
Safe and Time-Optimal Control
for Railway Games

Shyam Lal Karra, Kim Guldstrand Larsen, Florian Lorber, and Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Abstract. Railway scheduling is a complex and safety critical problem
that has recently attracted attention in the formal verification commu-
nity. We provide a formal model of railway scheduling as a stochastic
timed game and using the tool Uppaal Stratego, we synthesise the
most permissive control strategy for operating the lights and points at
the railway scenario such that we guarantee system’s safety (avoidance of
train collisions). Among all such safe strategies, we then select (with the
help of reinforcement learning) a concrete strategy that minimizes the
time needed to move all trains to their target locations. This optimizes
the speed and capacity of a railway system and advances the current
state-of-the-art where the optimality criteria were not considered yet.
We successfully demonstrate our approach on the models of two Dan-
ish railway stations, and discuss the applicability and scalability of our
approach.

1 Introduction

Railway networks are complex safety critical systems where one has to guaran-
tee safety despite the unpredictable behaviour of external factors influencing the
system operation. This unpredictable behaviour arises from the fact that the du-
rations taken by trains to change positions in the railway network are influenced
by human operators as well as other factors like weather conditions etc. In ad-
dition to that, trains can move concurrently on multiple independent tracks and
it becomes hard to manually control the lights and points (switches) in order to
avoid trains collisions or derailment. This becomes particularly important, once
we try to increase the throughput in the railway network and minimize the train
travel times, as this requires more concurrency where dangerous situations can
be easily overlooked by a human operator. There is hence a clear demand on the
employment of automatic methods that will assist with a safe and time-optimal
operation of a railway network, and this is the main focus of our paper.

We shall first introduce our railway scheduling problem by an example. An
instance of the problem is given in Figure 1 and consists of two trains, each
travelling in a given (and fixed) direction. At any moment, each train is placed
on a clearly identified part of a track called section. In our example, the train t0
is located at the section s1 and travels from the left end-point of the section to its
right end-point, assuming that the duration of such a move has some predefined

Fig. 1. A railway network with two trains t0 and t1, four points p0, p1, p2 and p3, nine
sections s0 . . . s8 and three lights l0, l1 and l2.

probabilistic distribution with the expected value of 2 time units. Similarly, the
train t1 starts at the right end-point of section s3 and moves in the right-to-
left direction with the expected travel time of 4 time units to cross section s3.
Sections are connected with points (switches), like the point p0 that depending
on its mode can connect the section s3 with either the section s7 as depicted in
our figure, or with the section s0. Ends of sections can be guarded by lights that
signal to the trains whether they are allowed to leave a given section and move
to the connected section (depending on the mode of the points). We assume that
passing a point is instantenious and that trains follow the light signals (i.e. never
pass a light that is red).

The railway scheduling problem (also known as dynamic routing problem) is
given by a track layout together with the initial positions of trains in the network
and the target positions (sections) for each train. The role of the controller is to
operate the lights and points such that the trains move to their target positions
in a safe way (without the possibility of a collision, under the assumption that
they respect the lights), while at the same time optimizing the time it takes
before all trains arrive to their target sections.

Returning to our example, let us assume that the target section for the train
t0 is s6 and that the trains t1 aims to reach s0. Note that we can change the points
so that both trains simply drive straightforward and reach the target sections
without the risk of a crash. However, the controller has an alternative choice
for the train t0 to navigate it through the sections s7, s3 and s8 instead, where
the expected arrival time is shorter than passing through the section s4. Now,
the optimal strategy depends on the fact how fast the train t1 leaves the section
s3. If it does so early (depending on the respective stochastic distribution), then
it is worth for the controller to direct the train t0 along the faster route that
includes the section s3, otherwise (in case t1 is for some reason delayed) it is
more time-optimal to guide the train t0 in the straight line.

In our work, we propose a method to construct such smart/adaptive con-
trollers that guarantee both safety and time optimal behaviour. We propose a

2

two-step controller synthesis procedure, which in the first step ensures safety, and
in the second step optimises the controller to reduce the time needed for all trains
to reach their goals. To achieve this, we first introduce a formal model of railway
games and provide its encoding to the tool Uppaal Stratego [6]. Uppaal
Stratego first computes the most permissive strategy for the given railway
game represented as a two-player game. Here the controller decides the modes
of points and light configurations, while the opponent (environment) moves the
trains around in the network, respecting the lights guarding each section. The
speed of the trains in this game is completely unconstrained, meaning that they
may stay in a section forever or move immediately to the other end of the sec-
tion without any time contraints. This guarantees that the synthetised strategy
is safe, irrelevant of the speed of the trains (including the possibility that a
train breaks and does not move at all). The tool Uppaal Stratego is able
to synthesise the most permissive strategy that includes all safe operations of
the railway network. In the second step, we add stochastic behaviour to the
trains so that they take a random amount of time for crossing a section which
is chosen according to the rates for a given probabilistic distribution associated
with the train and the concrete section in the network. From all safe strategies,
we then (again using Uppaal Stratego) select the fastest one by employing
reinforcement learning. This provides us with the control strategy that is (near)
time-optimal and provably safe.

Our main contributions can be summarized as follows:

– We generalize previous attempts to solve the train scheduling problem by
allowing for concurrent moves of trains and we extend the existing railway
models with stochastic information about the expected times for trains to
travel along a section.

– We provide both the untimed and timed semantics for a railway network
that allows us to argue about safety and time-optimality and we show their
encoding in the model of stochastic timed automata.

– We explain the application of the tool Uppaal Stratego for solving net-
work scheduling problems and by means of two existing railway stations
in Aalborg and Lyngy, we prove that the tool is able to compute safe and
near-optimal control strategies.

Related work. Railway safety was studied e.g. in [14,16,3,5] with a focus on model
checking of safety properties in railway networks, however, these approaches do
not consider controller synthesis.

The work in [12] considers controller synthesis problem for the railway schedul-
ing problem and the safety condition by translating it to strictly alternating two-
player game and provides a number of abstractions in order to reduce the state
space of the underlying game graph. In [10] this approach has been explored with
the use of on-the-fly controller synthesis techniques, however, these approaches
do not allow for concurrent train moves in order to reduce the complexity of
the problem. The controller synthesis problem for railway network safety and
deadlock avoidance was addressed in [9] by its modelling in Petri nets. In [11]

3

automatic generation and verification of formal safety conditions from an inter-
locking tables of a relay interlocking system are discussed. However, none of these
approaches consider the timing aspects in combination with controller synthesis
and to the best of our knowledge, our work is the first one that synthetizes a
schedule that is both safe and time-optimal at the same time.

Uppaal Stratego has been used in several case studies, where first a safe
strategy is generated, and then an optimization step is performed. Examples
include adaptive cruise control [13] and the intelligent control of traffic lights [8].
While the approach for the controller synthesis used in this paper is similar to
these works, it is applied to a completely new area, which requires an efficient
modeling of problem and nontrivial effort in order to boost the performance of
the tool, including the use of a new learning method recently implemented in
Uppaal Stratego.

2 Formal Definition of Railway Games

We first introduce a game graph that is used to give the semantics to our railway
scheduling problem. A game graph is a tuple G = 〈V, , , v0,Bad,Goal 〉
where V is a finite set of vertices, ⊆ V ×V is the set of controller transitions,
⊆ V × V is the set of environmental transitions, v0 ∈ V is the initial vertex,

Bad ⊆ V is the set of bad vertices where controller loses and Goal ⊆ V is the
set of vertices controller aims to eventually reach.

Given a game graph G, a run is a finite or infinite sequence ρ = 〈v0, v1, v2, . . .〉
of vertices such that either vi vi+1 or vi vi+1 for every relevant i. A run ρ
is a maximal run if it is either infinite or ρ = 〈v0 . . . vk〉 and there is no vk+1

such that vk vk+1 or vk vk+1. The set of all maximal runs starting at the
vertex v0 is denoted by MaxRuns(v0).

A controller strategy σ : V ↪→ V is a partial function such that for every
v ∈ V we have v σ(v) or σ(v) is undefined in case that v has no outgoing
controllable transitions. Given a strategy σ, the outcome of the game under σ
from the vertex v0 is defined as the set of all possible maximal runs that follow
the strategy σ, formally

Outcomeσ(v0) =

{〈v0, v1, . . .〉 ∈ MaxRuns(v0) | vi vi+1 or σ(vi) = vi+1 for all i} .

A run ρ = 〈v0, v1, . . .〉 is called safe if there is no i such that vi ∈ Bad.
A strategy σ is a safe strategy if all the runs from Outcomeσ(v0) are safe. A
strategy σ is a winning strategy if it is safe and for every run ρ = 〈v0, v1 . . .〉 ∈
Outcomeσ(v0) there is an i such that vi ∈ Goal.

2.1 Railway Topology

We are now ready to formalise the railway topology. A railway topology is a
tuple R = (S, P, L, γ, E) where S = {s0, s1 . . . sm}, P = {p0, p1 . . . pr} and
L = {l0, l1, l2 . . . lt} are the sets of sections, points and lights, respectively.

4

Each section s ∈ S has two ends denoted by s.left and s.right and each point
p has three ends p.up, p.down, p.main. We shall use the notation Sends =
{s.left, s.right | s ∈ S} and P ends = {p.up, p.down, p.main | p ∈ P}. The
injective function γ : L → Sends assigns each light to a section. A light at a
left (right) end of a section can only control a train moving on that section in
the direction right to left (left to right). Finally, the connectivity of the sec-
tions and points is represented by undirected edges E such that E ⊆ [V]2 where
V = P ends ∪ Sends and [V]2 = {Z ⊆ V | |Z| = 2}) satisfying

– if e1 6= e2 then e1 ∩ e2 = ∅ for all e1, e2 ∈ E,
– {s.left,s.right} /∈ E for each section s ∈ S, and
– for each p.z ∈ P ends there is an s.x ∈ Sends such that {p.z, s.x} ∈ E.

In other words, each end can connect to at most one other end, we allow point
ends to connect only to section ends and section-loops as well as isolated point
ends are not allowed.

2.2 Untimed Semantics of Railway Games

Consider a railway topology R = (S, P, L, γ, E). We shall define its associated
game graph for a given number of trains T = {t0, t1 . . . tk−1}. The vertices of
the game graph consist of configurations where each train is located at a section
end and has a direction in which it is moving. For each point p ∈ P , a mode
up/down is associated with it in the configuration, indicated by p.mode. Finally,
for each light l ∈ L, there is a colour red/green associated with it in a given
configuration. The underlying semantics is given as a game graph GR = 〈C, ,

, c0,Bad,Goal〉 defined in the rest of this section.
Configurations. The set of configurations is C ⊆ (Sends × {left, right})T ×

{up, down}P × {red, green}L so that a configuration c ∈ C is a triple of three
functions of the form (pos,mod, col) where

– pos : T → Sends × {left, right} stores the location and direction of each
train t ∈ T . For each train t ∈ T , pos(t) is an ordered pair of the form
(pos1(t), pos2(t)) where pos1(t) indicates the section end in which t is cur-
rently located and pos2(t) indicates the train direction,

– mod : P → {up, down} records the mode of each point, and
– col : L→ {red, green} remembers the current lights setting.

We assume a given initial configuration c0 with the initial placement of all
trains and a fixed color lights and modes of points, as well as a set of goal
configurations Goal where all trains are in their target sections and the posi-
tions of points and light colors can be arbitrary. The set Bad contains all con-
figurations where two trains are located on the same sections, formally Bad =
{(pos,mod, col) ∈ C | there is t, t ′ ∈ T where t 6= t′, pos1(t) = s.x and pos1(t ′) =
s.y for some x,y ∈ {left,right}}.

Transitions. We shall first define a function nextSec :
(
Sends × (P →

{up, down})
)
→ Sends that, given the modes of points, determines what are

the neighbouring sections in the network (we assume that x,y ∈ {left,right} and
z ∈ {main, up, down}):

5

– nextSec(s.x,mod) = s ′.y if {s.x, s ′.y} ∈ E
– nextSec(s.x,mod) = s ′.y if there exists a p ∈ P such that {s.x, p.z} ∈ E and
• z =main and mod(p) =up such that {p.up, s ′.y} ∈ E, or
• z =main and mod(p) =down such that {p.down, s ′.y} ∈ E, or
• z =down or z =up such that {p.main, s ′.y} ∈ E

– nextSec(s.x,mod) = s.x otherwise.

Let c = (pos,mod, col) be a configuration from C. We shall also define a
set of movable trains movableTrains(pos, col) ⊆ T that, given the position of
trains and colours of all lights, returns the set of all trains (if any) that are
at the end of their sections and their corresponding lights (if any) are green
in colour. Formally, movableTrains(pos, col) = {t ∈ T | pos(t) = (s.x, x) where
x ∈ {left,right} and col(l) = green for all l ∈ L such that γ(l) = s.x}.

We are now ready to define the controllable and environmental transitions
in the graph.

Controllable Transitions: These are transitions modelling the moves made by
the controller in the game. Whenever there is a train at the end of a section,
the controller can change the modes of points and the colours of lights, with the
restriction that if a train is moving in a section where there is green light, it is
not allowed to suddenly change it to red (as instanteniously stopping a moving
train is not a realistic behaviour). The controller move is finished by placing all
movable trains to the connected sections, unless there is a train that can crash
to another train, in which case this train moves alone and the crash is detected
by the fact that the target configuration belongs to the set Bad . Formally, we
write (pos,mod, col) (pos ′,mod ′, col ′) if

– there exists a t ∈ T such that pos(t) = (s.x, x) where x ∈ {left,right},
– for every t ∈ T where pos(t) = (s.y, x) for x, y ∈ {left,right} if for every light
l ∈ L where γ(l) = s.x holds col(l) = green then col ′(l) = green,

– and moreover
• if there is t ∈ movableTrains(pos, col ′) s.t. nextSec(pos1(t),mod ′) = pos(t′)

for some t′ ∈ T r {t} then pos ′(t) =

(
nextSec

(
pos1(t),mod ′

)
, pos2(t)

)
and for every other t′ ∈ T r {t} we have pos ′(t′) = pos(t′),

• otherwise pos ′(t) =

(
nextSec

(
pos1(t),mod ′

)
, pos2(t)

)
for every

t ∈ movableTrains(pos, col ′) and pos ′(t′) = pos(t′) for every other t′.

Environmental Transitions: Finally, we can define the transitions controlled
by the environment modelling the uncertainty whether the trains move along the
sections and what set of trains move concurrently. We define (pos,mod, col)
(pos ′,mod, col) if

– movableTrains(pos, col) = ∅,
– for every t ∈ T either pos ′(t) = pos(t), or pos ′(t) = (s.y,y) provided that

pos(t) = (s.x,y) for x, y ∈ {left,right}), and
– pos 6= pos ′.

6

The first condition guarantees that if there are some movable trains at the end
of the sections, then they move to their neighbouring sections (by means of con-
trollable transitions). The second condition gives the environment the freedom
to decide any subset of trains that (concurrently) arrive at the ends of their
respective sections and the last conditions guarantees that at least one train
moves in order to guarantee progress (we want to avoid environmental self-loops
as the game will not have any winning strategy in this case). Notice that the
environment cannot influence the modes of points nor the setting of lights.

Example 1. The railway network shown in Figure 1 is in the initial configuration
c0 = (pos,mod, col) where pos(t0) = (s1.left, right), pos(t1) = (s3.right, left), and
mod(p0) = mod(p1) = up, mod(p2) = mod(p3) = down, and say that col(l0) =
col(l1) = col(l2) = red. There are no controllable transitions in c0 as no trains
are at the ends of the sections, i.e., movableTrains(pos, col) = ∅. However, the
environment can move either the train t0 from s1.left to s1.right or the train
t1 from s3.right to s3.left, or both of them at the same time. Suppose it is the
second case and the train t1 arrives at s3.left . Now the controller can swap the
mode of p0 and set the light l2 to green, which implies that the train t1 moves
to s0.right . Now it is the environmental turn and say that the train t0 arrives
to s1.right . The controller can safely set the light l1 to green and without any
further control, also the train t0 eventually arrives to its target section s6.

2.3 Stochastic Semantics for Railway Games

In the railway game provided in the previous section, the movement of trains
along sections has been purely discrete with no information about the timing
of these movements. In this section we refine this view by assuming that the
time it takes a train t to pass a section s is given by a distribution µt,s. Here
we shall assume that the passage-time distributions are given by exponential
distributions. Choosing exponential distributions simplifies the technical presen-
tation due to the memoryless property of exponential distributions, however, in
Uppaal Stratego there is a support for several other distributions as well as
for the possibility to make the distribution parameters depend on weather con-
ditions and other external factors (see [7]). However, assuming only knowledge
about the expected passage-time, exponential distribution is anyway the most
appropriate choice in terms of entropy.

A stochastic railway game for a set of trains T is a tuple (S, P, L, γ, E,R),
where (S, P, L, γ, E) is a railway game and R : T × S → R≥0 provides for
each train t ∈ T and each section S the rate R(t, s) of an exponential distribu-
tion being the passage-time distribution µt,s. We recall that for an exponential
distribution with rate r, the density of passage-time d is r exp−r·d, and the prob-
ability that the passage-time will be less than d is 1−exp−r·d. Also, the expected
passage-time is 1

r . Finally, given two trains t1 and t2 with passage-time rates r1
and r2, the probability that t1 completes its passage first is r1

r1+r2
.

In the full railway game, various trains (all the ones that are not stopped by
a red light at the end of a section) are independently moving along different sec-
tions simultaneously with the passage-times given by exponential distributions

7

with rates prescribed by R. One of these trains will reach its end first1. This calls
for a stochastic refinement of the uncontrolled train transitions of the railway
game. Consider the untimed train transition (pos,mod, col) (pos ′,mod, col),
where train t – non-deterministically choosen between the moving trains – is
the unique train reaching the end of its section s, i.e. pos(t) 6= pos ′(t). In the
stochastic refinement we will assign a density δ for this transition happening at
time d. Now let M ⊆ T describe the set of trains moving excluding the winning
train t. Also for t′ ∈ M , let s(t′) denote the section along which t′ is moving.
Then a timed train transition is of the form:

(pos,mod, col) d
δ(pos

′,mod, col)

where d is a passage-time and δ is given by:

δ = R(t, s) · exp−R(t,s)·d ·
∏
t′∈M

exp−R(t′,s(t′))·d

In the above the first two terms of the product – R(t, s) · exp−R(t,s)·d – is the
density that train t passes section s in d time-units. However, the density δ of
the train transition must also reflect that t is the first train to reach the end of
its section. This is expressed by the last product term. Note that exp−R(t′,s(t′))·d

is the probability that train t′ has not completed the passage of its section s(t′)
in d time-units. Due to the assumed independence of the passage-times of trains,
the product among all these equals the probability that no other moving train
but t has reached the end of its section before d.

The above notion of density of a timed train transition extends to densities
on finite timed runs by simple multiplication of the densities of the timed train
transitions appearing in the run. Now constrained by a strategy σ, the railway
game becomes fully stochastic as the non-deterministic choices of the controller
are resolved by the strategy. Hence – by integration and addition – the densities
on runs determine a probability measure Pσ on sets of outcomes under σ. In
particular, for a given strategy σ we may determine the probability of the set of
runs leading to a crash of two trains. If no crash under the strategy can occur,
we may determine the expected time until all trains have reached their goal.

Example 2. Reconsider the railway network from Figure 1. Assume that all lights
are green (sounds dangerous, and it is!). A possible control strategy σ1 could try
to avoid disaster by turning point p2 up once any of the two trains reached the
end of the initial section. However, there is still a possibility of crash as train t1
may complete both sections s3 and s7 before train t0 completes section s1. The

1 The event that two or more trains reach the end of their sections simultaneously has
measure zero and may be ignored.

8

following shows that the probability of this is 2
9 .

Pσ1(Crash) = Pσ1(t1 completes s3 and s7 before t0 completes s1)

= Pσ1(t1 completes s3 before t0 completes s1) ·
Pσ1(t1 completes s7 before t0 completes s1)

=
1
4

1
4 + 1

2

·
1
1

1
1 + 1

2

=
1

3
· 2

3
=

2

9

Example 3. Again consider the railway network from Figure 1. In this scenario
we assume that all lights are initially red (sounds better from a safety point
of view). Here we consider a safety strategy σ2, where whenever a train (t1
respectively t0) reaches its end the corresponding light (l2 respective l1) is turned
green and at the same time the corresponding point (p0 respective p2) is moved
(down respectively up). This strategy guarantees safety, so the probability of the
two trains crashing is 0. The expected time until both trains are at their goal
location under σ2 is 13 as seen by:

Eσ2
[Goal] = max

{
Eσ2

[t1 in goal],Eσ2
[t0 in goal]

}
= max{4 + 2, 2 + 2 + 7 + 2} = 13

Example 4. As a final example, consider yet again the railway network from
Figure 1. Let us first consider that t0 is the first train to reach the end of its
section. The optimal strategy σo for the controller is now to move p2 up, and
drive straight for the goal, with an expected time of 13. If, however, t1 is the
train to reach its end first, t0 can move through the sections s7, s3, s8, with an
expected time of 8. The expected time for both trains to reach their goal under
this strategy is 12.3, as calculated below.

Eσo [Goal] = max{Eσo [t1 in goal],Eσo [t0 in goal]}
= max

{
4 + 2,Pσo(t0 completes s1 before t1 completes s3)

·(2 + 2 + 7 + 2) +

Pσo(t0 completes s1 after t1 completes s3)

·(2 + 1 + 4 + 1 + 2)
}

= max
{

4 + 2,
7

9
· 13 +

2

9
· 10
}

= 12.3

3 Railway Games in Uppaal Stratego

After having introduced the theoretical foundations of our untimed railway game
and its stochastic extension, we shall discuss the encoding of our approach into
timed automata in the Uppaal-style and use the tool Uppaal Stratego [6]
to synthetise (near) time-optimal and safe control strategies.

9

Fig. 2. An example of a timed game automaton of the tool Uppaal Stratego

3.1 Translation to Timed Game Automata

Uppaal Stratego uses timed game automata as models, which are an exten-
sion of timed automata [2]. Timed automata extend finite state machines with a
number of real-valued clocks that enable them to measure the progress of time.
The automata used by Uppaal are extended further, by allowing for additional
model features, e.g. C-like syntax, explained below. Timed game automata addi-
tionally divide transitions into controllable and uncontrollable transitions. Fig-
ure 2 provides an example of a timed game automaton in Uppaal Stratego,
containing all feature used in the presented models. The automaton consists of
one location (Loc1), which contains an exponential rate (2) determining how
long we have to stay in that location before performing a transition. The tran-
sition on top is controllable, denoted by the solid line. The controller can only
execute the transition, if the turn variable is currently 0. The transition sends a
signal (PlayerMove!) to other automata (run in parallel and not showed in the
figure) when executed. Finally, the controller can choose a value for the variable
temp, which will be assigned to the global variable turn. If it assigns the value 1,
its the opponent’s turn, which means it can execute the transition below (dotted
line). Before such a transition is executed, we again delay according to the expo-
nential rate of the location, and the opponent can choose to keep broadcasting
on the channel OpponentMove! until it decides to change the value of turn.

When encoding our railway games into Uppaal Stratego, we applied two
main optimizations in order to reduce the state space of the games. One opti-

Fig. 3. Controller of a railway game modelled as a timed automaton

10

Fig. 4. A train in a railway game modelled as a timed automaton

mization was inspired by [12], and it separates lights and points into relevant and
irrelevant sets. Only lights that are on sections currently occupied by a train are
considered relevant for the controller. The same applies to points, that is, only
points connected to occupied sections are relevant. When the controller moves,
it can only change the configuration of currently relevant lights/points. All other
lights/points are set to their default values (red/down). The second optimiza-
tion is a static analysis of the railway network. For each train we perform an
exploration of the connectivity in railway network and collect all the sections it
may visit in order to be still able to reach its target section. If a mode of a given
point leads to a section from which it is not feasible to move the train to its
target location, we remove this mode choice from the controller for this specific
train. This further reduces the state-space that Uppaal Stratego needs to
explore during the controller synthesis. Both optimizations do not change the
existence of winning strategies nor remove any time-optimal strategies. Another
optimization was to enforce green light for at least one train, every time the
controller sets the lights. This will ensure progress by forcing at least one train
to move at any given point.

Figures 3 and 4 show a (simplified) example of the used timed automata
models2. The models are split into one automaton for the controller, and one
automaton for each train. Only one template of the trains is shown. In addition,
the Uppaal files contain C-line code, including variables for storing the layout
of the stations, and the current configuration.

In Figure 3 we show the controller: the controller is responsible for initializing
the railway station (setting all the variables for the layout), before the game
starts. After that, it can chose the mode of the relevant lights, setting them to
either green or red. Then it can set the mode of the relevant points. In this
example, we consider only two trains, hence only two lights/points need to be
set here. After setting the lights and points, if there is a possibility for a crash,
the controller sets the crash variable to true. Note that if the controller has a
winning strategy, this will never occur. If no train can crash, all trains that are
waiting for green light are notified that the configuration changed. When these

2 Our experiment files can be found online at http://people.cs.aau.dk/~florber/

TrainGames/ExperimentFiles.rar

11

http://people.cs.aau.dk/~florber/TrainGames/ExperimentFiles.rar
http://people.cs.aau.dk/~florber/TrainGames/ExperimentFiles.rar

steps are done, the controller waits for a train to arrive at the end of a section,
at which point it will be able to change the settings again.

Figure 4 illustrates a train: initially, trains are starting at the end of a section,
waiting to pass to the next section. If the train receives the signal that the
configuration was changed (moveWaitingTrains?) and is has green light now, it
can move to the next section and start driving there. When a train moves to the
next section, several variables are updated. First, the train updates its current
position according to the nextSec function, then it checks whether it reached its
final destination, and finally it updates its rate to the rate of the section it is
currently driving on. If it reaches the end of the section, it will signal this to the
controller, which is done via sending the trainArrived! signal. The duration until
a train reaches the end of a section is given by the rate of the current section,
which in the figure is illustrated next to the driving location.

In Figure 5 is an excerpt of the nextSec function implemented in case of the
railway network shown in Figure 1 which either reports a crash or returns the
next section end of the train, depending on the settings of points and lights. For
example, if the current position of the train is s1.right (stored in the variable
pos), the train is going towards the right, the light l1 is green and point p2 is in
down mode, the train ends up in s7.left. Now if s7 is already occupied then it
results in a crash otherwise the position of the train is updated accordingly.

section_End nextSec(int tId){
...

pos=currentPosition[tId];

if(pos == s1.right and dir == right)

if(colour[1] == green)

if(mode[2]= down)

if(sectionOccupied[7] == false) pos=s7.left;

else crash=true;

else

if(sectionOccupied[2] == false) pos=s2.left;

else crash=true;

else

pos=s1.right;
...

return pos;

}

Fig. 5. Fragment of Uppaal C-code for changing a train position

3.2 Uppaal Stratego

Uppaal Stratego [6] combines the two branches Uppaal TIGA [4] and Up-
paal SMC [7]. Uppaal TIGA provides an on-the-fly algorithm for synthesis

12

G
Timed

Train Game

σ
Safety

Strategy

P
Stochastic

Timed
Train Game

P|σ

Safety property φ
synthesis

UPPAAL TIGA

abstraction

σ°
optimized
Strategy

synthesis
(learning)

Cost
UPPAAL Stratego

Fig. 6. Overview of the functionality of Uppaal Stratego

of reachability and safety objectives for timed games. Uppaal SMC provides
statistical model-checking for stochastic timed games. The workflow of Uppaal
Stratego which combines the two tools can be seen in Figure 6. To run Up-
paal Stratego, one has to define queries for the model checker. We used two
types of queries to generate the strategies.

The query below synthesises the safe strategy. It asks the model checker for
a control strategy, such that the Boolean variable crash is always false.

strategy safe = control:A[] not crash

The optimization of our strategy with machine learning requires the specification
of a cost function. In our case, the cost is given by the time passing, while there
is a reward for bringing a train to its destination. We simulate for at most 151
time units (or until all trains exited), thus we set the reward to 150, such that
exiting the train is always of higher priority than ending fast. This optimization
is performed while adhering to the safe strategy. The query is given below.

strategy opt = minE (time - 150*(exited[0])) [<=151]:

<> (time>=150 || exited[0]) under safe

The second step does not provide necessarily the time-optimal strategy (as the
problem is in general undecidable), however, by the use of reinforcement learning
it approaches the optimal solution and works convincingly in practice.

4 Experiments

We shall now present the experiments and results we achieved using Uppaal
Stratego. We analyzed two Danish railway stations, Aalborg and Lyngby. The

Station # Sections # Lights # Points # Trains

Lyngby 11 14 6 2 to 5

Aalborg 26 41 14 2 to 5
Table 1. Specifics about the Lybgy and Aalborg station

13

Station 2 Trains 3 Trains 4 Trains 5 Trains

Lyngby 0.04 0.16 3.37 55.93

Aalborg 0.24 16.57 858.91 timeout
Table 2. Time (in seconds) for computing the most permissive safe strategy

railway layout for Lyngby was based on the layout presented by Kasting et al. [12]
that we extended by the rates associated to each section. The layout used for
Aalborg is based on a track plan found online [1] where we considered the main
tracks, disregarding the cargo tracks. We assumed that each entry to a point is
guarded by a light. The rates for both stations were estimated by using Google
Maps to figure out the length of the sections, and assuming that trains drive with
80kmh outside of the station, and 40kmh in the proximity of the platforms. To
achieve that all rates are higher than 1, the rates of Lyngby were multiplied by
66, and all rates in Aalborg by 20. Thus, one time unit in an experiment with
Lyngby/Aalborg below corresponds to 66/20 seconds, respectively.

4.1 Setup

We considered the problem with 2, 3, 4 and even 5 trains concurrently moving
at the station in order to explore the scalability of our approach. The initial and
final locations for the trains in the Lyngby station were chosen similarly to [12].
The trains in Aalborg are placed in a way to make their travel as complex as
possible, i.e., they always have to travel from one side to the other, taking several
points and cross each others paths. The models with less than 5 trains were
produced by removing trains from the complete model with a maximum number
of trains. The specifics about the stations can be found in Table 1, showing that
Aalborg is about twice the size of Lyngby. The experiments were executed on
AMD Opteron 6376 processor running at 2,3Ghz with 10GB memory limit.

4.2 Results

In Table 2 we report on the time to compute the safety strategy. The runtime
for computing the strategy depends on the size of the station and, as expected,
it grows exponentially with the number of trains (Aalborg with 5 trains timed
out). This means that for this high number of trains, the proposed approach is
at the moment infeasible without further state-space reductions. However, even
at the larger stations like Aalborg, in reality there should rarely be more than
three trains approaching the station at the same time.

In Table 3 we investigate how Uppaal Stratego performs in optimizing
the constructed safe strategy. We use a currently unpublished learning method
of Uppaal Stratego relying on Q-learning [15]. We use 50 iterations and each
of 1000 runs for learning the strategies for Lyngby, and 5000 runs for Aalborg,
as the increased state-space requires a higher learning effort. We report the time
needed to produce the safe strategy plus to its optimization in Uppaal Strat-
ego, the expected time until all trains reach their goals under the synthesised

14

Station Aal2 Aal3 Aal4 Aal5 Lyn2 Lyn3 Lyn4 Lyn5

Uppaal runtime 650.53 1501.46 3990.49 — 66.79 143.86 244.38 382.33

Expected time 1.8 2.62 2.65 — 1.06 2.6 2.27 2.72
Table 3. Strategy optimization, including the runtime of safe strategy synthesis (in
seconds), and the expected time until all trains reach their destinations

Fig. 7. 1000 random runs on Lyngby, the right plot is under the optimized strategy

strategies where e.g. Aal3 means the Aalborg station with 3 trains. The ex-
pected time was computed by simulating 2000 random runs under the strategy.
The presented values are an average computed from repeating the experiments
20 times. The stochastic nature of the trains can of course influence the observed
timed behaviour, and lead to small time fluctuations in the expected time.

Figure 7 shows the frequency histogram of the arrival times of the train num-
ber 4 during 1000 simulations on Lyngby with 5 trains, where the unoptimized
safe strategy is on the left side and the guided optimized strategy is on the right
side. The x-axis represents the train arrival time in minutes and the y-axis the
number of times the train arrived at the given time. Clearly, the unguided strat-
egy has a majority of simulation where the train did not arrive within 8 minutes,
whereas the optimized strategy makes the train number 4 to arrive on average
in 1.6 minutes.

5 Conclusion

We presented a game-theoretic approach for controlling of a railway network
as a two player game between the controller (setting up the lights and modes
of points) and the environment (moving the trains). Our approach guarantees
safety (absence of trains simultaneously entering the same section) by computing
the most permissive safe strategy in the untimed game. This strategy is further
optimized in the model enhanced with stochastic semantics, approximating the
time trains use to travel across a section, in order to optimize the speed of trains
arriving to their target sections.

The main novelty of the proposed approach is the support for concurrently
moving trains and the synthesis of (near) time-optimal controllers that are safe.

15

Both these steps can be automatically realized in our tool Uppaal Stratego.
This is an important step towards reflecting the behaviour of trains in reality.
Our approach was demonstrated and evaluated on two Danish railway stations,
using different number of trains. The experiments clearly show the feasibility of
our approach, however, for one of the stations, the highest number of trains led
to a timeout, highlighting also the limitations of our current implementation.

In the future work, we shall work on improving the performance of our tool
and on applying reduction techniques in order to decrease the size of the state-
space, similarly as it was done in [10] for the untimed and strictly alternating
game. We will also look at the scheduling problem where each train has a pre-
defined route like in [11]; this is a realistic assumption and it will likely reduce
the complexity of the control synthesis. Furthermore, we can without any effort
use cost functions of different types e.g. to prioritize or penalize certain trains
depending on their importance. For further evaluation of our strategies, we plan
on making it easier to extract them from our tool, so that they can be applied to
simulations in other software or control directly model trains in a demonstrator
that we plan to build. Finally, in our railway model we made a few simplifying
assumptions that we plan to relax in our future work. For example, we shall add
a travel time through a point (at the moment we assume that it is instantaneous)
and make sure that points are not operated while trains are passing over them
in order to prevent derailment.

Acknowledgments. We would like to thank to Peter G. Jensen for his sup-
port with the experiments and advice on Uppaal Stratego. We also thank the
anonymous reviewers for their detailed comments and in particular for pointing
out a problem in our original formal model that could have made the constructed
controller potentially unsafe. The research leading to these results has received
funding from the project DiCyPS funded by the Innovation Fund Denmark, the
Sino Danish Research Center IDEA4CPS and the ERC Advanced Grant LASSO.
The fourth author is partially affiliated with FI MU, Brno, Czech Republic.

References

1. Danish railway station plans. https://www.sporskiftet.dk/wiki/

danske-spor-og-stationer-sporplaner-og-link/. Accessed: 2019-01-14.
2. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, April 1994.
3. B. Aristyo, K. Pradityo, T. A. Tamba, Y. Y. Nazaruddin, and A. Widyotriatmo.

Model checking-based safety verification of a petri net representation of train in-
terlocking systems. In 2018 57th Annual Conference of the Society of Instrument
and Control Engineers of Japan (SICE), pages 392–397, Sep. 2018.

4. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal, pages
200–236. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

5. A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. Torielli, and P. Traverso.
Formal verification of a railway interlocking system using model checking. Formal
Aspects of Computing, 10(4):361–380, Apr 1998.

6. Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Mikučionis,
and Jakob Haahr Taankvist. Uppaal stratego. In Christel Baier and Cesare Tinelli,

16

https://www.sporskiftet.dk/wiki/danske-spor-og-stationer-sporplaner-og-link/
https://www.sporskiftet.dk/wiki/danske-spor-og-stationer-sporplaner-og-link/

editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
206–211, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

7. Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal SMC tutorial. International Journal on Soft-
ware Tools for Technology Transfer, 17(4):397–415, Aug 2015.

8. Andreas Berre Eriksen, Chao Huang, Jan Kildebogaard, Harry Lahrmann, Kim G
Larsen, Marco Muniz, and Jakob Haahr Taankvist. Uppaal stratego for intelligent
traffic lights. In 12th ITS European Congress, 2017.

9. A. Giua and C. Seatzu. Modeling and supervisory control of railway networks
using petri nets. IEEE Transactions on Automation Science and Engineering,
5(3):431–445, July 2008.

10. Michael R Hansen. On-the-fly solving of railway games (work in progress). Marina
Waldén (Editor), page 34, 2017.

11. Anne Elisabeth Haxthausen. Automated generation of formal safety conditions
from railway interlocking tables. STTT, 16(6):713–726, 2014.

12. Patrick Kasting, Michael R. Hansen, and Steen Vester. Synthesis of railway-
signaling plans using reachability games. In Proceedings of the 28th Symposium on
the Implementation and Application of Functional Programming Languages, IFL
2016, pages 9:1–9:13, New York, NY, USA, 2016. ACM.

13. Kim Guldstrand Larsen, Marius Mikučionis, and Jakob Haahr Taankvist. Safe and
Optimal Adaptive Cruise Control, pages 260–277. Springer International Publish-
ing, Cham, 2015.

14. Jakob Lyng Petersen. Automatic verification of railway interlocking systems: A
case study. In Proceedings of the Second Workshop on Formal Methods in Software
Practice, FMSP ’98, pages 1–6, New York, NY, USA, 1998. ACM.

15. Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

16. Kirsten Winter. Model checking railway interlocking systems. In Proceedings of
the Twenty-fifth Australasian Conference on Computer Science - Volume 4, ACSC
’02, pages 303–310, Darlinghurst, Australia, Australia, 2002. Australian Computer
Society, Inc.

17

Appendix

Layout of Aalborg, taken from [1].

Layout of Lyngby, taken from [12].

18

	Safe and Time-Optimal Control for Railway Games

