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Abstract. Controller synthesis for stochastic hybrid switched systems,
like e.g. a floor heating system in a house, is a complex computational
task that cannot be solved by an exhaustive search though all the con-
trol options. The state-space to be explored is in general uncountable
due to the presence of continuous variables (e.g. temperature readings in
the different rooms) and even after digitization, the state-space remains
huge and cannot be fully explored. We suggest a general and scalable
methodology for controller synthesis for such systems. Instead of off-line
synthesis of a controller for all possible input temperatures and an arbi-
trary time horizon, we propose an on-line synthesis methodology, where
we periodically compute the controller only for the near future based on
the current sensor readings. This computation is itself done by employing
machine learning in order to avoid enumeration of the whole state-space.
For additional scalability we propose and apply a compositional synthesis
approach. Finally, we demonstrate the applicability of the methodology
to a concrete floor heating system of a real family house.

1 Introduction

Home automation includes the centralized control of a number of functionalities
in a house such as lighting, HVAC (heating, ventilation and air conditioning),
appliances, security locks of gates and doors as well as other systems. The overall
goal is to achieve improved convenience, comfort, energy efficiency as well as
security. The popularity of home automation has increased significantly in recent
years through affordable smartphone and tablet connectivity. Also the emergence
of “Internet of Things” has tied in closely with the popularization of home
automation. In particular, several devices may be connected through a home
network to allow control by a personal computer, and may allow remote access
from the internet.

The connectivity in the home enables new, intelligent and personalized con-
trol strategies for (and across) activities in the house. One novel approach which
is being developed and applied in the on-going EU FP7 project CASSTING1

is that of game theory. Empowered with efficient techniques and tools, game

1 www.cassting-project.eu
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theory comes with the promise of automatic synthesis of improved, optimal and
personalized control strategies produced on demand by the user herself. In fact,
the tool Uppaal Tiga has already been successfully2 applied to user-directed
and user-demanded synthesis of control strategies for lighting in a house, and
been implemented in a complete tool-chain on a Raspberry Pi [12].

Within the CASSTING project, we collaborate with the Danish company
Seluxit3 offering complete home automation solutions. The focus is on the floor-
heating system of a family house, where each room of the house has its own
hot-water pipe circuit. These are controlled through a number of valves based on
information about room temperatures communicated wirelessly (periodically due
to energy considerations) from a number of temperature sensors. In the present
system, a simple “Bang-Bang”-like strategy is applied. There are though several
problems with this strategy, as experienced by the house owner: it completely
disregards the interaction between rooms in terms of heat-exchange, the impact
of the outside temperature and weather forecast as well as information about
movements in the house. Taking this knowledge into account should potentially
enable the synthesis of significantly improved control strategies.

For the control synthesis of the lighting system, timed games and Uppaal
Tiga proved sufficient. However, in order to control a floor-heating system, we
must take into account continuous (temperature) as well as stochastic aspects
(outside temperature, movements). Hence we need to be able to (efficiently)
synthesize strategies for stochastic hybrid games.

A promising starting point is the recent branch Uppaal-Stratego [5,6],
which allows for the synthesis of safe and near-optimal strategies for stochas-
tic timed games using a combination of symbolic synthesis and reinforcement
learning. The tool has recently been extended to stochastic hybrid games with a
successful application to the synthesis of strategies for battery aware scheduling
problems [14] as well as safe and optimal adaptive cruise controllers for cars [9].

Facing the floor heating case study of CASSTING, direct application of
Uppaal-Stratego does not scale: due to the enormous number of control
modes it is virtually impossible to learn optimal control. Instead, we propose a
novel on-line synthesis methodology, where we periodically—and on-line—learn
the optimal controller for the near future based on the current sensor readings.
For additional scalability, we propose and apply a novel compositional synthesis
approach. As we shall see this combination allows us to significantly improve
upon the currently applied “Bang-Bang” control strategy.

Related Work In [10,11] a method and tool (PESSOA) is presented for syn-
thesizing controllers for cyber-physical systems, represented by a set of smooth
differential equations and automata given a specification in a fragment of Linear
Temporal Logic (LTL). In [8] a class of hybrid systems that involve random phe-
nomena, in addition to discrete and continuous behaviour are considered, and
abstraction techniques are presented and applied to the synthesis of controllers.

2 [12] won the Embedded Thesis Award 2014 of the Federation of Danish Industry.
3 www.seluxit.com
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In [13] the authors provide an abstraction-refinement method for synthesis of
controllers for discrete, stochastic dynamical systems with respect to LTL ob-
jectives. In [7] a number of benchmarks for hybrid system verification has been
proposed, including a room heating benchmark. In [3] Uppaal SMC was applied
to the performance evaluation of several strategies proposed in the benchmark.
In [4] a combination of Uppaal SMC with ANOVA has been made for efficient
identification of optimal parameters of the various control strategies.

Our online approach may be seen as an instance of model predictive control or
receding time horizon control for hybrid systems (see e.g. [2]) where the optimal
solutions are already very expensive to compute. We tackle even a more gen-
eral class of systems (including stochasticity in particular) and apply a learning
heuristic that is cheaper on the cost but does not guarantee optimality.

The main novelty of our work, compared to the previous research, is that we
address an industrial-size case with its full complexity, where the already studied
methods and approaches do not scale. It is the combination of online learning
approach, employment of the very recent tool support and the compositional
approach that allowed us to significantly improve upon the performance of the
current controller used for the floor heating system in the existing house.

2 Switched Control Synthesis

We use a one-room heating control problem as a running example to demonstrate
our techniques in a simple setting: we model the problem, explain the necessary
theory behind the model, show how the model fits the theory and show how
Uppaal Stratego can be used to solve the problem.

The one-room system consists of a room with walls, a window, heater and its
controller. The objective of the controller is to maintain the room temperature
at the goal level (21◦C). Due to temperature sensor energy considerations the
controller receives temperature readings only once every 15 minutes and then
it has two options: either to turn the heater on (mode “HeatOn”) and keep it
there or switch the heater off (mode “HeatOff”). Consequently the temperature
evolution will be different in these modes due to different energy supply from
the heater. There is also a continuous leak of energy through the walls and the
window to the outside environment. In short, the temperature dynamics can be
described by the following differential equation:

d

dt
T (t) =

(
Te(t)− T (t)

)
·A(t) +H(t)

where T (t) is the room temperature at time t, Te(t) is the outdoor temperature,
A(t) is the heat exchange factor specific to the walls and windows, and H(t) is
the power of the heater.

Figure 1b shows such differential equation with heater step functions mod-
elled in Uppaal Stratego as hybrid automaton with two discrete modes. The
continuous dynamics of T (t) is typeset as an invariant constraint over the clock
variable T derivative under the respective modes. The periodic behaviour of the
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const double Tg = 21.0; // goal temp. in deg.C
const double Te = 15.0; // env. temperature
const double H = 0.04; // power of heater
const double Aclosed =0.002; // window closed
const double Aopen = 0.004; // window open
const int P = 15; // switching period , 15min
const int h = 60; // 1hour = 60min
clock t; // global time in minutes
clock T = 18.0; // room temperature in deg.C
clock D = 0.0; // distance between T and Tg
clock x; // controls switching period
clock w = 0.0; // controls window profile
int i = 0; // phase of window profile
double A = Aclosed; // heat to environment

const int L=4;// four phases in window profile:
const int closedL[L]={ 6*h, 11*h, 16*h, 19*h };
const int closedU[L]={ 7*h, 12*h, 17*h, 23*h };
const int openL[L] = { 7*h, 12*h, 18*h, 24*h };
const int openU[L] = { 8*h, 13*h, 21*h, 24*h };

(a) Variable declarations

(b) Heating modes

(c) Window profile

(d) Distance to goal temp.

Fig. 1: Uppaal Stratego model of one room with one window

controller is enforced by the invariant x<=P and guard x==P over clock x with
default derivative of 1. For the sake of simplicity, we assume static outdoor tem-
perature fixed to a specific value and modelled by the constant floating point
variable Te. All model variables (their types and initial values) are declared as
C structures in Fig. 1a. The window step function A(t) is modelled in Fig. 1c
as stochastic automaton with transitions between “Open” and “Closed” modes
and changing the floating point variable A. Thus the window process can change
the value of A discretely between values Aclosed and Aopen at any moment with
uniform probability distribution over time, but only at intervals specified by a
user profile. The profile is stored in arrays closedL/U and openL/U denoting
the lower and upper bounds of time intervals when the switch may happen. For
example, one can read the profile arrays by columns: the window starts and
stays closed during the night time, but it will open somewhere between 6 and 7
o’clock in the morning and close between 7 and 8 o’clock, then it will open again
between 11 and 12, and close between 12 and 13, etc..

The whole system model is then a composition of the controlled heating
process with the stochastic window process where temperature depends on the
heating mode and the mode of the window. We use stochastic hybrid game to
describe the controller synthesis formally.

Definition 1 (Stochastic Hybrid Game). A stochastic hybrid game G is a
tuple (C,U , X,F , δ) where:

1. C is a controller with a finite set of (controllable) modes C,
2. U is the environment with a finite set of (uncontrollable) modes U ,
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3. X = {x1, . . . , xn} is a finite set of continuous (real-valued) variables,
4. for each c ∈ C and u ∈ U , Fc,u : R>0 × RX → RX is the flow-function that

describes the evolution of the continuous variables over time in the combined
mode (c, u), and

5. δ is a family of density functions, δγ : R≥0×U → R≥0, where γ = (c, u, v) ∈
C × U × RX . More precisely, δγ(τ, u′) is the density that U in the global
configuration γ = (c, u, v) will change to the uncontrollable mode u′ after a
delay of τ4.

We shall assume that among the continuous variables X, there is a variable
time measuring global time, i.e. Fc,u(τ, v)(time) = v(time) + τ for any mode-
configuration (c, u). In the above definition, the syntactic specification of flow
functions—e.g. using ODEs—has been left open. In the game G, the controller
C will only be permitted to change controllable mode at time-points being a
multiple of some given period P (hence the term switched control). In contrast,
the environment U will change its uncontrollable mode according to the family
of density functions δγ .

Example 1. In our one-room example, the controllable modes are HeatOff and
HeatOn with controllable transitions (using solid lines) between them, the un-
controllable are Open and Closed with uncontrollable transitions (using dashed
lines). We also have a number of continuous variables: temperature T and clocks
t, x and w. The differential equations together with discretely changing variables
are part of the flow-function definition. C

Now let C denote the set of global configurations C × U × RX of the game
G. Then a (memoryless) strategy σ for the controller C is a function σ : C →
C, i.e. given the current configuration γ = (c, u, v), the expression σ(γ) is the
controllable mode to be used in the next period.

Let γ = (c, u, v) and γ′ = (c′, u′, v′). We write γ
τ→ γ′ in case c′ = c, u′ = u

and v′ = F(c,u)(τ, v). We write γ
τ→u γ′ in case c′ = c, v′ = F(c,u)(τ, v) and

δγ(τ, u′) > 0. Let σ : C→ C be a (memoryless) strategy. Consider an interleaved
sequence π of configurations and relative time-delays of the form:

π = γo :: τ1 :: γ1 :: τ2 :: γ2 :: τ3 :: γ3 · · ·

where γi = (ci, ui, vi), τi ∈ R≥0 and for all n there exist i st.
∑
j≤i τj = n · P .

Then π is a run according to the strategy σ if for all i either γi
τi+1→ u γi+1 or∑

j≤i+1 τj is a multiple of P and γi
τi+1→ (ci, ui, vi+1) with ci+1 = σ((ci, ui, vi+1))

and ui+1 = ui.
In fact, under a given strategy σ the game G becomes a completely stochastic

process G � σ, inducing a probability measure on sets of runs. Thus, if H ∈ N is
a given time-horizon, and D is a random variable on runs—e.g. measuring the
integrated deviation of the continuous variables wrt. given target values—then
EG,γσ,H(D) ∈ R≥0 is the expected value of D with respect to random runs of G � σ
4 Note that

∑
u′

∫
τ
δ(c,u,v)(τ, u

′)dτ = 1 for all (c, u, v).
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of length H starting in the configuration γ. We want to obtain a strategy σH

which minimizes (or maximizes) this expected value.

Example 2. The one-room controller’s goal is to keep the room temperature as
close as possible to the goal set point, therefore a desired controller would min-
imize the absolute difference T (t)− Tg. In order to encourage the minimization
even more we use a quadratic difference function to measure the distance be-
tween the room T and the goal Tg temperatures, and then integrate it to achieve a
distance function over complete trajectories. Conveniently, our distance function
is modelled using differential equation in Fig. 1d as a separate process. Before
we synthesize anything, we can inspect how does a uniform random choice fare
in Fig. 2a: the temperature curve is at the top and heating and window mode
trajectories are below and they jump up when the heating is on and window
is open respectively. The result is that the room temperature responds to the
mode changes and varies widely, tending to overshoot above the goal, and hence
the distance function after 24h period is about 4200 on average. In order to
synthesize a strategy we pose the following query in Uppaal Stratego:

strategy opt = minE (D) [<=24*h]: <> t==24*h

which asks to find the strategy that will minimize the expected value of D when
we reach a state with t==24*h while considering simulations of up to 24*h in
duration. Once the strategy is available, we may inspect it by requesting a sim-
ulation plot:

simulate 1 [<=24*h] {T,Window.Open+14,Room.HeatOn+16} under opt

For example, the synthesized 24h strategy using the “naive” learning method
yields the distance of 2750 on average as shown in Fig.2b. The result is even more
improved by the “splitting” learning method in Fig.2c where the temperature
oscillates around the goal very closely. C

Uppaal Stratego offers four learning methods focusing on various parts
of the model, therefore we consider the quality and the cost of each method
before we focus on our industrial-scale example. Table 1 shows a summary of the
evaluation of various methods on two variants of a one-room example: the purely
dynamical model is shown in Fig. 1 and another one that has an extra counter
incremented at each period P. The result is that among the offline methods
(discussed so far) the “splitting” method provides the smallest distance solution,
however it is costlier than others in CPU time and memory. The right side Table 1
shows that if we add a period counter to our model, then other methods dominate
and the “splitting” method is no longer as good and the “naive” computation
costs significantly less. Offline-6 section (strategy for six days) requires twice as
many resources as offline-3 (strategy for three days) which means that a linear
number of resources is needed in terms of duration of the strategy while using
the same number of runs, but the quality (distance) degraded almost four times
with a period counter.
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(a) Stochastic, D(24h) = 4200. (b) Offline naive, D(24h) = 2750.

(c) Offline splitting, D(24h) = 468.
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(d) Online naive, D(24h) = 471.5.

Fig. 2: One-room 24h trajectories of various control strategies

2.1 Online Synthesis

Uppaal Stratego [5,6] provides a method for approximating EG,γσ,H(D) ∈ R≥0

by computing a near-optimal strategy σH for a given horizon H using reinforce-
ment learning. However, the effort needed to learn the strategy σH with a desired
precision and confidence-level grows exponentially in the number of dimensions
(variables). The quality of the learned control degrades sharply after the con-
trol options outnumber the number of simulation runs during learning, making
this direct application of Uppaal Stratego limited in the time horizon. For
instance, given a realistic setting of eleven heating switches as considered in our
case study, the controller is faced with 211 = 2048 distinct options at each 15min
period and thus Uppaal Stratego manages to compute sensible heating con-
figurations only for the first two periods (yielding 20482 = 4194304 combinations
in total) and then it simply resolves to default option of no heating at all.

Instead of learning—at great computational expense—the entire strategy σH ,
we propose a method for attentively and online (i.e. while playing the game G
in the real setting) to compute a near-optimal strategy for controllable mode-
change at the next period. More precisely, the resulting online and periodic
strategy σO will base the mode-change at time n·P not only on the configuration
at that point (γn) but also on the configuration (γn−1) at time (n−1) ·P 5, which
will be used as the basis for online learning of short-horizon (h << H) strategies.

5 Note that there may be several configurations between γn−1 and γn due to the
environment U changing the uncontrollable mode.
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Table 1: Performance evaluation of one room controller synthesis: offline-3(-6)
methods synthesize strategy for entire 72 hours (144 hours respectively) at once,
strategy distance is evaluated on 70 simulations; online-3 methods synthesize a
strategy for 5 periods of 15min ahead and repeat synthesis and execution until
72 hours are covered, the distance is averaged over 70 online simulations.

Synthesis Purely dynamical model Extra period counter
method Distance cpu,s mem,kB Distance cpu,s mem,kB

O
ffl

in
e
-3 naive 10227.8 1555.15 11884 3671.84 566.04 9448

splitting 517.9 1640.06 13424 2361.80 1608.48 90740
covariance 10227.8 1298.66 11896 1091.81 1668.45 22820
regression 10227.8 1368.34 11480 1387.84 1767.50 19196

O
ffl

in
e
-6 naive 19668.7 1855.36 11836 8032.86 1316.08 20820

splitting 593.7 3200.38 13112 8260.19 3120.03 167308
covariance 20234.3 2039.30 11528 2468.91 3258.09 39580
regression 19007.2 2525.13 12148 3425.62 3488.26 28416

O
n
li
n
e
-3 naive 584.7±1.0 1046.5±5.0 7240 526.6±0.5 1227.1±3.2 7328

splitting 547.7±0.6 1136.4±3.6 7384 526.1±0.6 1240.8±2.5 7384
covariance 587.5±1.2 1084.0±3.9 7272 527.1±0.6 1158.5±2.5 7624
regression 585.3±1.0 1173.9±3.4 9052 527.9±0.5 1337.1±2.5 7380

Formally:

σO(γn−1, γn) =def let
(
σh = argminσE

G,γn−1

σ,h (D)
)
in σh(γn) .

We leave the formal definition of runs under the one-step-memory strategy
σO to the reader (slightly more complicated version of runs under a memoryless
strategy given above). However, we note that σO may be used for an arbitrary
finite horizon H or even as a strategy of infinite horizon. To maximize the quality
of σO, the choice of the small horizon h should be such that it just allows the
learning of σh to be completed between the two configurations γn−1 and γn, i.e.
within the period P .

Example 3. We implemented the online strategy evaluation on the one-room
example by repeatedly calling Uppaal Stratego to synthesize and evaluate
the computed strategy. The following steps are involved:

1. Synthesize a strategy capable of adapting for 5 periods ahead where LastTime
starts with 0: strategy S = minE (D) [<=5*P]: <> t==LastTime+5*P

2. Simulate the system for 1 period using the strategy S and record its last state:
simulate 1 [<=P] { t, T, Room.HeatOn, x, Window.Open, w, i, D }

3. Create a copy of the original model and replace the initial state with the
recorded state from the simulation above.

4. Increment LastTime by P and repeat the synthesis and simulation from step 1
until a required number of periods is simulated.

5. Record the final value of the distance variable D.

The short trajectories from step 2 are then stitched together to produce a contin-
uous trajectory of the entire 3 day simulation. An example result of the first 24h
is displayed in Fig. 2d which is also comparable to other strategies. The online-3
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Fig. 3: Plan of the house

section of Table 1 shows the averages of the recorded distances together with
the overall synthesis effort for entire 3 day emulation. The encouraging result is
that the short strategy synthesis takes only 4-8 seconds and the overall quality
of any online synthesis method is very close to the best and expensive offline-3
outcome (the offline “splitting” method). C

3 Floor Heating Case Study

In Figure 3 we see the plan of the house on which we will optimize the heating
strategy. The house consists of 11 rooms, all of them heated with a floor heating
system where each room has its own pipe circuit that can be either open (hot
water circulates) or closed (water does not circulate). The opening and closing
of the circuits is executed by a number of valves located in room R7. Every
15 minutes a wireless temperature sensor in each room wakes up and reports
its current reading. Currently the bang-bang strategy runs every 15 minutes:
it collects the temperatures of all rooms, if a given room temperature is below
its target temperature (setup by the user) it opens the corresponding valve and
similarly if the temperature is above target it closes the valve.

The problem with this controller, as experienced by the house owner, is that it
completely disregards the thermodynamics of the house, the outside temperature
(and weather forecast) as well as the maximal capacity of the floor heating
system. We now outline the factors affecting the heating system in this house:

1. Heating capacity of the system. The heating system can only provide a lim-
ited water pressure to make the water circulate within the pipes. If too many
valves are open, the water will only cycle in the shortest pipes. This is es-
pecially a problem in the living room R11, as it has the longest pipe circuit,
and is also the most important room for the user, meaning that the temper-
ature of this room should be maintained close to the user’s wish. A smart
heating system should take the heating capacity into a consideration and
never exceed it.

2. Behaviour of the doors. The heat exchange between rooms are significantly
affected by whether doors between the rooms are open or closed. The house is
not equipped with door sensors, so the position of each door is unknown. This
means that the control strategy has to work under a partial observability and
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the status of each door can be inferred only indirectly by observing the speed
of heat propagation via temperature changes in the rooms.

3. Physical layout of the pipe circuits. Finally, as the valves are all located in
room R7, the pipes leading to some of the remote rooms necessarily pass un-
der under rooms. Hence e.g. opening a valve for the room R2 will contribute
also to minor increase of the room temperature in rooms R3, R5, R4 and R6

under which the pipe circuit is placed.

In our thermodynamic model of the floor heating, we take all these factors in
consideration. The aim of the controller program is to optimize the user comfort
and satisfaction according to some measure of how far the actual temperatures
are from some goal temperature.

Floor Heating Scenario as a Stochastic Hybrid Game. The floor heat-
ing scenario with n rooms and m doors is a stochastic hybrid game Gn,m =
(C,U , X,F , δ), where the controller C has a finite set of controllable modes
V = Bn given by all possible valve opening/closing combinations. The envi-
ronment U has a finite set of uncontrollable modes D = Bm given by all possible
door opening/closing combinations. We assume that U given δ can switch among
modes with equal probability at every period. The state variables in X are given
by the room temperatures {T1, . . . , Tn} and the outside temperature Tenv.

We will denote by vector T the room temperatures and by Ti the i-th room
temperature. Given the current temperatures T , a controllable mode v ∈ V , an
uncontrollable mode d ∈ D and a time delay τ , the flow function Fv,d(τ, T ) gives
the room temperatures T ′ (after τ time units passed) that are the solutions to
the following differential equations:

d

dt
Ti(t) =

n∑
j=1

Adi,j(Tj(t)− Ti(t)) +Bi(Tenv(t)− Ti(t)) +Hv
j,i · vj dt

where Adi,j contains the heat exchange coefficients between room i and room j,
given the door mode d. Note that there are 2m matrices for the possible door
modes. The vector B contains the heat exchange coefficients between the outside
temperature and each room, and Hv contains the heat exchange coefficients for
each pipe and the rooms it traverses. A pipe heats a room if it traverses it
and valve vj is open. There is a capacity constraint on the water pressure, if
the capacity is exceed the coefficients in Hv prevent the rooms with the long
pipes from been heated. Finally, Tenv(t) is the current outside temperature at
time t. The initial conditions are given by the current temperatures T . Hence,
for a given room i, the temperature T ′i is influenced by the adjacent rooms,
the door configuration (uncontrollable mode), the outside temperature Tenv, the
pipes traversing the room, and the valve configuration (controllable mode). For
the thermodynamics to be realistic, the time unit is minutes.

3.1 Experiments

Regarding our experiments, we have two major components: a simulator written
in Matlab and a number of controllers, including the ones produced by Uppaal
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Stratego. The simulator implements the floor heating stochastic hybrid game
Gn,m. For our experiments, in the simulator we fix a time horizonH of 3 days with
a period P of 15 minutes. As in the real house, every 15 minutes, the simulator
outputs the current room temperatures T which are read by the controller.
Subsequently, the controller inputs the control valves V which are used by the
simulator for the next 15 minutes. The house has vectors of desired temperatures
T g and weights W denoting the importance of each room. Our goal is to optimize
the comfort in the house. Intuitively, comfort is in proportion to the distance
between the desired temperatures and the current temperatures. To measure the
comfort provided by a controller (strategy) σ, we define a function dist on runs

of Gn,m � σ of the form π = γo
t1→ γ1

t2→ . . .
tk−1→ γk−1

tk→ γk where k = H/P is the
number of control steps in the run π. Let Ti(γj) denote the room temperature
Ti at configuration γj . Then the distance function is defined by

dist(π) =

k∑
j

n∑
i

(T gi − Ti(γj))
2 ·Wi .

In our experiments, we evaluate a number of different controllers. The simulator
uses the distance function dist to compare the different controllers.

Controllers. In the following we introduce a number of controllers which we
use in our experiments. We present the current controller operating in the house,
two controllers proposed by engineers and the controller synthesized using online
synthesis and Uppaal-Stratego.

– Bang-Bang Controller. The bang-bang controller is currently running in the
physical house and after each reading of room temperatures T , it simply
opens the valves of every room i where Ti < T gi and leaves the remaining
valves closed.

– Capacity Aware Bang-Bang Controller. The main problem with the bang-
bang strategy is that if all rooms are below their target temperatures, it
simply opens all valves in the house, violating the restriction on the max-
imal capacity of the floor heating system. The capacity aware bang-bang
controller, at each time where a decision is to be taken, orders in descending
order all rooms according to their individual distance function, given for a
room i by Wi · (T ig −T i)2 where Wi is the given priority of room i, and then
opens in this order the valves of all rooms that are below their target tem-
peratures (as the normal bang-bang controller) but only until the maximum
capacity is exceeded.

– Brute-Force Controller. This is an online controller with short horizon 1
that for n valves by brute-force explores all possible 2n valve combinations
and selects a valve combination that minimizes the distance function. The
controller operates as follows: after the current reading of the temperatures
T and the valves configuration v, it guesses a random door mode d and using
this information it computes the expected temperatures T ′ exactly after P
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time units (recall that in our case study we fixed the period to P = 15); next
the controller considers all 2n possible valve configurations and computes the
predicted room temperatures T ′′ at time 2P . The controller then returns
the valve configuration that minimizes the distance function dist. Note that
already for the short horizon 1, the computation of the brute-force controller
takes over 170 seconds, so exploring by brute-force all 22n combinations (in
our case n = 11) needed for the short horizon of 2 is impossible due to the
15 minute duration of the period.

– Stratego Online Controller. (Stratego-ON) The controller is synthesized
by Uppaal Stratego using the online strategy synthesis methodology in-
troduced in Section 2 with short horizon of 3. The aim is to learn the optimal
valve configurations for several steps ahead using machine learning methods
and hence avoid the exhaustive search done by the brute-force controller.

Evaluation Scenarios. In order to evaluate the performance of the different
controllers described above, we fix five realistic scenarios on which we perform
our experiments. We distinguish between the stability scenarios where the initial
room temperatures are equal to the target ones (T (0) = T g) and the task is to
maintain these temperatures throughout the next three days relative to different
weather conditions. We also study the vacation scenarios, where we assume that
a family returns from a vacation and shortly before this the house should move
from the energy-saving temperature vector T (0) into the target temperature T g

vector as quickly as possible.
The stability and vacation scenarios are then subject to two different weather

profiles, a mild winter where the outside temperature behaves according to real
data from the Aalborg airport from 03.02.2015, 00:20 to 07.02.2015, 23:50 where
the outside temperature ranges between 2 to 5 ◦C, and a tough winter using
the data from the Aalborg airport from 14.02.2015, 00:20 to 17.02.2015, 23:50
where the outside temperature ranges between -10 and 6 ◦C. We also consider
the spring scenario where the outside temperature is modelled using a sinusoid
T env(t) = 7 ∗ sin(2 ∗ pi/60 ∗ 24 ∗ t) + 19 such that most of the time the outside
temperature is below the target room temperatures but the peak environment
temperature during the middle of the day exceeds the target room temperatures.

In all scenarios, a fixed profile when a specific door is closed or open is used,
corresponding to the typical behaviour of the owner of the house. Note that none
of the controllers is aware of this fixed door profile.

Controller Evaluation for 5 Rooms. We show the applicability of our online-
synthesis methodology on the left part of the house consisting of rooms R1 to
R5 and doors D1 to D4 (see Figure 3), i.e. the stochastic hybrid game G5,4. We
have restricted the maximum pressure capacity of the heating system to 50%.
In our simulator for G5,4, we executed all the above controllers and scenarios.
The evaluation of the controllers is given in Table 2. Since we have fixed a
door profile and the controllers are deterministic (except for Stratego-ON),
we obtain a unique run π for every combination of scenarios and controllers. For



Online and Compositional Learning of Controllers 13

Table 2: Evaluation of controllers for 5 and 11 rooms of the house (see Figure 3).
The simulation has a horizon H of 3 days, and a short horizon h of 3 periods.
Temperatures are read every 15 minutes.

5 Rooms 11 Rooms
Scenario Controller dist Time (sec.) dist Time (sec.)

mild winter
vacation

Bang-Bang 62704 < 1 53550 < 1
Bang-Bang-Cap-Aware 39755 < 1 31718 < 1

Brute-Force 36489 ∼ 2.4 28332 ∼ 171
Stratego-ON 36418 ∼ 2.9 31054 ∼ 77

Stratego-ON-CL — — 29541 ∼ 16

tough winter
vacation

Bang-Bang 248367 < 1 163635 < 1
Bang-Bang-Cap-Aware 155090 < 1 82250 < 1

Brute-Force 137266 ∼ 2.4 61897 ∼ 171
Stratego-ON 137223 ∼ 3.0 75792 ∼ 78

Stratego-ON-CL — — 66611 ∼ 17

mild winter
stability

Bang-Bang 24834 < 1 9654 < 1
Bang-Bang-Cap-Aware 18405 < 1 9430 < 1

Brute-Force 16765 ∼ 2.4 9260 ∼ 179
Stratego-ON 16708 ∼ 3.0 9972 ∼ 76

Stratego-ON-CL — — 9025 ∼ 16

tough winter
stability

Bang-Bang 199688 < 1 82849 < 1
Bang-Bang-Cap-Aware 121776 < 1 37099 < 1

Brute-Force 107065 ∼ 2.2 33917 ∼ 192
Stratego-ON 107027 ∼ 3.0 42229 ∼ 77

Stratego-ON-CL — — 34585 ∼ 16

spring
stability

Bang-Bang 4297 < 1 4493 < 1
Bang-Bang-Cap-Aware 4297 < 1 4419 < 1

Brute-Force 3875 ∼ 2.2 2861 ∼ 171
Stratego-ON 3755 ∼ 2.8 3239 ∼ 50

Stratego-ON-CL — — 2819 ∼ 16

a controller, the column dist is the accumulated distance dist(π) between the
current temperatures and the desired temperatures during the 3 day simulation.
We observe that in all scenarios, the online controller Stratego-ON has the
minimal distance, providing the best comfort among all the controllers. Our
final goal is to synthesize a controller for the full house with 11 rooms. However,
the corresponding state space hinders online strategy synthesis to scale with
satisfactory quality of the produced control strategy. We address this issue in
the next section.

4 Compositional Synthesis

Although online learning is an important step towards the scalability of our
approach, it does not enable us to learn small horizon strategies of sufficient
quality for the full version of the floor heating case study. Even though we have
decreased the horizon, the branching factor is enormous: for each period we have
to learn the optimal setting of 11 valves, i.e. the optimal of 211 modes. Given a
horizon h, this means that we have to learn the optimal sequence of modes out
of 211h possible sequences. Clearly, this becomes infeasible for small h.

However, often the set of modes C will be a product of two (or more) sub-
modes, i.e. C = C1 × C2; e.g. in the floor heating case study we may split the
11 valves into two subsets i.e. valves 1 to 5 and valves 6 to 11. This suggests
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the possibility of a compositional approach for the synthesis of σh based on the
synthesis of two sub-strategies σh1 : C → C1 and σh2 : C → C2, with σh(γ) =
(σh1 (γ), σh2 (γ)).

Given an initial sub-strategy σ0
1 : C → C1, the game G becomes a reduced

game G � σ0
1 with C2 as remaining controllable modes. With the significant

reduction in size, it may now be feasible to synthesize a near-optimal strategy,

σ0
2 : C→ C2, with horizon h for this reduced game, i.e. σ0

2 = argminσE
G�σ0

1 ,γ
σ,h (D).

Now given σ0
2 , we may similarly learn an optimal sub-strategy, σ1

1 : C→ C1, for
the reduced game G � σ0

2 with C1 as remaining controllable modes. Repeating this
process will generate a sequence of sub-strategies σi1 : C→ C1 and σi2 : C→ C2,
with σh1 = σN1 and σh2 = σN2 for some a priori chosen N . Clearly, this method
is a heuristic, with no guarantee of converging to the optimum overall strategy,
and where the quality depends on the initial sub-strategy chosen, the choice of
N as well as the game G itself. However, as we shall see, this heuristic may be
with success applied to our floor heating case study.

Stratego Online Compositional Controller. (Stratego-ON-CL) This controller
applies the previously introduced compositional synthesis together with online
synthesis. The controller uses two Uppaal Stratego models. In the first model,
valves 1 to 5 are controllable and valves 6 to 11 are fixed by a Bang-Bang con-
troller (the second model is constructed in a dual manner where the valves 1 to
5 are now fixed to the computed control strategy in the first model). At every
period, distributing the valve capacity between the left and right parts of the
house plays a key role. This controller dynamically assigns the maximum allowed
capacity for the two parts of the house proportionally to the distance function
dist of the two parts of the house.

Experiments for 11 Rooms. We implemented the floor heating stochastic
hybrid game G11,8 with 11 rooms and 8 doors in our simulator and evaluated
the Stratego compositional controller together with the previously defined con-
trollers and all the scenarios described in Section 3.1. Table 2 presents the results.
We observe that for all scenarios the Stratego online compositional controller ob-
tains results comparable to the Brute-Force controller, however, by an order of
magnitude faster.

In order to see how the Stratego-ON-CL controller can take weather in-
formation into account, consider Figure 4 that illustrates the spring stability
scenario. From points of time between 0 and 500 minutes, the outside temper-
ature increases and exceeds the target temperature. We observe that since the
Stratego-ON-CL controller is able to look at the weather forecast for the next
45 minutes, it shuts down the valves much earlier than the other controllers. This
results in energy savings and increased comfort.

Comparing the Brute-Force controller with Stratego-ON-CL, we can see
that in the vacation scenarios and tough winter scenario Stratego-ON-CL
performs with a slightly larger discomfort due to the fact that the goal is to heat
up all the rooms as quickly as possible and hence looking more time periods
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(b) Stratego-ON-CL controller

Fig. 4: Room temperatures in the spring stability scenario

into the future does not help (there is only little risk of overshooting the target
temperatures). On the other hand, in the remaining scenarios where looking
more steps into the future can have an effect on the selected control strategy,
Stratego-ON-CL has a slightly better performance. Nevertheless, Stratego-
ON-CL is a clear winner in terms of the time needed to compute the strategy
which will be particularly important when moving to even larger case studies.

5 Conclusion

In the floor heating case study we evaluated the existing Uppaal Stratego
controller synthesis techniques and showed its limitations when applied on in-
dustrial scale models. In order to solve the scalability issues, we proposed online
framework to compute and combine the short-term control strategies iteratively
on demand, while connected to the real house heating system. In addition, we
proposed a compositional methodology in order to scale the synthesis for more
rooms needed in our real scenario. The experimental evaluation showed that the
resulting strategies are outperforming the presently used controller and while
comparable in performance to the Brute-Force controller, our method can com-
pute the control strategy by an order of magnitude faster. Hence the devel-
oped framework is suitable for installation at home automation systems and we
have already constructed a scaled physical model of the house with the actual
hardware used by the company Seluxit, as a first step towards the industrial
employment of our methodology in their products.
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