
Matching Modulo Associativity and

Idempotency is NP–complete?

Ondřej Kĺıma1 and Jǐŕı Srba2

1 Faculty of Science MU, Dept. of Mathematics, Janáčkovo nám. 2a, 662 95 Brno,
Czech Republic, klima@math.muni.cz

2 BRICS? ? ?, Department of Computer Science, University of Aarhus, Ny
Munkegade bld. 540, DK-8000 Aarhus C, Denmark, srba@brics.dk

Abstract. We show that AI–matching (AI denotes the theory of an
associative and idempotent function symbol), which is solving matching
word equations in free idempotent semigroups, is NP-complete.
Note: full version of the paper appears as [8].

1 Introduction

Solving equations appears as an interesting topic in several fields of computer
science. Many areas such as logic programming and automated theorem prov-
ing exploit solving equations, and syntactic (Robinson) unification is a typical
example of it. An important role is played also by semantic unification, which
allows to use several function symbols with additional algebraic properties (e.g.
associativity, commutativity and idempotency). Makanin (see [15]) shows that
the question whether an equation in a free monoid has a solution is decidable. It
can be generalized in the way that existential first-order theory of equations in
a free monoid with additional regular constraints on the variables is decidable
[18]. For an overview of unification theory consult e.g. [4].

AI–matching is one example of semantic unification where the considered
equational theory is of one associative and idempotent function symbol. In this
paper we focus on a subclass of word equations which we call pattern equations.
Pattern equations are word equations where we have on the left-hand side just
variables and on the right-hand side only constants. In the usual interpretation,
AI–matching is a AI–unification of systems of equations where all right-hand
sides are variable–free. However, we can eliminate constants on the left-hand
sides by adding new equations and so pattern equations are as general as AI–
matching.

Many practical problems such as speech recognition/synthesis lead to this
kind of equations. This work has been inspired by the papers [11] and [12] where
the basic approach – syllable-based speech synthesis – is in assigning prosody
? The paper is supported by the Grant Agency of the Czech Republic, grant No.

201/97/0456 and by grant FRVŠ 409/1999.
? ? ? Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

attributes to a given text and segmentation into syllable segments. We examine
the solvability of word equations in the variety of all idempotent semigroups,
which we call stuttering equations. The decidability of the satisfiability problem
(even in the general case) is a consequence of the local finiteness of free idem-
potent semigroups and an exponential upper bound on the length of a minimal
solution can be given ([6]). A polynomial time decision procedure for the word
problem in a free idempotent semigroup can be also easily established. Recently
it has been proved in [3] that AI–unification remains decidable even if additional
uninterpreted function symbols in the equations are allowed.

Unification problems for the AI–theory have been investigated e.g. in [1, 2,
19], however, the complexity questions were not answered. In this paper we prove
that there is a polynomial bound on the length of a minimal solution in the case
of stuttering pattern equations and thus we show that the satisfiability problem
is in NP. The proof exploits the confluent and terminating word rewriting system
for idempotent semigroups by Siekmann and Szabo (see [20]). This means that
the identity p = q holds in a free idempotent semigroup if and only if the words
p and q have the same normal form w.r.t. the rewriting system {xx → x | C(x) 6=
∅} ∪ {uvw → uw | ∅ 6= C(v) ⊆ C(u) = C(w)}, where C(y) denotes the set of
letters of y.

Showing a reduction from 3–SAT to our problem, we prove its NP–com-
pleteness. This is a more general result than Theorem 7 in the paper by Kapur
and Narendran [10], where they prove NP–hardness for AI–matching, where
additional uninterpreted function symbols are allowed. In our proof we use only
one associative and idempotent function symbol.

Many proofs in this paper are not included due to space limitation and the
full version can be obtained as [8].

2 Basic definitions

An idempotent semigroup (also called a band) is a semigroup where the identity
x2 = x is satisfied. Let C be a finite set. We define a binary relation → ⊆ C∗×C∗

such that uvvw → uvw for u, v, w ∈ C∗ and let ∼ be its symmetric, reflexive
and transitive closure, i.e. ∼ := (→ ∪ →−1)∗. Then the identity p = q holds in
a free band over C if and only if p ∼ q (completeness of the equational logic).

Let C be a finite set of constants and V be a finite set of variables such that
C∩V = ∅. A word equation L = R is a pair (L, R) ∈ (C∪V)∗×(C∪V)∗. A system of
word equations is a finite set of equations of the form {L1 = R1, . . . , Ln = Rn}
for n > 0. A solution (in a free idempotent semigroup) of such a system is a
homomorphism α : (C ∪ V)∗ → C∗ which behaves as an identity on the letters
from C and equates all the equations of the system, i.e. α(Li) ∼ α(Ri) for all
1 ≤ i ≤ n. Such a homomorphism is fully established by a mapping α : V → C∗.
A solution is called non-singular, if α(x) 6= ε for all x ∈ V , where ε denotes
the empty word. Otherwise we will call it singular. We say that a system of
word equations (in a free idempotent semigroup) is satisfiable whenever it has a
solution. For the introduction into word equations and combinatorics on words

you can see [13], [14] and [17]. We refer to word equations in a free idempotent
semigroup as stuttering equations.

In what follows we will use a uniform notation. The set C = {a, b, c, . . .}
denotes the alphabet of constants and V = {x, y, z, . . .} stands for variables
(unknowns) with the assumption that C ∩ V = ∅. We will use the same symbol
α for the mapping α : V → C∗ and its unique extension to a homomorphism
α : (C ∪ V)∗ → C∗. The empty word will be denoted by ε and the length of a
word w by |w|.

We exploit the fact that the word problem in a free band is decidable (see [7]
and its generalization [9]), which is a consequence of the next lemma. Let w ∈ C+.
We define C(w) – the set of all letters that occur in w; 0(w) – the longest prefix
of w in card(C(w)) − 1 letters; 1(w) – the longest suffix of w in card(C(w)) − 1
letters. Let also 0(w) resp. 1(w) be the letter that immediately succeeds 0(w)
resp. precedes 1(w).

Lemma 1 ([7]). Let p, q ∈ C+. Then p ∼ q if and only if C(p) = C(q), 0(p) ∼
0(q) and 1(p) ∼ 1(q).

Lemma 2. Let {L1 = R1, . . . , Ln = Rn} be a stuttering equation system with a
solution α. Then also any β that satisfies α(x) ∼ β(x) for all x ∈ V (we simply
write α ∼ β) is a solution.

This gives an idea that we should look just for the solutions where α(x) is the
shortest word in the ∼ class for each variable x. We introduce a size of a solution
α as size(α) := maxx∈V |α(x)| and say that α is minimal iff for any solution β of
the system we have size(α) ≤ size(β). Given a stuttering equation system it is
decidable whether the system is satisfiable because of the local finiteness of free
idempotent semigroups. The following lemma just gives a precise exponential
upper bound on the size of a minimal solution.

Lemma 3 ([6]). Let k = card(C) ≥ 2 and let {L1 = R1, . . . , Ln = Rn} be a
stuttering equation system. If the system is satisfiable then there exists a solution
α such that size(α) ≤ 2k + 2k−2 − 2.

In general it can be shown that there are stuttering equation systems such that
all their solutions are at least exponentially large w.r.t. the cardinality of the set
C . Consider the following sequence of equations: x1 = a1 and xi+1 = xiai+1xi

for a sequence of pairwise different constants a1, a2, For any solution α of
the system we have that |α(xi)| ≥ 2i − 1. In this paper we focus on a special
kind of word equations which we call pattern equations.

Definition 1. A pattern equation system is a set {X1 = A1, . . . , Xn = An}
where Xi ∈ V∗ and Ai ∈ C∗ for all 1 ≤ i ≤ n. A solution of a pattern equation
system is defined as in the general case.

Remark 1. In the usual interpretation AI–matching allows constants to appear
also on the left-hand sides, i.e. the equations are of the type X = A where X ∈
(V ∪ C)∗ and A ∈ C∗. However, we can w.l.o.g. consider only pattern equations,
since an equation of the type X1aX2 = A where a ∈ C can be transformed into
X1xX2 = A and x = a, where x is a new variable.

Definition 2. Given a pattern equation system {X1 = A1, . . . , Xn = An} as an
instance of the Pattern-Equation problem, the task is to decide whether this
system has a solution. If we require the solution to be non-singular we call the
problem Non-Singular-Pattern-Equation.

The Pattern-Equation problem for a single stuttering pattern equation X =
A is trivial since it is always solvable: α(x) = A for all x ∈ V . On the other hand
a system is not always solvable: e.g. {x = a, x = b} has no solution. Our goal is
to show that a minimal solution is of a polynomial length.

3 Rewriting system for idempotent semigroups

In this section we summarize several properties of the rewriting system by Siek-
mann and Szabo in [20] and give some technical lemmas. First of all we have to
give some definitions and results concerning rewriting systems (see e.g. [5]).

A rewriting system R over C is a subset of C∗×C∗. The elements of R will be
called rules. Having such a system R we can define a rewrite relation →⊆ C∗×C∗.

∀p, q ∈ C∗ : p → q iff ∃(u, v) ∈ R, s, t ∈ C∗ : p = sut, q = svt
The elements (u, v) of R will be often written as u → v. For a word q ∈ C∗ we
write q 6→ iff there is no q′ such that q → q′ and we say that q is in a normal
form. We define the set of normal forms of p ∈ C∗ as 〈p〉 = {q | p →∗ q 6→}. We
say that R (resp. the relation →) is terminating iff there is no infinite sequence
p1, p2, p3, . . . ∈ C∗ such that p1 → p2 → p3 → The system R (resp. the
relation →) is confluent iff

∀p, p1, p2 ∈ C∗∃q ∈ C∗ : if (p →∗ p1 and p →∗ p2) then (p1 →∗ q and p2 →∗ q).

The system R (resp. the relation →) is locally confluent iff

∀p, p1, p2 ∈ C∗∃q ∈ C∗ : if (p → p1 and p → p2) then (p1 →∗ q and p2 →∗ q).

Lemma 4 ([5]). Let R be a terminating rewriting system. Then R is confluent
if and only if R is locally confluent.

It is easy to see that if R is a confluent and terminating rewriting system, then
a word p ∈ C∗ has exactly one normal form, i.e. 〈p〉 = {q} for some q, and in
such a case we simply write 〈p〉 = q. In this paper we will exploit the rewriting
system by Siekmann and Szabo in [20].

Lemma 5 ([20]). The rewriting system {xx → x | x ∈ C∗, C(x) 6= ∅}∪{uvw →
uw | u, v, w ∈ C∗, ∅ 6= C(v) ⊆ C(u) = C(w)} is confluent and terminating.
Moreover for p, q ∈ C∗ we have p ∼ q if and only if p and q have the same
normal form w.r.t. the system.

We will refer the rewriting system {xx → x | C(x) 6= ∅} ∪ {uvw → uw | ∅ 6=
C(v) ⊆ C(u) = C(w)} as RS. Since RS contains two different types of rewriting
rules we denote RS1 the rewriting system {xx → x | C(x) 6= ∅} and RS2 the
rewriting system {uvw → uw | ∅ 6= C(v) ⊆ C(u) = C(w)}. The corresponding

rewrite relations are denoted →, →1 resp. →2 and for a word p ∈ C∗ the set of
its normal forms is denoted by 〈p〉, 〈p〉1 resp. 〈p〉2.

If we want to investigate the complexity issues for stuttering equations, the
first question we have to answer is the complexity of checking whether some
identity holds in a free band. It can be easily shown that the word problem (i.e.
the problem whether p ∼ q) can be decided in polynomial time by using the
rewriting system RS.

We know that RS is confluent and terminating. Our goal in this section is
to show that RS2 is also a confluent and terminating rewriting system and that
〈p〉 = 〈〈p〉2〉1.

We define a rewrite relation →2l⊂→2 such that suvwt →2l suwt if and only
if |v| = 1 and C(v) ⊆ C(u) = C(w). It is easy to see that →2⊆→∗

2l and hence
→∗

2l=→∗
2. The last relation we will use is →2m⊂→2, consisting of all rules that

leave out the maximal number of letters in the following sense. Let H(w) resp.
T(w) mean the first resp. the last letter of the word w. We write suvwt →2m suwt
if and only if ∅ 6= C(v) ⊆ C(u) = C(w) and the following conditions hold:

(i) C(s0u) 6= C(wt0), for any suffix s0 of s and any prefix t0 of t (including
empty s0 or t0, but not both)

(ii) u = 0(u)T(u)
(iii) w = H(w)1(w).

Note that if suvwt →2m suwt then the last letter of s and the first letter of
t (if they exist) are new and different letters1. Also note that T(u) is the only
occurrence of this letter in u and we can write it as u = 0(u)0(u). Similarly
w = 1(w)1(w). We remind that whenever →2 rewriting applies then so does
→2m and →2l. Moreover a word is in normal form w.r.t. →2 iff it is in normal
form w.r.t. →2m and iff it is in normal form w.r.t. →2l. In what follows, we will
use these trivial observations without any explicit reference.

We show that 〈p〉2m = 〈p〉2. The inclusion 〈p〉2m ⊆ 〈p〉2 is obvious and the
rest is the content of the following lemmas. We use the notation suvwt →2 suwt
in the sense that suvwt →2 suwt where ∅ 6= C(v) ⊆ C(u) = C(w) (and the same
for →2l, →2m). In the following, whenever we say that u is a subword of sut, we
always refer to the concrete (and obvious) occurrence of the subword u in sut.

Lemma 6. The relation →2m is confluent and terminating.

Remark 2. Two arbitrary applications of→2m, say p =s1u1v1w1t1→2m s1u1w1t1
and p = s2u2v2w2t2 →2m s2u2w2t2, commute (i.e. they are independent of the
order of their applications) and they can be nested exactly in one of the following
ways (up to symmetry):

1. w1 = w′
1q, u2 = qu′

2 and p = s1u1v1w
′
1qu

′
2v2w2t2

2. u1v1w1 is a subword of u2

1 Observe that it doesn’t hold in general that if p →2m q then spt →2m sqt for s, t ∈ C∗.
This means that →2m is not a rewriting relation in the previously introduced sense.

Lemma 7. RS2 is a confluent and terminating rewriting system and 〈p〉2m =
〈p〉2 for any p ∈ C∗.

Lemma 8. For any p, q ∈ C∗ such that p = 〈p〉2 and p →1 q it holds that
〈q〉2 = q. In particular for a word p ∈ C∗ we have 〈〈p〉2〉1 = 〈p〉.

4 Upper bound for the size of the solution

This section aims to prove that the Pattern-Equation problem is in NP by
giving a polynomial upper bound on the size of a minimal solution. In the follow-
ing we assume implicitly that A, B ∈ C∗. Realise that each reduction of RS just
leaves out some subword, the case uvw → uw is clear, and in the case xx → x
we leave out the right occurrence of x in the square. If we have a word uAv, we
can speak about the residual of A in the sense that the residual consists of all
letter occurrences of A that were not left out during the sequence of reductions.
Moreover if we use two different sequences of reductions by →2m, which give
normal form w.r.t. →2, then the residuals are the same after the both reduction
sequences, since any two applications of →2m commute by Remark 2.

Lemma 9. Let A and B be in normal form and AB →2m AB′ 6→2m where B′

is the residual of B. Then the word B′ contains at most one square x2. If B′

contains such a square, then x2 arises from xvx where v is the word left out by
the reduction rule uvw →2m uw, and x is both a suffix of u and a prefix of w.
Moreover in the case when B′ contains a square we have B′ →1 〈B′〉.
Remark 3. The previous lemma has the following analogue. If A1, B, A2 are in
normal form and A1BA2 →2m A1B

′A2 6→2m and if the residual B′ of B contains
a square x2, then B′ →1 〈B′〉1 and x has the same properties as in Lemma 9.

Proposition 1. Let A and B be in normal form such that 〈AB〉2 = AB′ where
B′ is the residual of B, then |B′| ≤ |〈B′〉|2.
Proof. By Lemma 7 we have 〈AB〉2 = 〈AB〉2m and we can use the maximal
reductions. W.l.o.g. assume that the reductions →2m did not leave out some
prefix B1 of the word B, otherwise we can start with the words A and B2 where
B = B1B2. Remark 2 shows how two applications of →2m can be nested. Since A
and B are in normal form, we can see that any reduction →2m uses some letters
from both A and B. Since A is left untouched, we can write A = sn+1sn . . . s1,
B = u1v1w1 . . . unvnwnun+1 where si, ui, vi, wi ∈ C∗ for all possible i and we
have n reductions of the form

sn+1 . . . si . . . s1u1w1 . . . uiviwi . . . un+1 →2m sn+1 . . . s1u1w1 . . . uiwi . . . un+1

where C(vi) ⊆ C(si . . . s1u1w1 . . . ui) = C(wi) and B′ = u1w1 . . . unwnun+1.
Since each step of the maximal reduction needs a new letter (the letter

that immediately succeeds wi), we get an upper bound for n (the number of
steps in →∗

2m), n + 1 ≤ card(C(B)). Let us denote B′′ = 〈B′〉1 = 〈B′〉 and

w0 = ε. By induction (where i = 1, . . . , n) and by Lemma 9 applied on A and
〈w0u1 . . . wi−1ui〉viwiui+1 we can see that |B′′| ≥ maxn+1

i=1 {|wi−1ui|} since after
every application xx → x we can find each wi−1ui as a subword in the resid-
ual of B. Hence we get |B′′| ≥ maxn+1

i=1 {|wi−1ui|} ≥ 1
n+1

∑n+1
i=1 |wi−1ui| = |B′|

n+1
and from the fact n + 1 ≤ card(C(B)) = card(C(B′′)) we can deduce that
|〈B′〉|2 = |B′′|2 ≥ card(C(B′′)) · |B′′| ≥ (n + 1) |B′|

n+1 = |B′|. ut
The previous proposition can be generalized in the following way.

Proposition 2. Let A1, B and A2 be in normal form and 〈A1BA2〉2 = A′
1B

′A′
2

where A′
1, B′, A′

2 are the residuals of A1, B, A2. Then |B′| ≤ 2 · |〈B′〉|2.
Lemma 10. Let sxxt be a word such that 〈sxxt〉2 = sxxt and sxxt contains
another square y2 (|y| ≤ |x|) such that one of these occurrences of y lies inside
the x2. Then one of the following conditions holds:

1. y is a suffix of s and a prefix of x
2. y is a prefix of t and a suffix of x
3. y2 is a subword of x

Remark 4. The previous lemma shows that for two applications of the rules
xx →1 x and yy →1 y on a word p in normal form w.r.t. →2, one of the
following conditions holds (up to symmetry):

1. xx and yy do not overlap
2. yy is a subword of x
3. x = x′z, y = zy′ and xx′zy′y is a subword of p

Lemma 11. If 〈sxxt〉2 = sxxt and sxt contains a square y2 which is not in
sxxt then y = s1xt1 where |s1|, |t1| ≥ 1.

Proposition 3. Let A and B be in normal form, card(C(AB)) ≥ 2 and 〈AB〉2 =
AB. Then |AB| ≤ |〈AB〉|2.
Proposition 4. There is a polynomial p : IN → IN, such that for an arbitrary
A1, B, A2 ∈ C∗ in normal form and 〈A1BA2〉2 = A′

1B
′A′

2 where A′
i, 1 ≤ i ≤ 2,

is the residual of Ai and B′ is the residual of B, we have |B′| ≤ p(|〈A1BA2〉|).
Proof. We may assume that card(C(B)) ≥ 2 and by Proposition 2 we know
that |B′| ≤ 2 · |〈B′〉|2, which is of course less or equal to 2 · |〈A′

1〉〈B′〉|2. Since
〈〈A′

1〉〈B′〉〉2 = 〈A′
1〉〈B′〉 by Lemma 8, we can use Proposition 3 and we get that

2 · |〈A′
1〉〈B′〉|2 ≤ 2 · |〈A′

1B
′〉|4, which is again less or equal to 2 · |〈A′

1B
′〉〈A′

2〉|4.
Analogously we have that 2 · |〈A′

1B
′〉〈A′

2〉|4 ≤ 2 · |〈A′
1B

′A′
2〉|8. Thus we have

|B′| ≤ p(|〈A1BA2〉|) for the polynomial p(n) = 2 · n8. ut
Proposition 5. Let p be a polynomial that satisfies the condition from Propo-
sition 4. If a stuttering pattern equation system {X1 = A1, . . . , Xn = An} is
satisfiable then there exists a solution α with size(α) ≤ ∑n

i=1 |Xi|· p(|Ai|).

Proof. Of course, we can assume that all Ai’s are in normal form. Let α be a
solution of the stuttering pattern equation system {X1 = A1, . . . , Xn = An}
which minimizes both size(α) and the number of variables x such that |α(x)| =
size(α). Assume for the moment that there is some x such that size(α) = |α(x)| >∑n

i=1 |Xi|p(|Ai|). We may assume that α(x) is in normal form, otherwise we have
a smaller solution.

We now reduce α(Xi) →∗
2m 〈α(Xi)〉2. If we look at an arbitrary residual B′

of an occurrence of α(x) in 〈α(Xi)〉2, we see that |B′| ≤ p(|Ai|) by Proposition 4.
This means that there are at most

∑n
i=1 |Xi|p(|Ai|) letter’s occurrences in the

residuals of all occurrences of α(x) in all 〈α(Xi)〉2. By the assumption |α(x)| >∑n
i=1 |Xi|p(|Ai|) we get that there is an occurrence of a letter a in α(x), i.e.

α(x) = u1au2, that has been left out from all the occurrences of α(x) by the rule
→2m. We can erase this occurrence of the letter a from α(x) and we get a smaller
solution β s.t. β(y) = α(y) for y 6= x and β(x) = u1u2. The homomorphism β
is indeed a solution since α(Xi) →∗

2l β(Xi). This is a contradiction because we
have found a smaller solution. ut
Corollary 1. The Pattern-Equation problem is in NP.

5 NP–hardness of the Pattern-Equation problem

In this section we show that the Pattern-Equation problem is NP–hard. We
use a reduction from the NP–complete problem 3–SAT (see [16]).

Proposition 6. The Pattern-Equation problem is NP–hard.

Proof. Suppose we have an instance of 3–SAT, i.e. C ≡ C1 ∧ C2 ∧ . . . ∧ Cn is a
conjunction of clauses and each clause Ci, 1 ≤ i ≤ n, is of the form l1 ∨ l2 ∨ l3
where lj , 1 ≤ j ≤ 3, is a literal (lj is a variable from the set Var , possibly
negated – we call it positive resp. negative literal). A valuation is a mapping
v : Var → {T, F}. This valuation extends naturally to C and we say that C is
satisfiable if and only if there exists a valuation v such that v(C) = T .

We construct a stuttering pattern equation system such that the system is
satisfiable if and only if C is satisfiable. The system will consist of the following
sets of equations (1) – (6) and C = {a, b, c}, V = {x, sx

1 , tx1 , sx
2 , tx2 | x ∈ Var ∪

Var} ∪ {ya, yb, yc} where Var = {x | x ∈ Var} is a disjoint copy of Var. For the
constants a, b and c there are three equations

ya = a, yb = b, yc = c. (1)

We define x̃ = x if x is a positive literal, ¬̃x = x if ¬x is a negative literal and
for all clauses Ci ≡ l1 ∨ l2 ∨ l3 we have the equation

ya l̃1 l̃2 l̃3ya = aba (2)

for each x ∈ Var we add the equations

ybxxyb = bab (3)

yaxxya = aba (4)

and finally for each x ∈ Var ∪ Var we have the following equations:

sx
1xtx1 = acb, sx

1yc = ac (5)

sx
2xtx2 = bca, sx

2yc = bc. (6)

The intuition behind the construction is following. If a variable x is true then
x = b and if x is false then x = a. The second equation ensures that at least
one literal in each clause is true and the other equations imply consistency, i.e.
a literal and its negation cannot be both true (false). In particular, the equation
(3) means that at least one of x and x contains a. Similarly for b and (4). The
last two equations make sure that a variable x ∈ Var∪Var cannot contain both
a and b.

Suppose that C is satisfiable, i.e. there is a valuation v such that v(C) = T .
Then we can easily define a solution of our system.

Let us suppose that α is an arbitrary solution of our system and we find a
valuation that satisfies C. The equation (3) implies that C(α(x)) ⊆ {a, b} for all
x ∈ Var ∪ Var. We will conclude that it is not possible that C(α(x)) = {a, b}.

Suppose that it is the case and using the equations (5) we get that α(x)
does not begin with the constant a. For the moment assume that α(x) begins
with a. We have ac = 0(acb) ∼ 0(α(sx

1xtx1)) and from (1) and (5) we get that
a ∈ C(α(sx

1)) ⊆ {a, c}. If C(α(sx
1)) = {a} then C(0(α(sx

1xtx1))) = {a, b} whereas
C(0(acb)) = {a, c}, which is a contradiction. Otherwise we have C(α(sx

1)) = {a, c}
and we get 0(α(sx

1xtx1)) ∼ aca 6∼ ac = 0(acb).
By the similar arguments and using the equations (6) we get that α(x) does

not begin with the constant b. This yields that there are just three possibilities
for α(x), namely α(x) ∼ a, α(x) ∼ b or α(x) = ε.

By the equations (3) and (1) we know that for all x ∈ Var at least α(x) ∼ a
or α(x) ∼ a. The equation (4) implies that either α(x) ∼ b or α(x) ∼ b. Similarly
for each clause, the equation (2) with (1) gives that there is j, 1 ≤ j ≤ 3, such
that α(l̃j) ∼ b. Let us finally define the valuation v as v(x) = T if α(x) ∼ b and
v(x) = F if α(x) ∼ a for each x ∈ Var. The valuation is consistent and it holds
that v(C) = T . ut
It is not difficult to see that the same reduction as above would also work for
the Non-Singular-Pattern-Equation problem, which is consequently also
NP–hard. We can now formulate the main result of this paper.

Theorem 1. Pattern-Equation and Non-Singular-Pattern-Equation
problems are NP–complete.

As an immediate corollary (using Remark 1), we get the following result.

Corollary 2. AI-matching with only one associative and idempotent function
symbol is NP–complete.

Acknowledgements We would like to thank Ivana Černá and Michal Kunc for
their comments and suggestions.

References

[1] Baader F.: The Theory of Idempotent Semigroups is of Unification Type Zero, J.
of Automated Reasoning 2 (1986) 283–286.

[2] Baader F.: Unification in Varieties of Idempotent Semigroups, Semigroup Forum
36 (1987) 127–145.

[3] Baader F., Schulz K.U.: Unification in the Union of Disjoint Equational Theories:
Combining Decision Procedures, J. Symbolic Computation 21 (1996) 211–243.

[4] Baader F., Siekmann J.H.: Unification Theory, Handbook of Logic in Artificial
Intelligence and Logic Programming (1993) Oxford University Press.

[5] Book R., Otto F.: String-Rewriting Systems (1993) Springer–Verlag.
[6] Černá I., Kĺıma O., Srba J.: Pattern Equations and Equations with Stuttering, In

Proceedings of SOFSEM’99, the 26th Seminar on Current Trends in Theory and
Practice of Informatics (1999) 369-378, Springer–Verlag.

[7] Green J.A., Rees D.: On semigroups in which xr = x, Proc. Camb. Phil. Soc. 48
(1952) 35–40.

[8] Kĺıma O., Srba J.: Matching Modulo Associativity and Idempotency is NP-
complete, Technical report RS-00-13, BRICS, Aarhus University (2000).

[9] Kaďourek J., Polák L.: On free semigroups satisfying xr = x , Simon Stevin 64,
No.1 (1990) 3–19.

[10] Kapur D., Narendran P.: NP–completeness of the Set Unification and Matching
Problems, In Proceedings of CADE’86, Springer LNCS volume 230 (1986) 489–
495, Springer–Verlag.

[11] Kopeček I.: Automatic Segmentation into Syllable Segments, Proc. of First Inter-
national Conference on Language Resources and Evaluation (1998) 1275–1279.

[12] Kopeček I., Pala K.: Prosody Modelling for Syllable-Based Speech Synthesis, Pro-
ceedings of the IASTED International Conference on Artificial Intelligence and
Soft Computing, Cancun (1998) 134–137.

[13] Lothaire M.: Algebraic Combinatorics on Words, Preliminary version available at
http://www-igm.univ-mlv.fr/∼berstel/Lothaire/index.html

[14] Lothaire, M.: Combinatorics on Words, Volume 17 of Encyclopedia of Mathemat-
ics and its Applications (1983) Addison-Wesley.

[15] Makanin, G. S.: The Problem of Solvability of Equations in a Free Semigroup,
Mat. Sbornik. 103(2) (1977) 147–236. (In Russian) English translation in: Math.
USSR Sbornik 32 (1977) 129–198.

[16] Papadimitriou, C.H.: Computational Complexity, Addison-Wesley Publishing
Company (1994), Reading, Mass.

[17] Perrin D.: Equations in Words, In H. Ait-Kaci and M. Nivat, editors, Resolution
of Equations in Algebraic Structures, Vol. 2 (1989) 275–298, Academic Press.

[18] Schulz, K. U.: Makanin’s Algorithm for Word Equations: Two Improvements and
a Generalization, In Schulz, K.–U. (Ed.), Proceedings of Word Equations and
Related Topics, 1st International Workshop, IWW-ERT’90, Tübingen, Germany,
Vol. 572 of LNCS (1992) 85–150, Berlin-Heidelberg-New York, Springer–Verlag.

[19] Schmidt-Schauss M.: Unification under Associativity and Idempotence is of Type
Nullary, J. of Automated Reasoning 2 (1986) 277–281.

[20] Siekmann J., Szabó P.: A Noetherian and Confluent Rewrite System for Idempo-
tent Semigroups, Semigroup Forum 25 (1982).

