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Abstract. We introduce the formalism of action investment energy
games where we study the trade-off between investments limited by given
budgets and resource constrained (energy) behavior of the underlying
system. More specifically, we consider energy games extended with costs
of enabling actions and fixed budgets for each player. We ask the question
whether for any Player 2 investment there exists a Player 1 investment
such that Player 1 wins the resulting energy game. We study the ac-
tion investment energy game for energy intervals with both upper and
lower bounds, and with a lower bound only, and give a complexity results
overview for the problem of deciding the winner in the game.

1 Introduction

Embedded systems are often executed on hardware with limited resources and
they interact with uncontrollable or even hostile environments. By adding on
top of this the ever increasing demand on software functionality and reliability
for the lowest possible price, several interesting computational and optimization
problems emerge. We introduce the formalism of action investment energy games
where we study the trade-off between investments limited by given budgets and
resource constrained (energy) behavior of the underlying system.

An action investment energy game (AIEG) is a two player game, played by
Player 1 and Player 2, each having a finite investment budget. The game consists
of two independent phases: the investment-configuration phase and the energy-
game phase. It is played on a finite multi-graph where transitions are labeled
with action names and integers, representing energy changes. Furthermore each
action has its own investment cost. In the investment-configuration phase, each
player makes an investment by choosing a set of actions costing less than his/her
budget. The result of these investments configures the board where an energy
game is played on in the second energy-game phase. An energy game [3] is a turn
based game, played on a finite multi-graph labeled with integer energy weights
created in the investment-configuration phase. Player 1 wins the energy game if
she has a strategy such that the accumulated energy along any play according
to the strategy is within a given interval.

Player 1 wins an AIEG if for any Player 2 investment costing him less than
his budget, it is possible for her to choose an investment costing less than her
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budget such that she wins the resulting energy game. Our focus is on the com-
plexity of the decision problem asking whether Player 1 has a winning strategy
in the given AIEG.

Player 1 actions coffee coco

Action cost 2 4

Player 2 actions MEMICS CAV

Action cost 4 6

Fig. 1: Example of an action investment energy game

An example of an action investment energy game is given in Figure 1. Here
the nodes that have a circle shape belong to Player 1 (she, young PhD student)
and the squares are nodes that belong to Player 2 (he, PhD supervisor who likes
to stress PhD students to their limits). Every edge (transition) is labelled with
the action name and a weight (energy change). The student repeatedly buys a
drink of her choice after which she asks her adviser if she should keep writing
a paper or prepare slides and present them at a conference. Having a drink
increases her energy level while inserting a coin, writing a paper, preparation
of slides and a trip to CAV or MEMICS cost energy. In order to survive, the
student must always have a nonnegative energy level, while increasing the energy
above a given upper-bound makes the student to quit. The thick transitions in
the graph are always present while the thin ones can be enabled by the players
in the first phase of the game, depending on their budgets. The student’s budget
gives her the opportunity to rent a drink-machine and configure the available
drinks as long as they are within her budget. The supervisor has a travel budget
allowing him to send the student to different conferences, provided it does not
exceed the financial limit. In our example this means that Player 1 can enable
the actions coffee and coco, if her budget B1 is sufficient for this and Player 2
is in control of the actions CAV and MEMICS, relative to his budget B2.

The game starts by Player 2 investing in actions within his budget B2. Then
Player 1 buys her actions up to the total cost B1. All transitions under the
selected actions are then included into the final graph. Now the players start
moving a pebble across the graph such that Player 1 selects her next move
(edge) from any circle and Player 2 from any square node. Starting with energy
level 0, the energy weight on the selected edge is added to the so far accumulated



energy. The question is whether for a given interval [a, b], a ≤ 0 ≤ b where b can
be an infinity, Player 1 has a winning strategy so that the accumulated energy
stays within the interval [a, b].

For example if the budget of Player 1 is B1 = 4 and the budget of Player 2
is B2 = 5, we can see that Player 1 wins in the interval [0, 9]. The reason is that
Player 2 can choose only to invest in the action MEMICS as CAV is beyond
the travel budget. Player 1 then responds by buying the action coffee staying
within her budget. The board of the game is now configured and the players start
the energy-game phase. After getting a grant, inserting a coin and choosing the
coffee transition, the student ends up in the situation with the accumulated
energy equal to 8. Now Player 2 can force the student to prepare the slides for
a presentation and travel to MEMICS, reaching the accumulated energy 3 and
returning the student to the configuration that already appeared (and hence it
is winning for Player 1 ), or he can decide that the student should first write a
paper, ending up with energy level 4. Now Player 1 can insert a coin and choose
to drink coffee again, increasing her accumulated energy to 9. Should Player 2
decide to ask her to prepare slides and go to MEMICS now, the energy drops to
4. This is again a winning situation for Player 1 as it has been reached before.
If on the other hand Player 2 decides that she should continue to work on the
paper, the energy level reaches 5. Now Player 1 can decide to drink a cup of tea,
giving her the accumulated energy 8 that we have already seen before. Hence
Player 1 has a winning strategy in the game.

In fact the reader can verify that Player 1 has a different winning strategy
even in the interval [0, 7] but if her budget does not allow to invest into neither
coffee or coco, then Player 1 losses for any given interval.

The main contribution of our work is the definition of action investment
energy games and a detailed complexity analysis of the decision problem deter-
mining the winner of the game. In a work [1] related to ours, a similar trade-off
scenario was studied where a dual-price schema for modal transition systems
was introduced. Here the authors study the trade-off between a long-run aver-
age execution cost and a hardware investment cost, but they do not consider
constrained resources and do not model uncontrollable environments. Several
problems related to energy games were recently studied in [6, 10, 5, 4], including
extensions to real-time games [3, 2] and imperfect information [9] but none of
these works considered the investment phase. Another related formalism of fea-
ture transition systems [8, 7] studies the problem of CTL/LTL model checking
of the transition systems configured via a set of available features. However, fea-
tures do not have any associated costs, the checked property is different from
our energy condition and the game is restricted to 1-player only.

Proofs that are missing due to the space limitations can be found in the full
version of the paper.



2 Definitions

We shall now present the definition of the action investment energy games. We
start by recalling the notion of energy games.

2.1 Energy Game

Our notion of energy games is based on the definition from [3] where we consider
general energy intervals [a, b] instead of only [0, b].

Definition 1 (Energy Game). An Energy Game (EG) is defined as a tuple
G = (Q1, Q2, Σ,→, q0) where

– Q1, Q2 are finite disjoint sets of states, we denote Q = Q1 ]Q2,
– Σ is a finite set of actions,
– →⊆ Q×Σ×Z×Q is the successor relation where (q, σ, z, q′) ∈→ is written

as q
σ,z−−→ q′, and

– q0 ∈ Q is the initial state.

An energy game can be depicted as a graph where each node represents
a state such that circled nodes belong to Q1 and squared ones to Q2. Edges
represent a transition between states and each edge is labeled with an action
name and its weight. The energy game is played by moving a token around on
the graph. The token starts in the initial state q0. If the token is in a circle state,
then Player 1 moves the token to a successor state. Likewise, if the token is in
a square state then Player 2 moves the token to one of its successor states. The
sequence on which the token moves is called a run, and it is defined as a finite
or infinite sequence of transitions

r = q0
σ0,z0−−−→ q1

σ1,z1−−−→ q2
σ2,z2−−−→ . . .

where qi ∈ Q and qi
σi,zi−−−→ qi+1 ∈→ for all i. Given a finite run r = q0

σ0,z0−−−→
. . .

σn−1,zn−1−−−−−−−→ qn, let the last state of the run be denoted by Last(r) = qn. A
run r is maximal if it is infinite, or finite and Last(r) has no successors.

Definition 2 (Valid Run). A maximal run r is valid in a given interval [a, b],
a ∈ Z, b ∈ Z ∪ {∞}, a ≤ 0 ≤ b, if a ≤

∑n
i=0 zi ≤ b for all n.

A play of the game can produce different runs depending on what strategy
each player uses. A strategy δi for Player i, where i = {1, 2}, maps each finite
non-maximal run r where Last(r) = qn ∈ Qi to its successor qn

σn,zn−−−−→ qn+1.

Problem 1 (Interval Bounded Energy Game). Given an EG G and an
interval [a, b], does there exist a strategy δ1 for Player 1 such that any play on
G using the strategy δ1 produces a run valid in the interval [a, b]?

Player 1 wins and Player 2 looses in the interval [a, b] if the answer to
Problem 1 in the interval [a, b] is positive. There is also a more relaxed version
of the interval bounded energy game called the lower-bound problem where the
interval is of the form [a,∞].



2.2 Action Investment Energy Game

Let us split a given action alphabet Σ into three disjoint action sets Σ0 ]Σ1 ]
Σ2 = Σ and call it the action investment alphabet. The action set Σi, i = {1, 2},
belongs to Player i, while Σ0 is the set of default actions that are always present.

Definition 3 (Action Investment Energy Game). An action investment
energy game (AIEG) is a tuple, A = (Q1, Q2, Σ,→, q0, actCost, B1, B2) where,

– (Q1, Q2, Σ,→, q0) is an energy game,
– Σ is an action investment alphabet,
– actCost : Σ1 ∪ Σ2 → N is a function assigning positive cost to the actions,

and
– B1, B2 ∈ N0 are two nonnegative budgets.

An investment is a subset of actions I ⊆ Σ1 ∪ Σ2. The cost of an invest-
ment is the sum of the cost of the actions in the investment invCost(I) =∑
σ∈I actCost(σ). An investment for Player i, denoted by Ii, satisfies Ii ⊆ Σi.

Problem 2 (AIEG Problem). Given an AIEG A and an interval [a, b], does
there for any Player 2 investment I2 ⊆ Σ2 where invCost(I2) ≤ B2 exist a
Player 1 investment I1 ⊆ Σ1 where invCost(I1) ≤ B1, such that Player 1 wins
the energy game G′ = (Q,Q1, Q2, Σ

′,→′, q0) in the interval [a, b], where Σ′ =
Σ0 ∪ I1 ∪ I2 and →′=→ ∩ (Q×Σ′ × Z×Q)?

The AIEG problem can be understood as a two-phase game: an investment-
configuration phase and an energy-game phase. In the investment-configuration
phase, Player 2 starts by choosing his investment I2 ⊆ Σ2 costing less than
his budget invCost(I2) ≤ B2, then Player 1 chooses her investment I1 ⊆ Σ1

costing less than her budget invCost(I1) ≤ B1. This ends the first phase and the
energy-game phase starts. In the energy-game phase the energy game is played
on the reconfigured board where only actions in the two investments I1, I2 and
the default actions from Σ0 are present.

It is clear that for an AIEG problem where Σ1 = ∅ and Σ2 = ∅, or where
B1 = 0 and B2 = 0, the AIEG problem reduces to the classical energy game as
none of the players can make any investment.

3 Gadgets for Complexity Bounds

Our main contribution is a detailed complexity analysis of the general action
investment energy game problem and some of its prominent subclasses. For this
reason, we start by establishing several gadgets (basically instances of AIEG)
that will be used in the next section in order to prove complexity lower-bounds
by reductions from different variants of quantified boolean formulae satisfiability
problem. Let us assume a set of n boolean variables x1, . . . , xn for which we
consider the action alphabet {xj , x′j | 1 ≤ j ≤ n}. We start by the definition of
a valid investment.



(a) Construction (b) Representation

Fig. 2: Gadget G∀(x) where x = (x1, . . . , xn)

Definition 4 (Valid Investment). Let i ∈ {1, 2} and let Σi = {xj , x′j | 1 ≤
j ≤ n}. An investment Ii ⊆ Σi is valid for Player i if for all j, 1 ≤ j ≤ n, either
xj ∈ Ii or x′j ∈ Ii and {xj , x′j} 6⊆ Ii.

Hence a valid investment represents an assignment of truth values to the
boolean variables such that if xj ∈ Ii then the value of xj is true and if x′j ∈ Ii
then xj takes the value false. It is clear that each player needs a sufficient budget
to make a valid investment. This is defined in the next definition.

Definition 5 (Sufficient Budget). A budget Bi is sufficient for Player i,
where i = {1, 2}, if actCost(Ii) ≤ Bi for any valid investments Ii ⊆ Σi.

3.1 Gadget G∀(x)

The gadget G∀ is used by Player 2 to enforce a valid truth assignment of the vari-
ables {x1, . . . , xn} of his choice. In this gadget we let Σ2 = {x1, . . . xn, x

′
1 . . . x

′
n},

and all states belong to Player 1. Let τ ∈ Σ0 be a default action that is always
present. The construction of G∀ and its graphical representation is given in Fig-
ure 2. The construction ensures that Player 2 needs to make a valid investment
otherwise Player 1 has a strategy to win. In addition if Player 2 chooses a
valid investment then any play starting from qin reaches qout or it is loosing for
Player 1. The following lemma formalizes this fact, assuming that Player 2 has
a sufficient budget to make a valid investment.

Lemma 1 (Properties of the Gadget G∀).

(a) If I2 is a valid investment for Player 2, then any play starting from qin
is either loosing for Player 1 or reaches qout and Player 1 has moreover a
strategy to ensure that any play from qin reaches qout.

(b) If I2 is not a valid investment for Player 2, then Player 1 has a strategy to
win any play starting from qin.



(a) Construction (b) Representation

Fig. 3: Gadget G∃(x) where x = (x1, . . . , xn)

3.2 Gadget G∃(x)

The gadget G∃(x) is used by Player 1 to fix her truth assignment of variables
{x1, . . . , xn}. We let Σ1 = {x1, . . . xn, x

′
1 . . . x

′
n} and fix the budget for Player 1

to correspond to the number of variables, in other words B1 = n. We also assume
that the cost of any action in Σ1 is equal to 1 so that it is possible for Player 1 to
make a valid investment. Let τ ∈ Σ0 be a default action that is always present.
The gadget and its graphical representation is depicted in Figure 3. The point
is that Player 1 needs to choose a valid investment, otherwise Player 2 has a
winning strategy. Note that all nodes in the gadget belong to Player 1, so she is
the only one that decides the moves in this gadget.

Lemma 2 (Properties of the Gadget G∃).

(a) If I1 is a valid investment for Player 1, then any play starting from qin
is either loosing for Player 1 or reaches qout and Player 1 has moreover a
strategy to ensure that any play from qin reaches qout.

(b) If I1 is not a valid investment for Player 1, then any play from qin is winning
for Player 2.

3.3 Gadget Gϕ

After introducing gadgets that allow the players of the AIEG game to choose
valid investments that correspond to truth assignments of boolean variables, we
need to make a gadget that will check if a boolean formula ϕ is true under the
selected assignment. Such a gadget Gϕ is defined inductively in Figure 4 where
the dotted lines represents subgadgets already constructed for the subformulae.

For the proof of correctness, recall that Σ1 ∩ Σ2 = ∅ and that τ ∈ Σ0 is a
default action always present in the game.

Lemma 3 (Properties of the Gadget Gϕ).
Let I be a valid investment and let

υ(x) =
{
true if x ∈ I
false if x′ ∈ I



(a) Positive literal (b) Negative literal (c) Conjunction (d) Disjunction (e) Representation

Fig. 4: Gadget Gϕ

be the corresponding truth assignment.

(a) If ϕ is true under the assignment υ then Player 1 has a strategy to win any
play starting from qin in Gϕ.

(b) If ϕ is false under the assignment υ then Player 2 has a strategy to win any
play starting from qin in Gϕ.

3.4 Linking gadgets

For the purpose of our complexity proofs in the following section, gadgets can be
linked together in a sequence and thereby create a combined AIEG. This is done
via a transition labelled with τ, 0 starting from qout in one gadget and leading to
the state qin of the other gadget. The shorthand notation for linking gadgets is
an arrow such that for example G∀(x) → G∃(y) → Gϕ corresponds to an AIEG
starting with the universal gadget over the vector of variables x, followed by
the existential gadget over the vector of variables y and finished by the gadget
checking the validity of a formula under the generated truth assignment. It is
necessary to rename the states of the linked gadgets to avoid name clashes and
to update the successor relation accordingly. This can be done in the expected
way, so we omit the details here.

4 Complexity results

We shall now present an overview of complexity results for different subclasses
of the AIEG problem. The new results in Table 1 are listed in bold font and we
consider the action investment energy game problem as well as its well-studied
existential variant where all states belong to Player 1. We moreover study the
variants of the game where one of the players has a zero budget (the case when
both of them have zero budget corresponds to classical energy games) and we
distinguish intervals that are closed or open to the right.

Some of the bounds in Table 1 use complexity classes from the polynomial
hierarchy. We refer the reader to some classical textbook like [11] for more details



Budget Interval Energy game type
restrictions Existential Game

B1 = 0, B2 = 0 [a,∞] ∈ P [3] ∈ UP ∩ coUP [3]

[a, b] NP-Hard, ∈ PSPACE [3] EXPTIME-complete [3]

B2 = 0 [a,∞] NP-Complete, Lem. 4 NP-Complete Lem. 10

[a, b] NP-Hard, EXPTIME-complete
∈ PSPACE, Lem. 5 Lem. 13

B1 = 0 [a,∞] co-NP-complete, Lem. 6 co-NP-Complete 11

[a, b] ΠP
2 -hard, EXPTIME-complete
∈ PSPACE, Lem. 7 Lem. 13

− [a,∞] ΠP
2 -complete, Lem. 8 ΠP

2 -complete 12

[a, b] ΠP
2 -hard EXPTIME-complete
∈ PSPACE, Lem. 9 Lem. 13

Table 1: Complexity Overview for AIEG Problems

about the hierarchy. Most of the complexity bounds are a direct application
of our gadgets presented in the previous section, apart from Lemma 7 that is
considerably more involved as an additional binary encoding of multiple weights
into a single integer is needed there.

Lemma 4. The AIEG problem for the interval [a,∞] where Q2 = ∅ and B2 = 0
is NP-complete.

Proof (sketch). For the lower bound let ∃xϕ(x) be an instance of the NP-
complete SAT problem over the vector of variables x = (x1, x2 . . . xn). We con-
struct in polynomial time the AIEG A given by G∃(x)→ Gϕ and fix the budget
for Player 1 to B1 = n. It is now clear that ∃xϕ(x) is true iff Player 1 is the
winner of the AIEG problem A. For the upper bound, an algorithm for solving
the problem guesses a Player 1 investment and solves in polynomial time [3] the
interval bound problem of the resulting energy game. ut

Lemma 5. The AIEG problem for the interval [a, b] where Q2 = ∅ and B2 = 0
is NP-Hard and in PSPACE.

Lemma 6. The AIEG problem for the interval [a,∞] where Q2 = ∅ and B1 = 0
is co-NP-complete.

Proof (Sketch). For the lower bound let ∀xϕ(x) be an instance of ΠP
1 -SAT (co-

NP complete problem). We construct in polynomial time the AIEG A given by
G∀(x)→ Gϕ and let B2 be any sufficient budget. It is now easy to see that ∀xϕ(x)
is true iff Player 1 is the winner in the AIEG problemA. An algorithm for solving
the problem in co-NP enumerates using universal branching all possible Player 2
investments and for each investment solves in polynomial time [3] the interval
bound problem of the resulting energy game. ut

Lemma 7. The AIEG problem for the interval [a, b] where Q2 = ∅ and B1 = 0
is ΠP

2 -hard and in PSPACE.



Fig. 5: AIEG used in proof of Lemma 7

Proof (sketch). For the lower bound let ∀x∃yϕ(x,y) be an instance of ΠP
2 -

SAT. We construct an AIEG A, illustrated on Figure 5. The first part of the
construction is the gadget G∀(x) that ensures that Player 2 is forced to select
a valid investment over the variables {x1, x

′
1, . . . , xn, x

′
n} (assuming we select

the budget B2 as a sufficient one). It would be intuitive to link this gadget
with the gadget G∃(y) to force Player 1 to choose her valid investment over the
variables {y1, y′1, . . . , yn, y′n}, however, B1 = 0 and Player 1 can not make any
investment. Therefore we need to make an alternative construction. We shall use
2n counters in order to record how many times the actions yi and y′i were seen
while traversing the modified gadget Gϕ. The counters are encoded in binary,



and the number of bits needed for each counter is given by c = dlog(|ϕ| + 1)e
where |ϕ| is the number of literals that appear in the boolean formula ϕ. We
need two counters for each boolean variable yi such that the counter i counts the
number of positive occurrences of the variable yi and the counter i+n counts the
number of negative occurrences. All counters will be stored in a single integer.
To ensure that counters do not get ‘entangled’ by under- or overflow, we add
two separator bits 10 between any two neighboring counters, giving us that in
total we need 2n(c + 2) bits. We define k =

∑2n
i=1 2i(2+c) as the initial counter

value where all counter are 0 and with the separator bits between them. For an
example if n = 2 and c = 3 then k is defined (in binary notation) as follows:

k =

20 bits︷ ︸︸ ︷
10 000︸︷︷︸

counter 4

10 000︸︷︷︸
counter 3

10 000︸︷︷︸
counter 2

10 000︸︷︷︸
counter 1

.

Incrementing and decrementing of counters is done via weights on transitions,
therefore we need a way to address each counter. Counter `, 1 ≤ ` ≤ 2n, is
addressed by 〈`〉 where 〈`〉 = 2(2+c)(`−1). In this way if a transition with weight
〈`〉 is taken, the counter ` is incremented by one, and similarly when a transition
with weight −〈`〉 is taken, the counter ` is decremented by one. We set b =
22n(c+2)+1 − 1 which is the highest possible number on 2n(c+ 2) bits (where all
bits are 1) and will consider the resulted energy game in the interval [0, b].

Now we can construct an alternative Gϕ which is linked after the G∀(x)
gadget as illustrated in Figure 5. The alternative Gϕ gadget is as defined before,
with the exception that every yi literal gives rise to the yi, 〈i〉 transition, and
every ¬yi literal gives gives rise to y′i, 〈i + n〉 transition, while assuming that
{y1, y′1, . . . yn, y′n} ⊆ Σ0. By taking a path from the start to the end state of this
gadget, we will record in the counters how many times each literal has been seen
on such a path. The initial G∀(x) gadget is linked via a τ, k transition to this
new Gϕ gadget, ensuring that all counters are initialized to 0 by adding only
the separator bits. At the end of the construction, we add a series of gadgets
for each variable yi, allowing Player 1 to decrement at most |ϕ|-many times
either the counter i or n + i but not both at the same time. If the assignment
recorded in the counters is a valid one, Player 1 can decrease all counter values
to zero, such that after removing the separator bits by the transition τ,−k we
get the accumulated weight 0 and it is possible to add the upper bound b without
violating the energy game interval [0, b]. It can now be shown that ∀x∃yϕ(x,y)
is true iff Player 1 is the winner of the AIEG problem A for the interval [0, b].

For the upper bound, an algorithm for solving the problem in PSPACE enu-
merates all possible Player 2 investments and for each investment solves the
interval bound problem of the resulting energy game. The interval bound prob-
lem in the existential case, Q2 = ∅, for an interval [a, b] is in PSPACE, implying
that the problem remains in PSPACE. ut

Lemma 8. The AIEG problem for the interval [a,∞] where Q2 = ∅ is
ΠP

2 -complete.



Proof (sketch). For the lower bound let ∀x∃yϕ(x,y) be a ΠP
2 -complete instance

of QSAT where x = (x1, x2 . . . xn) and y = (y1, y2 . . . ym). We construct the
AIEG A given by G∀(x) → G∃(y) → Gϕ(ϕ) and fix the budget B1 = n and let
B2 be any sufficient budget for Player 2. It is now easy to see that ∀x∃yϕ(x,y)
is true iff Player 1 is the winner of the AIEG problem A. An algorithm for
solving the problem enumerates via universal branching all possible Player 2
investments and for each such investment guesses a Player 1 investment and
solves in polynomial time the resulting energy game. ut

Lemma 9. The AIEG problem for the interval [a, b] where Q2 = ∅ is ΠP
2 -hard

and in PSPACE.

Lemma 10. The AIEG problem for the interval [a,∞] where B2 = 0 is NP-
complete.

Proof. The lower bound follows from Lemma 4. An algorithm for solving the
problem guesses a Player 1 investment and solves the interval bound problem
of the resulting energy game which is in UP ∩ coUP, implying that the problem
is in NP. ut

Lemma 11. The AIEG problem for the interval [a,∞] where B1 = 0 is co-NP-
complete.

Proof. The lower bound follows from Lemma 6. An algorithm for solving the
problem enumerates via universal branching all possible Player 2 investments
and for each investment solves the interval bound problem of the resulting energy
game which is in UP ∩ coUP, implying that the problem is in co-NP. ut

Lemma 12. The AIEG problem for the interval [a,∞] is ΠP
2 -complete.

Proof. The lower bound follows from Lemma 8. An algorithm for solving the
problem enumerates via universal branching all possible Player 2 investments
and for each such investment guesses a Player 1 investment and solves the in-
terval bound problem of the resulting energy game. The interval bound problem
for an open interval [a,∞] is in UP ∩ coUP, implying that the problem is in
ΠP

2 . ut

Lemma 13. The AIEG problem for an interval [a, b] is EXPTIME-complete.

5 Conclusion

We have provided a complexity characterization of action investment energy
games. The problem combines the action-investment phase with the energy-
game phase and for many cases we proved matching complexity lower and upper
bounds. Thanks to the general definition of our gadgets that can be combined
using linking into different variants of the game, we were able to give intuitive
constructions for most of the complexity results. A notable result is that for



the interval problems with lower and upper bound, apart from the case where
both budgets are zero, the complexity of the existential case and the general
game setting remain the same. The few problems where we did not close the
complexity bounds depend on the open problem of the existential energy game
in the interval [a, b], which is so far only known to be between NP and PSPACE.

We studied a version of AIEG where Player 2 chooses his investment before
Player 1. It is natural to consider also the opposite order in which the investment
is established or even a turn-based investment phase. This will be studied in our
future work.
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A Proofs from Section 3

A.1 Proof of Lemma 1

Proof. (a) Let I2 be a valid investment for Player 2. We evaluate how a play
can evolve in the first step from qin. As I2 is a valid investment, we have that
either x1 ∈ I2 or x′1 ∈ I2. We evaluate the outcome for each case. If x1 ∈ I2,
Player 1 has two choices, an x1 transition up or an x1 transition right. If Player 1
takes the transition up she loses, as the play ends in an infinite negative τ,−1
loop, surely violating sooner or later her lower-bound. If Player 1 takes the
transition right, the play is one step closer to qend. If on the other hand x′1 ∈ I2
the Player 1 can only take the transition right and the play is one step closer
to qend. By repeating the arguments, any play can evolve from qin to be either
loosing for Player 1 or to get one step closer to qend. Hence any play from qin
is either loosing for Player 1 or it reaches qout.

To find a strategy for Player 1 which ensures that any play from qin reaches
qout, the Player 1 will take either the transition xj or x′j right for 0 < j ≤ n; this
is possible as I2 is valid. Thus play from qin where Player 1 uses this strategy
reaches qout.

(b) Let I2 be not a valid investment for Player 2. This means that there is
a smallest i where {xi, x′i} ⊆ I2 or xi, x′i 6∈ I2. Now we need to find a winning
strategy for Player 1. The Player 1 strategy from qin to qi is to take transitions
right until qi is reached; this is possible as either xj ∈ I2 or x′j ∈ I2 for 0 < j < i.
From qi there are two cases, if {xi, x′i} ⊆ I2 or if xi, x′i 6∈ I2. In the first case the

strategy is to take two transition up, qi
xi,0−−→ ri followed by ri

x′i,0−−→ si to si; this
is a winning situation for Player 1 as si does not have any successors and the
run from qin to si is maximal. In the second case Player 1 wins as qi does not
have any successors at all and the run from qin to qi is maximal too. Hence any
play from qin where Player 1 uses this strategy is winning for her. ut

A.2 Proof of Lemma 2

Proof. (a) Let I1 be a valid investment for Player 1. We evaluate how a play can
evolve in the first step from qin. As I1 is a valid investment then either x1 ∈ I1
or x′1 ∈ I1. If Player 1 takes one of theses transition right, the play one step
closer to qend. If Player 1 takes the τ transition up, she loses as the play is stuck
in an infinite negative loop. Be repeating the arguments, any play from qin is
either loosing for Player 1 or reaches qout. Player 1 strategy which ensures that
any play from qin reaches qout is clearly to always take a transition to the right.

(b) Let I1 not be a valid investment for Player 1. This means that there is
a smallest i such that {xi, x′i} ⊆ I1 or xi, x′i 6∈ I1. Player 1 has a strategy to
take transitions right from qin to qi and avoid loosing before qi is reached; this
is possible as xj ∈ I1 or x′j ∈ I1 for 1 ≤ j < i. From qi there are two cases:
either xi, x′i 6∈ I1 or {xi, x′i} ⊆ I1. If xi, x′i 6∈ I2 then Player 2 wins, as the
only transition possible in qi is to take a transition up to ri where the play is
stuck in an infinite negative loop. If {xi, x′i} ⊆ I2 then as a consequence of the



fixed budget B1 = n for Player 1, there exists a smallest m > i, m ≤ n where
xm, x

′
m 6∈ I1 and following the argument above Player 2 wins again. ut

A.3 Proof of Lemma 3

Proof. (a) Let ϕ be true under the assignment υ and we prove by induction on
the structure of Gϕ that Player 1 has a strategy to win any play starting from
qin in Gϕ.

Basis: We have two base cases, ϕ = x and ϕ = ¬x. If ϕ = x, then Gϕ is
as in Figure 4a. Player 1 strategy is to take the x, 0 transition; this transition
is enabled as ϕ is true under υ. If ϕ = ¬x then Gϕ is as in Figure 4b. Player 1
strategy is to take the x′, 0 transition; this transition is enabled as ϕ is false
under υ.

Induction Step: Assume by induction hypothesis (IH) that for ϕ = F
Player 1 has a strategy to win any play on Gϕ and reach the end state. We
now prove that Player 1 has a strategy to win any play where ϕ = F1 ∧ F2 and
where ϕ = F1 ∨ F2. Let ϕ = F1 ∧ F2 and we know that ϕ is true under υ. This
implies that both F1 and F2 are true, and we know by the IH that Player 1 has
a strategy to win both F1 and F2, therefor he also has a strategy to win when
ϕ = F1 ∧ F2 where the gadgets for F1 and F2 are put in series. Let ϕ = F1 ∨ F2

and we know that ϕ is true under υ. This implies that either F1 or F2 is true.
We know by the IH that if F1 is true Player 1 has a winning strategy for F1 and
if F2 is true Player 1 has a winning strategy for F2. Player 1 strategy is now to
take the transition Left τ, 0 if F1 is true and take Right τ, 0 if F2 is true.

(b) Let ϕ be false under υ. By similar arguments as above we can prove that
any play starting from qin on Gϕ is winning for Player 2.

ut

B Proofs from Section 4

B.1 Proof of Lemma 4

Proof. For the lower bound let ∃xϕ(x) be an instance of the NP-complete SAT
problem over the vector of variables x = (x1, x2 . . . xn). We construct in poly-
nomial time the AIEG A given by G∃(x)→ Gϕ and fix the budget for Player 1
to B1 = n. We want to show the following.

(a) If ∃xϕ(x) is true, then Player 1 wins A.
(b) If ∃xϕ(x) is false, then Player 2 wins A.

(a) Suppose that ∃xϕ(x) is true. Then there exists an assignment υ such that
ϕ(υ/x) is true. We now want to show that Player 1 wins the AIEG A. Player 1
chooses the valid investment I1 = {x | υ(x) = true} ∪ {x′ | υ(x) = false}. By
Lemma 2 (a) we know that Player 1 has a strategy such that any play from
qin reaches qout. If the play reaches qout then by the construction of linking the
play continues in Gϕ. We know that ϕ(υ/x) is true therefore by Lemma 3 (a) we



know that Player 1 wins any play starting from qin in Gϕ. We have now shown
that Player 1 wins any play on A.

(b) Suppose that ∃xϕ(x) is false. We want to show that Player 2 wins the
AIEG A. Player 1 can pick either an invalid or a valid investment I1. If I1 is
an invalid investment we know from Lemma 2 (b) that Player 2 wins any play
starting from qin. If I1 is a valid investment we know from Lemma 2 (a) that any
play from qin either reaches qout or is loosing for Player 1. If the play reaches
qout in G∃(x) then by the construction of linking the play continues in the AIEG
Gϕ. We know that ∃xϕ(x) is false. Hence for every assignment υ this implies
by Lemma 3 (b) that Player 2 wins any play starting from qin in Gϕ. Therefore
Player 2 wins the resulting energy game no matter what investment I1 Player 1
chooses. ut

B.2 Proof of Lemma 5

Proof. The lower bound follows from Lemma 4. An algorithm for solving the
problem in PSPACE enumerates all possible Player 1 investments and for each
investment solves the interval bound problem of the resulting energy game. The
interval bound problem in the existential case (Q2 = ∅) for the interval [a, b] is
in PSPACE, implying that the problem remains in PSPACE. ut

B.3 Proof of Lemma 6

Proof. For the lower bound let ∀xϕ(x) be an instance of ΠP
1 -SAT (co-NP

complete problem). We construct in polynomial time the AIEG A given by
G∀(x)→ Gϕ and let B2 be any sufficient budget. We want to show the following.

(a) If ∀xϕ(x) is true, then Player 1 wins A.
(b) If ∀xϕ(x) is false, then Player 2 wins A.

(a) Suppose that ∀xϕ(x) is true. We want to show that Player 1 wins the
AIEG A. Player 2 can pick either an invalid or a valid investment I2. If I2 is an
invalid investment we know from Lemma 1 (b) that Player 1 has a strategy to
win any play starting from qin in the AIEG G∀(x). If I2 is a valid investment, we
know from Lemma 1 (a) that Player 1 has a strategy such that any play from
qin reaches qout. If the play reaches qout in G∀(x) then by the construction of
linking the play continues in the AIEG Gϕ. We know that ∀xϕ(x) is true. Hence
for every assignment υ this implies by Lemma 3 (a) that Player 1 wins any play
starting from qin in Gϕ. Therefore Player 1 has a strategy to win the resulting
energy game no matter what investment I2 Player 2 chooses.

(b) Suppose that ∀xϕ(x) is false. Then there exists an assignment υ such
that ϕ(υ/x) evaluates to false. We want to show that Player 2 wins the AIEG A.
Player 2 chooses the valid investment I2 = {x | υ(x) = true}∪{x′ | υ(x) = false}.
By Lemma 1 (a) we know that any play starting in qin gets to qout in the AIEG
G∀(x), or Player 2 wins. If the play reaches qout then by the construction of
linking the play continues in Gϕ. We know that ϕ(υ/x) evaluates to false therefore
by Lemma 3 (b) we know that Player 2 wins any play starting from qin in Gϕ.
We have now shown that Player 2 wins any play on A. ut



B.4 Proof of Lemma 7

Proof. Continuation of Proof of Lemma 7.
We want to show the following.

(a) If ∀x∃yϕ(x,y) is true, then Player 1 wins A for the interval [0, b].
(b) If ∀x∃yϕ(x,y)1 is false, then Player 2 wins A for the interval [0, b].

(a) Suppose that ∀x∃yϕ(x,y) is true. Then for any assignment υ of x there
exists an assignment υ′ of y such that ϕ(υ/x,

υ′ /y) evaluates to true. We want
to show that Player 1 wins the AIEG A for the interval [0, b]. Player 2 can pick
either an invalid or a valid investment I2. If I2 is an invalid investment we know
from Lemma 1 (b) that Player 1 has a strategy to win any play starting from
qin in the AIEG G∀(x). If I2 is a valid investment we know from Lemma 1 (a)
that Player 1 has a strategy such that any play from qin reaches qout. If the play
reaches qout in G∀(x) then by the construction of linking the play continues in
the alternative Gϕ construction.

We know that for the chosen assignment υ there is an assignment υ′ such
that ϕ(υ/x,

υ′ /y) evaluates to true. Also {y1, . . . yn, y′1 . . . y′n} ⊆ Σ0 so all yi and
y′i actions are present in Gϕ. Let I1 = {y | υ′(y) = true} ∪ {y′ | υ′(y) = false}.
The set I0 is not an investment the budget of Player 1 is zero, but the set will
guide Player 1 when traversing the gadget Gϕ. By Lemma 3 (a) and the fact
how I1 was constructed there is now a strategy for Player 1 to move from the
start to the end node of Gϕ such that it uses only the edges under actions from I1
and I2. Moreover, every time an edge under yi or y′i is taken, the corresponding
counter i or i + n is increased by one. It is also clear that each counter can be
increased at most |ϕ|-many times. Because of the construction above, we know
that after traversing Gϕ, either the counter i or i+ n will be empty for each i.

Now the play passes through the τ, 0 transition before it continues from the
state in1, where Player 1 have the choice for each boolean variable yi to take
either the upper or lower τ, 0 transition. The Player 1 strategy is as follows:
if υ′(yi) = true then she takes the upper τ, 0 and if υ′(y1) = false she takes
the lower τ, 0 transition. After that Player 1 has the choice to decrement at
most |ϕ| times the counter i or i + n, making sure that at the end of this step
both counters end up zero. This repeats for all i until we reach outn and the
accumulated weight is exactly k (all counters are empty and only the separating
bits are present). Now we can subtract k and add b and still stay within the
interval [0, b]. As this is a maximum run, Player 1 wins.

(b) Suppose that ∀x∃yϕ(x,y) is false. Then there exists an assignment υ of
x such that for any assignment υ′ of y the formula ϕ(υ/x,

υ′ /y) = 1 evaluates
to false. We want to show that Player 2 wins the AIEG A for the interval [0, b].
Player 2 first choose the valid investment I2 = {x | υ(x) = true} ∪ {x′ | υ(x) =
false}. Then we know from Lemma 1 (a) that any play starting from qin is
either loosing for Player 1 or reaches qout. If the play reaches qout in G∀(x) then
by the construction of linking the play continues in the alternative Gϕ gadget.

Now Player 1 can traverse the gadget Gϕ but because there is no assignment
of the variables y1, . . . , yn where the formula ϕ is true, surely there will be some



variable yi such that both the counter i and i+ n is positive (and no more that
|ϕ|). After traversing the rest of the gadget and reaching qout, it is clear that
either the counter i and i + n will not change its value (due to the fact that
incrementing/decrementing a counter at most |ϕ| many times cannot influence
the values of the neighboring counters). This means that after subtracting k and
adding b, the accumulated weight exceeds the upper bound b and Player 2 wins.

For the upper bound, an algorithm for solving the problem enumerates all
possible Player 2 investments and for each investment solves the interval bound
problem of the resulting energy game. The interval bound problem in the ex-
istential case, Q2 = ∅ for an interval [a, b] is in PSPACE, implying that the
problem is in PSPACE. ut

B.5 Proof of Lemma 8

Proof. For the lower bound let ∀x∃yϕ(x,y) be a ΠP
2 -complete instance of QSAT

where x = (x1, x2 . . . xn) and y = (y1, y2 . . . ym). We construct the AIEG A
given by G∀(x)→ G∃(y)→ Gϕ(ϕ) and fix the budget B1 = n and let B2 be any
sufficient budget for Player 2.

We want to show the following.

(a) If ∀x∃yϕ(x,y) is true, then Player 1 wins A.
(b) If ∀x∃yϕ(x,y) is false, then Player 2 wins A.

(a) Suppose that ∀x∃yϕ(x,y) is true. Then there for any an assignment υ of
x exists an assignment υ′ of y such that ϕ(υ/x,

υ′ /y) evaluates to true. We now
want to show that Player 1 wins the AIEG A. Player 2 can pick either an invalid
or a valid investment I2. If I2 is an invalid investment we know from Lemma 1 (b)
that Player 1 has a strategy to win any play starting from qin in the AIEG G∀(x).
If I2 is a valid investment we know from Lemma 1 (a) that Player 1 has a strategy
such that any play from qin reaches qout. If the play reaches qout in G∀(x) then
by the construction of linking the play continues in the AIEG G∃(y). Player 1
chooses the valid investment I1 = {y | υ′(y) = true} ∪ {y′ | υ′(y) = false}. By
Lemma 2 (a) we know that Player 1 has a strategy such that any play from
qin reaches qout. If the play reaches qout then by the construction of linking the
play continues in Gϕ. We know that ϕ(υ/x,

υ′ /y) evaluates to true, therefore by
Lemma 3 (a) we know that Player 1 wins any play starting from qin in Gϕ. We
have so shown that Player 1 wins the AIEG A.

(b) Suppose that ∀x∃yϕ(x,y) is false. Then there exists an assignment υ
of x such that for any assignment υ′ of y is ϕ(υ/x,

υ′ /y) false. We now want to
show that Player 2 wins the AIEG A. Player 2 chooses the valid investment
I2 = {x | υ(x) = true} ∪ {x′ | υ(x) = false}. Then we know from Lemma 1 (a)
that any play starting from qin is either loosing for Player 1 or reaches qout. If the
play reaches qout in G∀(x) then by the construction of linking the play continues
in the AIEG G∃(y). Player 1 can pick either an invalid or a valid investment I1.
If I1 is an invalid investment we know from Lemma 2 (b) that Player 2 wins any
play starting from qin. If I1 is a valid investment we know from Lemma 2 (a)



that any play starting from qin is either winning for Player 2 or reaches qout.
If the play reaches qout in G∃(x) then by the construction of linking the play
continues in the AIEG Gϕ. We know that ϕ(υ/x,

υ′ /x) evaluates to false for all
υ′. This implies by Lemma 3 (b) that Player 2 wins any play starting from qin
in Gϕ. We have now shown that Player 2 wins the AIEG A. ut

B.6 Proof of Lemma 9

Proof. The lower bound follows from Lemma 8. An algorithm for solving the
problem enumerates for all possible Player 2 investments all possible Player 1
investments and solves in polynomial space the interval bound problem of the
resulting energy game. ut

B.7 Proof of Lemma 13

Proof. EXPTIME-hardness follows from the complexity of the AIEG problem
for the interval [a, b] where B1 = 0 and B2 = 0. An algorithm for solving the
problem enumerates all investment combinations and solves in EXPTIME the
interval bound problem. ut


