19 407 10 492 11 541 DNC 9 174 19 535 22 263
60,15% — 89,17% — 98,12% 93,19% 94,21% 97,84% 95,54% 87,17% 47,13% 51,84% — 41,21% 87,75% 100%

Reachability 21 166 42 813 44 396 DNC 44 340 44 612 43 753 44 115 43 134 39 630 22 168 19 414 DNC 16 620 44 009 45 965
Formulas 46,05% 93,14% 96,59% — 96,46% 97,06% 95,19% 95,97% 93,84% 86,22% 48,23% 42,24% — 36,16% 95,74% 100%

CTL 20 228 DNC 34 931 DNC 26 417 32 163 20 925 25 647 DNC 28 021 12 752 17 631 DNC DNC 34 428 40 899
Formulas 49,46% — 85,41% — 64,59% 78,64% 51,16% 62,71% — 68,51% 31,18% 43,11% — — 84,18% 100%

LTL 20 023 DNC 44 019 DNC 44 539 44 139 42 131 DNC DNC 37 697 CC DNC DNC DNC 44 227 45 663
Formulas 43,85% — 96,40% — 97,54% 96,66% 92,26% — — 82,55% — — — — 96,86% 100%

legend 1st 2nd 3rd 

StateSPace

UpperBound

Table 1: Table depicting the score for the MCC’2023. DNC means “does not compete”
(the tool does not participate in the examination) and CC means “cannot compute” (there
was a bug in the driver for LTSMin which was discovered too late and no run was able
to produce correct results). First ranked tool for an examination is outlined in bold-red,
second in bold-green and third in bold-blue.
Please note that ITS-Tools and <tool>+red belong to the same family, thus, only the best
one among them is awarded.

6.3 Values Computed by Tools In 2023 and their Evolution

Evaluation of miscalculated values. in 2015, the MCC has introduced the notion of
“Tools Confidence”. It is a ratio 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑
where 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 is the number of corrected

values computed by the tool for the whole examination and𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 the total number
of values it has computed.

Since we cannot predict the results of each generated formula, we define a correct
values as the one computed by a majority of at least three tools (when several variants
of a given tool are submitted, they all count as one complete tool). When only one tool
computes a value, it is considered as being true if its confidence is over a threshold
(99,3% in 2023). Otherwise, no score is granted and the value is considered as being
unknown (it is not considered as a computed one for this tool).

This notion and the associated algorithm, is considered as being quite safe. Even if,
in some very rare cases, a false error is detected ; it could not lead to any alteration of
the scoring and ranking.

The MCC displays the confidence rate for each examination and also the global one.
The “lowest” global confidence for a tool in 2023 is 99,526%22 ; it means that 574 values
were miscalculated out of almost 89000 in all examinations (this tool reaches 100% in
several examinations this year).

Note that confidence of participating tools has dramatically been improved since
2015.

22 See https://mcc.lip6.fr/2023/results.php

https://mcc.lip6.fr/2023/results.php
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Computed Values in 2023. Table 2 shows the number of computed values by tools
in 2023. The first line in each category provides absolute numbers while the second
line normalizes these values compared to the “Ideal tool” which correctly computes all
values for all examinations (its ratio is 100%). As in the previous table, it is separated
in three parts. The first one depicts scores of competing tools. Then, we report scores
from the reference tools. Finally, we show the results of 2022-gold, BVT and IdealTool.
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4 003 DNC DNC 4 649 2 950 DNC 2 098 2 866 2 586 DNC 2 239 2 714 1 925 2 498 4 619 4 911 6 712
59,64% — — 69,26% 43,95% — 31,26% 42,70% 38,53% — 33,56% 40,44% 28,68% 37,22% 66,82% 73,17% 100%

Global 4 351 DNC 6 985 DNC 7 939 7 946 7 763 7 767 7 787 7 236 728 624 DNC 2 079 7 850 8 110 8 309
Properties 51,86% — 83,25% — 94,62% 94,71% 92,53% 92,57% 92,81% 86,25% 8,68% 7,44% — 24,78% 93,56% 96,66% 100%

14 976 DNC 23 357 DNC 25 128 24 920 24 893 25 060 24 980 22 644 11 888 10 922 DNC 9 830 24 880 25 483 26 848
55,78% — 87,00% — 93,59% 92,82% 92,72% 93,34% 93,04% 84,34% 44,28% 40,68% — 33,62% 92,67% 94,92% 100%

Reachability 22 951 50 240 50 628 DNC 50 781 52 432 50 252 50 353 49 988 44 041 24 872 18 507 DNC 17 973 50 228 52 679 53 696
Formulas 42,74% 93,56% 94,29% — 94,57% 95,78% 93,59% 93,77% 93,09% 82,02% 46,30% 34,47% — 33,47% 93,54% 98,11% 100%

CTL 21 759 DNC 40 462 DNC 30 509 36 414 24 000 27 184 DNC 30 422 13 587 16 337 DNC DNC 40 043 46 421 53 696
Formulas 40,52% — 75,35% — 56,82% 67,82% 44,70% 50,63% — 56,66% 25,30% 30,42% — — 74,57% 86,45% 100%

LTL 22 254 DNC 50 021 DNC 50 523 50 086 47 690 DNC DNC 41 429 CC DNC DNC DNC 50 303 52 012 53 696
Formulas 41,14% — 93,16% — 94,01% 93,28% 88,81% — — 77,15% — — — — 93,68% 96,83% 100%

legend 1st 2nd 3rd 

StateSpace

UpperBound

Table 2: Table depicting the number of values computed during the MCC’2023. DNC
means “does not compete” (the tool does not participate in the examination) and CC
means “cannot compute” (there was a bug in the driver for LTSMin which was discovered
too late and no run was able to produce correct results). Best tools (considering the
number of computed values) are outlined in bold-red, second best tools in bold-green
and third best tools in bold-blue.
Please note that ITS-Tools and <tool>+red belong to the same family, thus, only the best
one among them is considered.

We can observe that, for GlobalProperties, the tool computing the largest number
of values is not the winner outlined in Table 1. There are two reasons: (i) the scoring
puts some multipliers for “surprise models” which were never previously confronted to
tools, and (ii), when a tool miscalculates a value, it has a penalty of twice the expected
score for this value. This may change the score when the number of computed values is
very close: for GlobalProperties, ITS-Tools (winner) only computes 7 values less than
Lola+red, but probably more in surprise models. However, the order of tools in the
podium is correlated with the number of values computed; permutations only occurs
when tools are very close in terms of performances.

We note from Table 2 that:

– As it could be noted in Table 1, the preprocessing step strongly increases the number
of values computed by reference tools (up to 1245% in the case of GlobalProperties);
However, StateSpace marginally benefits from this step and LoLA, which embeds
its own strategies is also less concerned.

– Winners always increase their computation capabilities compared to the 2022 ones.
Nevertheless, 2022-gold always remains second or third.
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– For some examinations, almost all possible values are computed (e.g. 95.78% for
reachability formulas, and even over 96% for BVT); if this can be seen as a good
improvement of tools, it also outlines that formulas complexity might be improved
in the future.

– StateSpace appears to be the most difficult examination since the best tool only
computed 69.26% of the values.

– BVT computes between 1.24% (UpperBound) and 14.73% more values than the
best tool, showing that, if complementarity between tools exists, it remains quite
low at this stage.

6.4 Evolution of the Best Tools of 2023 since 2018 (from the perspective of
computed values).

Figure 5, shows, for each examination, how the three tools which compute the highest
number of values in 2023 have evolved since 2018. It is a way to check how they evolved
and to compare this evolution with BVT. All data is normalized to the “ideal tool” which
computed all the values (representing 100% in the charts).

Let us have observations for each examination first:

– StateSpace (Fig. 5a): it clearly shows that over the years, the tool computing the
highest number of values is very close to BVT but yet far from the “ideal tool”.
Since the introduction of a dedicated technique for counting states [15], TINA.tedd
dominates this examination.

– GlobalProperties (Fig. 5b): because the properties used in this examination were
changed after 2019, there is no meaningful data before 2020. In 2020, the best
tool in 2023 was only capturing deadlocks but an efficient technique elaborated for
deadlocks (which led to the preprocessing step associated to reference tools) was
extended to other questions in 2021 and pushed forward the tool at the first place,
very close to BVT. The winner follows the curve of ITS-Tools; first in the podium
since 2021 (see Fig. 7) but computing 7 less values than LoLA+red.

– UpperBound (Fig. 5c): in 2021 the preprocessing step was also applied to this
examination, thus pushing the third tool at the first place and very close to BVT.
In 2018 there were 4 more participating tools and variants; this explains the large
difference between the best tool and BVT.

– Reachability formulas (Fig. 5d): the first tool (a reference tool with the prepro-
cessing step) holds the first position for its first participation in such a setting (as
for a similar setting in 2020); LoLA, the original tool was in the podium in 2018,
2019 and 2020. The third tool’s first participation was in 2021 and could capture a
large number of values. It then entered in the podium at the third position in 2022
and gets very close to the other podium tools in 2023.

– CTL formulas (Fig. 5e): the best tool in this examination, TAPAAL, has consistently
dominated the competition since 2018. It is also one of the examination where the
difference between the first two tools is the largest, which may be explained by the
use of specific reduction techniques. In 2018 and 2019, LoLA was very close to
TAPAAL (see Fig. 7) before TAPAAL took a clear advantage.
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Fig. 5: Evolution of the performances of the best 2023 tools (considering the number of
values computed) between 2018 and 2023. The Ideal Tool (not shown here) has always
100% of the computed values. This figure only features the three tools in the podiums for
2023 and BVT. Tools in the podium are sorted according to their rank in the MCC’2023.
The line in red corresponds to the best one according to Table 2, the line in orange to
the second best tool and the line in blue to the third one.
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– LTL formulas (Fig. 5f): TAPAAL, ranked second in 2023, broke records in its first
appearance in this examination, in 2021. ITS-Tools also dramatically increased its
performances with the preprocessing step; it is even a bit better than TAPAAL since
2022 (a few more values computed). In 2018, for its last participation, LTS-Min
was ranked second and LoLA was first in 2019. We should also underline the very
good performances of EnPAC between 2020 and 2022, which was not participating
in 2023 (see Fig. 7).

A recurring pattern in all the examinations is that at least one tool stays in the
podium for the whole 2018–2023 period. And for an examination like StateSpace, the
three podium tools have not changed. This seems to indicate that there is a bonus for the
most experienced tools, which is understandable. On the other hand, we often observe
that new tools rapidly reach a high position; often entering the podium. This may be
explained by the fact that new tools often embed some “breakthrough technique”. This
occurred several times in the 2018–2023 period. For instance with the preprocessing
step for GlobalProperties and UpperBound that we just described, or with a new SMT
encoding for reachability properties. This also occurred twice for LTL (once with a tool
that did not participate in 2023, but twice reached the third place).

We can observe a general progression of BVT in all cases except for CTL formulas.
This must be tempered by the fact that there was an increase of 77.2% of the values
to be computed for each examination between 2018 and 2023 (due to the introduction
of new models). The decrease of BVT for CTL formulas can also be explained by the
evolution in the way formulas have been generated, making them a bit more difficult.
This is also true for the increase of LTL formulas where a new generation technique was
introduced; it produces fairer formulas (spanning all the classes defined by Pnueli and
Manna) but still needs some improvement in the way atomic propositions are selected.

We also observe that the best tool is getting closer to BVT; it means that the best tools
are able to compute almost all the values computed by all the tools together, making
them the really best solution.

6.5 Observations on Hardness of Examinations

With so many instances and queries, and in many cases some very high success rates, it
is hard to see the specificities of each examination. That is why we proposed an inno-
vative visualization that makes it easier to compare the complexity of each examination
separately.

The plots in Fig. 6 represent the results of the examination in 2023. Each horizontal
line represents a different model (with separate lines for a COL model and its unfolded
PT version), so there are 158 lines in each plot. At best a line can reach the right border
representing that 100% of queries were solved by the BVT in that examination for that
model (all instances of it). Such lines are sorted to be at the bottom of the diagram,
they are the “easiest” models. At worst a line can be empty indicating no query could
be answered by any tool on any instance of that model (this is the case at the top of the
state space plot for instance). Visually, if the box is full, the BVT answered all queries;
the surface in white represents unsolved ones.
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Fig. 6: Model difficulty in 2023 across different examinations.
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To refine this view, the colors give an indication of tool complementarity; we count
for each query that was answered how many different tools were able to provide that
answer. Variants of a tool do not count as “different”, for instance all the “+red” variants
and ITS-Tools count for a single tool family. A query at least three tools answer is
considered “easy”, if two tools from different origins could compute the answer it is
“medium”, and when only one tool could compute the result it is marked as “hard”. So
the darker medium and hard colors correspond to existence of tool complementarity,
queries that some tools (but not all) can solve. We designate a model as “fully solved” if
the BVT could answer all queries on all model instances, and as “easy” if at least three
tools could compute all queries.

– State Space. This category is the hardest of the MCC, with the BVT (Best Virtual
Tool) only reaching 73.16% of the ideal tool score in 2023. It is also the only
examination in which for some models no query could be answered. In total 70
models are fully solved (of which 43 are considered “easy”). The hardest models
are identified as Echo, Election2020, FamilyReunion, HypercubeGrid, PolyORBNT,
RERS. None of the queries could be answered for these models.

– Global Properties. This examination is currently one of the “easiest” in the MCC
with the BVT reaching in percentage of “Ideal Tool”: 97.55% for Reachability
Deadlocks, 96.66% of Stable Marking, 100% of One Safe (NB: the only query in
the contest where BVT answers for all model instances), 93.62% of Quasi Liveness
and 95.47% of Liveness. Quasi-Liveness and Liveness are thus the hardest queries
in this examination. In total 112 models are fully solved (of which 77 are consid-
ered “easy”). The hardest models are identified as RERS, SharedMemory (COL),
DrinkVendingMachine (COL), SafeBus and EisenbergMcGuire. These models are
all structurally very large.

– Upper Bounds. This examination is relatively easy; in 2023 the BVT reached
94.91% of the ideal score, only slightly lower than the global properties examination.
In total 120 models are fully solved (of which 100 are considered “easy”). The hard-
est models are identified as SemanticWebServices, CANInsertWithFailure, RERS,
FamilyReunion, PhilosophersDyn, FunctionPointer, Planning, VehicularWifi. Most
of these models are in fact unbounded.

– Reachability. This examination is mostly solved by the BVT, which scores up to
98.1% of the ideal score in 2023, the highest score over all examinations. This
result is quite impressive given the size of the input models (see Sect. 3) and a
fortiori their state space. In total 116 models are fully solved (of which 80 are
considered “easy”). The hardest models are identified as RERS, SharedMemory
(COL), DoubleExponent, CANInsertWithFailure, FamilyReunion. Only the RERS
models are truly hard (60% or less queries treated), 80% of the queries are answered
on SharedMemory.

– CTL. This is the second hardest examination (after State Space) currently, the BVT
scores 86.4% of the ideal score. As the colors on the plot show, there is also a
significant amount of tool complementarity, with many queries solved by a single
tool. The leader of the examination TAPAAL in 2023 scores 75.3% of the ideal
score. In total 27 models are fully solved (of which 12 are considered “easy”). The
hardest models are identified as FamilyReunion, RERS, SharedMemory (COL),
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Planning, CANInsertWithFailure, Philosophers and HouseConstruction. These are
mostly models for which the state space computation was not possible.

– LTL. Surprisingly, the LTL examination seems quite easy at the current time, with
BVT reaching 96.9% of the ideal score. This is almost the level observed with
Reachability. This is in part because, as discussed in Sect. 4.2, the formulas are
biased towards counter-examples (70.1% of formulas can be contradicted versus
only 26.7% that must be proven). In total 60 models are fully solved (of which 19
are considered “easy”), comparing these values to Reachability we see that some
of the LTL queries are hard. The hardest models are identified as FamilyReunion,
SharedMemory (COL), TokenRing, RERS, Philosophers and DatabaseWithMutex
(COL). Apart from RERS, these models are mostly colored models with structurally
very large unfoldings.

7 Detailed Results Analysis for 2018-2023

In this section we analyze each category of the MCC to look at the evolution of the
results over the period ranging from 2018 to 2023 inclusive.

Figure 7 shows the evolution of tool performance over time as they strive to answer
100% of the queries. In these plots, the “Best Virtual Tool” BVT is computed as the
union of all other tool results (hence it is always on top). To have more comparable
results from year to year, all the results in this section are normalized to be a percentage
of the queries that were answered. Thus 100% in the plots corresponds to answering all
queries in the category. This choice deviates from the scoring used in the MCC to decide
the podium, where surprise models are worth more points, errors are scored negatively,
etc. But it makes the data more easily comparable on a year to year basis and is simpler
to interpret.

We plot all the tools that have participated as a competitor since 2021 as well as the
BVT. The tools are presented in more detail in Sect. 5 by their respective authors. The
“+red” combination tools that use ITS-Tools as a preprocessing step are not represented,
nor are the reference tools.

7.1 Evolution of State Space Examination

The number of participants in the examination is stable with regular contenders Tedd,
GreatSPN, ITS-Tools. All these tools use symbolic decision diagram based strategies
to compute the desired metrics; explicit state based methods seem to perform more
poorly on this examination, and tools that use these technologies have withdrawn from
participating in it over time.

ITS-Tools relies on hierarchical set decision diagrams [81] (SDD) as well as de-
compositions of the system using NUPN (see Sect. 3.3) and Louvain modularity [21].
GreatSPN uses the Meddly decision diagram library [13] and some advanced heuristics
for variable ordering described in [10]. Tedd uses a variant of hierarchical SDD as well
as a unique technology to compute these metrics on a structurally reduced net [16].

Tedd is the best tool in the category since 2018 where it overtook GreatSPN, and
in 2023 reaches 94.66% of the score of BVT. This indicates the existence of some
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Fig. 7: Evolution of tool performance across different examinations.
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complementarity between the tools, probably related to the fact that static ordering
heuristics for the variables in the decision diagram are critical to efficiency.

7.2 Evolution of Global Properties Examination

The global property examination contains five queries with a boolean answer expected:
Reachability Deadlock, Stable Marking, One Safe, Quasi Liveness and Liveness. Before
2020, only deadlocks were computed (light gray area). This is visible on the pluri-annual
plot (Fig. 7b) where the BVT score dips down in 2020, and ITS-Tools that still only
supported Reachability Deadlock that year scoring below 20%.

The main contenders in this examination are ITS-Tools, LoLA, TAPAAL, GreatSPN
in that order. The relative rankings of these tools is stable since 2021.

GreatSPN answers by building the state space as a decision diagram then querying
it, but ITS-Tools, LoLA and TAPAAL all use strategies dedicated to the problem.
LoLA uses specific reductions described in [88], some strategies dedicated to colored
nets [83] as well as an advanced portfolio management [89]. TAPAAL uses advanced
compression [55], structural reductions [25] and directed search heuristics [44]. ITS-
Tools relies on an abstraction refinement based strategy [80] with steps dedicated to the
global properties that include some semi-decision procedures, as well as both decision
diagram based technology [81] and explicit state model-checking with partial order
reductions [63].

Current leader ITS-Tools in the category reaches overall 97.89% of the BVT score,
itself very close to the ideal score (above 95% except in Quasi Liveness). However, there
is still some complementarity between the participants and room for improvement on the
harder queries Quasi Liveness (ITS-Tools is at 96.3% of BVT) and Liveness (ITS-Tools
is at 96.75% of BVT).

7.3 Evolution of Upper Bounds Examination

The main contenders in this examination are ITS-Tools, TAPAAL, LoLA, GreatSPN in
that order. The relative rankings of these tools is stable since 2021 but the examination
was introduced in MCC’2016 and there has been significant improvements in it with the
BVT progressing from 87.2% in 2018 to 94.9% of the ideal score in 2023. ITS-Tools
currently leads the examination with 98.60% of BVT.

Some notable improvements to tools and algorithms are visible in the plot 7c (left)
such as the marked progress of TAPAAL from 2018 to 2019, continuous improvements
of Lola from 2018 to 2021, and the break in performance of ITS-Tools between 2020 and
2021 due to introduction of dedicated strategies [80] instead of only relying on decision
diagrams.

7.4 Evolution of Reachability Examination

The main contenders in this examination are ITS-Tools, TAPAAL, SMPT, LoLA, Great-
SPN in that order. It is notable that in 2023 the top three competing tools (ITS-Tools,
TAPAAL and SMPT) are within one percent of each other at roughly 94% of the ideal
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score, but the BVT is much higher at 98.1% of ideal indicating that many queries could
be solved by only one tool.

There has been significant improvements in this examination since 2018; the BVT
score has risen from 94.2% (with leader TAPAAL in 2018 scoring 91.3% of ideal)
to 98.1% in 2023 (with the leader a combination of ITS-Tools and LoLA that scored
95.8%).

Most of the current leading tools benefit from a mixture of advanced structural
reduction rules to reduce the input nets, some form of linear reasoning on e.g. the state
equation and guided or directed search to achieve this performance.

Notable improvements to the performance of tools are also visible on Fig. 7d,
for instance the progress of GreatSPN between 2018 and 2019 due to variable ordering
heuristics [10] or for ITS-Tools between 2019 and 2020 with a switch from pure decision
diagrams to strategies involving SMT and structural reductions [79]. The relatively
recent tool SMPT saw a drastic rise from its first submission in 2021 to become a top
contender in 2023 thanks to introduction of new strategies [2]. TAPAAL also shows
clear improvements from year to year with more queries and models treated, though it
started from a high level in 2018 so it is less apparent on the plot. The strategies of ITS-
Tools [79] to reduce the reachability problem are very effective in this examination, with
all the “+red” combination tools scoring 93% or better even when the naked reference
tool scores below 50%.

7.5 Evolution of CTL Examination

The main contenders in this examination are TAPAAL, LoLA, ITS-Tools and GreatSPN
in that order. The BVT scores 86.4% of ideal score in 2023, which makes this the second
hardest examination after state space. There is also a visible dip in the BVT score since
2021 (down to roughly 85% from roughly 90% up to 2020) that we attribute to the
improvements of the formula generator Citili (see Sect. 4.1).

TAPAAL is leading the examination with 75% of queries answered, while LoLA (a
reference tool in 2023) and ITS-Tools are very close to each other around 56.7%. The
combination tool using ITS-Tools and LoLA performs significantly better than either in
isolation at 67.8% of queries treated. GreatSPN solves 40.7% of CTL queries in 2023
but a refined analysis shows 10.6% of these answers are solved only by GreatSPN.

7.6 Evolution of LTL Examination

The main contenders in this examination are ITS-Tools, TAPAAL, EnPAC, LoLA and
GreatSPN in that order. The BVT solves 97.3% of all queries a significant progression
from 92% in 2018, but this high value could indicate that the formulas are not hard
enough.

The leaders ITS-Tools and TAPAAL are within one percent of each other around
95%, a result that is also matched by the combination of ITS-Tools and LoLA. Then
EnPAC and LoLA are around 80% of queries solved, though EnPAC did not participate
in 2023 and LoLA was only submitted as a reference tool. Using its CTL* verification
engine [11], GreatSPN performs similarly to CTL solving 41% of the queries.
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The results of competitors in this examination have progressed a lot. TAPAAL only
started supporting the LTL examination in 2021, where it immediately took the gold.
EnPAC participated from 2019 where it solved 7% of queries to 2022 where it solved
82.6% of queries, an impressive progression. It obtained bronze medals in 2021 and
2022.

8 Conclusion and novelties for the next MCCs

We presented the Model Checking Contest and how it has been operated in its last
edition (2023). We have also presented an analysis of the results for 2023, highlighted
with some observations deduced from the six editions that occurred between 2018 and
2023. It shows that the MCC is an established regular event which already had a strong
impact on our community: prototype tools’ efficiency has been improved and a large
benchmark covering models, formulas, etc., is now available.

We now sketch some novelties that could be considered to enrich the competition in
the upcoming years.

8.1 Standardizing the Formula Format

This is not an issue for the competition itself but an interesting outcome for the whole
community. Actually, all the participating tools have implemented libraries to parse the
formulas provided in some of the examinations. Since models are provided using an
ISO/IEC international standard favoring exchange and interoperability of tools, it could
be of interest to provide such a standard for properties.

At this stage the format proposed in the MCC is a sort of “de facto” standard based
on an XML representation of formulas. But it is not complete yet. In particular, it
is not currently appropriate to be used as an exchange or storage format, but could
be extended in that direction (TRUE/FALSE terminal nodes, richer atomic properties,
more comparison operators than ≤, etc.). Thus, it needs to be refined and discussed to
be possibly inserted in a future revision of the Petri net standard (ISO/IEC 15909, parts
I to III).

The Model Checking Contest would help to gradually experiment with this format
and improve it, so that various libraries are available when the standard is out.

8.2 Execution

At this stage, tools must report, when they provide results, the techniques they used to
to compute values. This could lead to an analysis of the evolution of techniques between
2015 and 2019 [62]. However, such analysis is quite complex since the vocabulary
designating techniques is not normalized. Thus, manual preprocessing steps must be
performed. Moreover, tools do not always differentiate the techniques for a given formula
but report those of all the formulas computed in one examination.

So, there is an improvement we could complete in the next years. Then, since we get
a large volume of data every year, this could rapidly enable the detection of situations
were one technique (or a combination of techniques) is more efficient than other ones.
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Such an analysis has been proposed before [32] but the corresponding tool, competing
in 2018, was not really successful.

8.3 Models

Model Forms. Each submitted model consists of one or several instances, as well as a
model form. These forms, initially filled in by the people submitting the models, contain
precious information about the models’ origin, the methods and tools used to generate
their instances, and their properties. The model board members carefully check the
content of these forms, enriching them as much as possible with the results provided
by the tools participating in the MCC, as well as other tools (e.g. CÆSAR.BDD23

and ConcNUPN [29]). This is a difficult and time-consuming task, particularly for
models including instances that cannot be handled by state-of-the-art tools, or presenting
unexpected specifics (e.g. divergent behaviors between colored and PT instances). It
happens quite regularly that models that are several years old need to be enhanced.

Currently, model forms (in tex format) are processed to produce XML files24 giving,
for each model, a total of 24 global properties (each of which can be evaluated as true,
false or unknown). Currently, when there are divergences among instances of a model
(for example, where some instances are safe, while others are not), the property has to be
marked as “unknown” and we have to write manually a statement that is only readable
by humans. We would like to improve this format, to be able to describe these properties
for each instance, possibly with new useful properties for the community, and possibly
beyond ternary evaluations (for example, it is helpful to know the names of (all) dead
transitions, or at least their number, rather than merely knowing their existence).

Correction of Existing Models. As far as possible, we avoid altering instances from
previous editions of the MCC, the only exception being when they present serious,
unnoticed problems. For example, instances containing places or transitions with label
names different from their XML id, a nice feature of the PNML format, but leading
to incorrect formula evaluation by certain tools not taking this feature into account. Or
when some instances are found to be isomorphic (there is a permutation of their places,
their transitions and, in the case of NUPNs, their units, such that these two instances
coincide): in this case, we eliminate the duplicate.

Model Enhancements. In order to follow the noticeable progression of model-checkers
through successive editions and to keep existing models “challenging” for these tools,
we can add extra instances to existing models.

Feeding some Examinations with Structural Information. One idea should be to
feed the reachability, CTL and LTL examinations with structural information (extracted
when computed from GlobalProperties questions). This information can help tools to
improve their algorithms.

23 https://cadp.inria.fr/man/caesar.bdd.html.
24 https://mcc.lip6.fr/verdict-properties.php.

https://cadp.inria.fr/man/caesar.bdd.html
https://mcc.lip6.fr/verdict-properties.php
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New Petri Net Formalisms (e.g. Time). So far, we support Petri nets and colored (i.e.
Symmetric) Petri nets; both are described in the ISO/IEC standard. One suggestion is
to extend the MCC to time(d) nets. This is a difficult task since there are only a few
tools dealing with time in Petri nets. Moreover, these tools support different timing
schemes. The main ones are: Time Petri Nets [68] that associate a firing interval with
each transition ; Timed Petri Nets [72] which feature a global clock and tokens carry
an availability time ; and Timed-Arc Petri Nets [47] where tokens carry an age and
arcs between places and transitions are labelled with time intervals restricting the age
of tokens available for transition firing.

The idea is to define the core semantics supported by existing tools and to encode it
using the new extensions mechanisms proposed in the Part III of the ISO/IEC standard.
Integrating such Petri Nets extensions must involve both the tool developers and the
MCC organizers.
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