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Abstract. In LTL model checking, a system model is synchronized us-
ing the product construction with Bilichi automaton representing all runs
that invalidate a given LTL formula. An existence of a run with infinitely
many occurrences of an accepting state in the product automaton then
provides a counter-example to the validity of the LTL formula. Classical
partial order reduction methods for LTL model checking allow to consid-
erably prune the searchable state space, however, the majority of pub-
lished approaches do not use the information about the current Biichi
state in the product automaton. We demonstrate that this additional
information can be used to significantly improve the performance of ex-
isting techniques. In particular, we present a novel partial order method
based on stubborn sets and a heuristically guided search, both driven by
the information of the current state in the Biichi automaton. We imple-
ment these techniques in the model checker TAPAAL and an extensive
benchmarking on the dataset of Petri net models and LTL formulae
from the 2021 Model Checking Contest documents that the combina-
tion of the automata-driven stubborn set reduction and heuristic search
improves the state-of-the-art techniques by a significant margin.

1 Introduction

The state space explosion problem is one of the main barriers to model checking
of large systems as the number of reachable states can be exponentially larger
than the size of a high-level system description in a formalism like e.g. a Petri
net [32]. Addressing this problem has been the subject of much research, with
directions including partial order reductions [20,30,39], symbolic model check-
ing [3,8], guided searches using heuristics [14,15], and symmetry reductions [9,35].
Some system description languages afford specialized techniques in addition to
the above. For example, state space explosion of Petri nets can be addressed
with structural reductions [4,17,29].

We focus on partial order reductions, a family of techniques designed to
prune the state space search that arises from interleaving executions of con-
currently running system components. An important category of partial order
reduction techniques are the ample set [30], persistent set [20], and in particu-
lar the stubborn set methods [40] which are the main focus of the paper. The
goal of the techniques is, given a specific state, to determine a subset of actions
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to explore such that all representative executions are preserved with respect to
the desired property. Partial order reduction techniques are supported in several
well-established tools, e.g. TAPAAL [11], LoLA 2 [44], and Spin [22], and have
proven to be useful in practice [4,23,26].

The main approach to Linear Temporal Logic (LTL) model checking [33] is
based on a translation of the negation of an LTL formula into a Nondetermin-
istic Blichi Automaton (NBA) and then synchronizing it with the system being
verified. The goal is then to find a reachable accepting cycle in the synchronized
product. While much research has been done on optimizing the construction of
NBAs [1,16,43], and on the state space reductions described above, only few
state space techniques take the Biichi automaton into account. For example, the
classical next-free LTL preserving partial order method by Valmari [40] is based
only on the syntax of the formula and is completely agnostic to the choice of ver-
ification algorithm and the Biichi state in the product automaton [41]. Some of
the work done within the field of stubborn sets includes a specialized, automata-
driven approach for a subclass of LTL formulae called simple LTL formulae [26],
and more recently Liebke [27] introduced an automaton-based stubborn set ap-
proach for the full LTL logic. While his method is theoretically interesting, no
implementation and experimental evaluation is available yet.

During the state-space exploration, the choice of which successor state to be
explored first, has a large impact on the performance of depth-first algorithms
for LTL model checking such as Nested Depth First Search (NDFS) [10] and
Tarjan’s algorithm [18]. A poor choice of successor can cause a lot of time to be
wasted by exploring executions where accepting cycles do not exist. A way of
addressing this problem is by using heuristics to guide the search in a direction
that is more likely to be relevant for the given property. Previous work in this
direction includes [13,14] in which A* is used as a search algorithm with heuris-
tics based on finite state machine representations, and [24] presents a best-first
search algorithm using a syntax-driven heuristic, both focusing on reachability
properties. To the best of our knowledge, heuristic search techniques for LTL
and in particular based on the information of the current Biichi state, have not
yet been systematically explored.

We contribute with a novel automata-driven stubborn set partial order
method and automata-driven heuristics for guided search for model checking
of LTL formulae on Petri nets. The stubborn set method is a nontrivial exten-
sion of the stubborn set technique for reachability analysis presented in [4]. This
new method looks at the local structure of the NBA and considers as stubborn
all actions that can cause the change of NBA state. The guided search is based
on the heuristics of [24] describing the distance between a state (marking) and
the satisfaction of a formula. We extend this method such that in nonaccepting
NBA states we estimate the distance to possible accepting states where we can
progress. Common to our techniques is the desire to leave nonaccepting NBA
states as quickly as possible in order to find an accepting state earlier than
otherwise.
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We provide an implementation of these techniques as an extension of the
open-source engine verifypn [24] used in the model checker TAPAAL [11]. We
evaluate its performance using the LTL dataset of the 2021 edition of the Model
Checking Contest (MCC) [25] and compare it to the baseline LTL model checker
implementing the Tarjan’s algorithm [18], as well as the classical stubborn set
method of Valmari [40,41] and the most recent automata-driven partial order
technique of Liebke [27]. We implemented all these approaches in the TAPAAL
framework and conclude that while the Valmari’s as well as Liebke’s method
considerably improve the performance of the baseline Tarjan’s algorithm (and
Liebke’s approach is performing in general better than the classical reduction),
our automata-driven approach improves the performance a degree further, in
particular when combined with the heuristic search. Finally, we compare our
implementation with the ITS-Tools model checker [38] that scored second after
TAPAAL at the 2021 Model Checking Contest [25]. We conclude that while ITS-
Tools solves 87.8% of all LTL queries in the benchmark, our tool with automata-
driven partial order reduction and heuristic search answers 94% of all queries.

Related Work. Stubborn set methods have been applied to a wide range of prob-
lems outside of the previously mentioned work. In [34] stubborn set methods are
presented for many Petri net properties such as home marking or transition live-
ness among others. There are also reachability-preserving stubborn sets for timed
systems [6,21] and more recently for timed games [7]. Regarding LTL model
checking, the classical approaches for partial order reduction by Valmari [40,41]
do not consider the Biichi state that is a part of the product system where we
search for an accepting cycle. The initial work by Peled, Valmari and Kokkari-
nen [31] on automata-driven reduction received only little attention but it was
recently revived by Liebke [27] for the use in LTL model checking, based on the
insight from [26]. Liebke’s idea is to design a stubborn set reduction so that se-
quences of non-stubborn actions cannot change the current Biichi state, allowing
him to weaken and drop some requirements used in the classical partial order
approach for LTL. Even though theoretically promising, the approach has not
yet been implemented and experimentally evaluated. While our method relies on
similar ideas as [27], the approaches differ in how we handle the looping formula
of Biichi states: Liebke’s method introduces more stubborn actions related to
the looping formula whereas our method only adds stubborn actions for the for-
mulae that change Biichi state (and possibly for the implicit formula leading to
a sink state). We moreover implement both the classical and Liebke’s techniques
and compare them to our approach on a large benchmark of LTL formulae for
Petri net model.

In [14] guided search strategies for LTL model checking using variants of A*
search are presented. Their guided search addresses situation where an accepting
state has been found and a cycle needs to be closed, in contrast with the heuristics
in our work that guides the search towards any form of state change in the NBA.
The work in [14] assumes that individual (fixed number of) processes are given
as finite state machines, an approach that is less general than Petri nets. Another
approach to guided search is presented in [36] where state equations are used to
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guide the search, but it has not yet been extended to LTL model checking and it
is computationally more demanding. In contrast, we emphasize simple heuristics
that are faster to compute and efficient on a large number of models.

2 Preliminaries

We now define basic concepts of LTL model checking and recall the Petri net
model. Let N° denote the natural numbers including zero and let oo be such
that z < oo for all z € N°. By # and ff we denote true and false, respectively.

2.1 Labelled Transition Systems

Let AP be a fixed set of atomic propositions. A Labelled Transition System
(LTS) with propositions is a tuple T = (S, X, —, L, sg) where

— S is a set of states,

— XY is a finite set of actions,

— = C S x XY x Sis a transition relation,
— L: 8 — 247 is a labelling function, and
— 59 € S is a designated initial state.

We write s = s if (s,a,8') € —, and s — ' if there exists a such that
s % 5. We write s = s where ¢ is the empty string, and s — s’ if s = s” and
s" % s where « € ¥ and w € X*. For s € S, if no state s’ exists such that
s — s, we call s a deadlock state, written s /4, and if s is not a deadlock state
we write s —. We use —* to denote the reflexive and transitive closure of —.
We say that o is enabled in s, written s —, if there exists s’ such that s = s/,
and the set of all enabled actions in s is denoted en(s) = {a € ¥ | s =}. For
any a € AP we say that s satisfies a, written s = a, if a € L(s), and define
[a] = {s € S| s = a} to be the set of states satisfying a.

Let T = (S,X,—,L,sp) be an LTS. A run 7 in T is an infinite sequence
of states sjss... such that for all i > 1, either s; — s;41 or s; is a deadlock
state and s;4; = s;. An infinite run ™ = s155... induces an infinite word o, =
L(s1)L(s2) ... € (247)”. We define Runs(s) as the set of runs starting in s, and
Runs(7) = Runs(sg) where sq is the initial state of 7. We define the language
of s as L(s) = {o, € (247)* | 7 € Runs(s)}. For a word o = AgA; ... we define
o' = A;A;11 ... to be the ith suffix of o for i > 0.

2.2 Linear Temporal Logic
The syntax of Linear Temporal Logic (LTL) [33] is given by

e,z n=alpi A2 | @1 Vs | o1 | For | Gor | Xer | @1 U pg

where ¢1 and o range over LTL formulae and a € AP ranges over atomic
propositions. An infinite word o = AgA; ... € (247)" satisfies an LTL formula
o, written o |= ¢, according to the following inductive definition:
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cEa <= a€ i
clEPIAp < o ando =g
cEPIVyy < ol oro kg
o E @1 <= not o ¢
clFp, <= 3i>0.0' =
ocEGp <= Vi>0.0' = ¢
cEXp = o' Ep
clEpiUpy <= 3j>0.0' Epyand Vi€ {0,1,...,5 —1}.0" = ¢

Let T = (S,X,—, L, sp) be an LTS. For a state s € S, we say that s = ¢ if
and only if for all words o € L(s) we have o |= ¢, and we say that 7 |= ¢ if and
only if 5o | .

Ezample 1. Figure la illustrates an LTS T = (S, X, —, L, sg) with the set of
actions X' = {a, 8} and the set of atomic propositions AP = {a,b}. The initial
state sg satisfies the formula FG(—aVb) as every infinite run either loops between

so and s (and then satisfies G—a already from the initial state) or it loops in s3
(and then it satisfies FGD).

2.3 Nondeterministic Biichi Automata

The standard approach for verifying whether s |= ¢ for some state s and LTL
formula ¢ seeks to find a counterexample to ¢ in the system synchronized with a
Nondeterministic Biichi Automaton (NBA) equivalent to = (see e.g. [2]). Before
we define NBA, we introduce a logics for the propositions we may find as guards
in the NBA. We let B(AP) denote the set of propositions over the set of atomic
propositions AP, given by the grammar

b17b2222#|ﬁ|a|b1/\b2|b1\/b2|ﬁb1

where a € AP and by, by € B(AP). We define satisfaction of a proposition b by
a set of atomic propositions A C AP, written A |= b, inductively as:
AEt
A ff
AEa <= ac A
A}:bl/\bg e A':bl andA':bg
A’:bl\/bg < A):bl OI'A':bg
A ': b — A 175 b, .
For a proposition b € B(AP) and an LTS state s € S, we write s = bif L(s) = b.

We let the denotation of a proposition be the set of sets of atomic propositions
given by [b] = {4 € 247 | A = b}. We also write by = by iff [b1] = [b2].
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Fig. 1: Example LTS 7 and NBA A-fca; 7 [~ FGa due to the accepting cycle
({505 90)(s1,90))* in T ® A-Fea-

A Nondeterministic Biichi Automaton (NBA) is a tuple A = (Q,0,Qo, F)
where

— (@ is a set of states,

— 0 CQ x B(AP) x Q is a transition relation such that for each ¢ € Q, there
exist only finitely many b € B(AP) and ¢’ € Q such that (¢,b,q") € 4,

— Qo C @ is a finite set of initial states, and

— F C (@ is a set of accepting states.

We write ¢ LN q if (g,b,q') € 6. We consider only NBAs in a normal form so
that for any pair of states ¢,¢' € Q, if ¢ 5 ¢ and ¢ LR ¢’ then b = ¥'. This
normal form can be ensured by merging the transitions ¢ LN ¢ and ¢ LN ¢’ into
a single transition ¢ % q'. For a state ¢ € Q we define the set of progressing
propositions as Prog(q) = {b € B(AP) | ¢ Ly ¢ for some ¢’ € Q \ {¢}}, and the

retarding proposition as Ret(q) = b € B(AP) such that ¢ b qor Ret(q) = ff if
no such b exists.

Let 0 = AgA;... € (24F)* be an infinite word. We say that an NBA A
accepts o if and only if there exists an infinite sequence of states qpq; ... such
that

- qo € Qo,
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-a

Fig.2: NBA A, where ¢ = ((Ga) U (Fa)) V b with complex edge propositions

— g by ¢i+1 and A; E b; for all ¢ > 0, and
— q; € F for infinitely many ¢ > 0.

The language of an NBA A is £(A) = {0 € (247)” | A accepts o}.
Automata-based model checking of LTL formulae is possible due to the fol-
lowing well-known result.

Theorem 1 [2]. Let ¢ be an LTL formula. There exists an NBA A, with finitely
many states such that L(Ay) = L(p).

Ezample 2. Figure 2 shows an NBA equivalent to the formula ((Ga) U (Fa)) V b.
The set of progressing propositions from ¢g is Prog(qo) = {a Vb, ma A—b}, and it
has the retarding proposition ff.The set of progressing propositions of ¢; is the
singleton set Prog(q1) = {a}, and the retarding proposition is Ret(q1) = —a.

From Theorem 1 we know that any infinite word o that satisfies ¢ must be
accepted by A, and vice versa. Recall that an LTS T = (S, X, —, L, s¢) satisfies
@ if and only if for all ¢ € L(sg) we have o |= ¢. Conversely, if there exists a
word o € L(sg) such that o = ¢ then T [~ ¢, and o is accepted by A-,. We
therefore synchronize 7" with A, and look for counterexamples.

Definition 1 (Product). Let 7 = (S,X,—,L,s0) be an LTS and let
A = (Q,0,Q0,F) be an NBA. Then the product T @ A = (Q',0,Qf, F') is
an NBA such that

- Q' =5%Q,

— (s,q) LN (s',q") if either s — s' or s is a deadlock and s = s, and q LN q
for some b € B(AP) s.t. s =0,

- Qb ={(s0,9) € Q" | Jq € Qo - KN q for some b € B(AP) s.t. so = b}, and
- F'={(s,9) €Q |q€ F}.

The following theorem states the key property of the product construction.
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Theorem 2 [2]. Let T be an LTS with initial state so, ¢ be an LTL formula
and A-, be an NBA such that L(A-,) = L(—p). Then so = ¢ if and only if
L(T ® A-p) =0.

In other words, the product construction is suitable for verifying whether
T E ¢. The model checking procedure consists of constructing the product
T ® A-, and searching for accepting runs. In practice this becomes a search for
reachable cycles containing accepting states, since such cycles generate infinite
accepting runs. We use a specialized variant of Tarjan’s connected component
algorithm described in [18] for checking the emptiness of the product automaton.

Ezxample 3. The LTS T depicted in Figure 1a does not satisfy the LTL formula
FGa. In order to show this, Figure 1b depicts the NBA A_fg, equivalent to
the LTL formula —FGa, and Figure 1c shows the reachable part of the product
T ® A_fgq. Since the looping run ((sg, qo){s1,q0))* visits the accepting state
(80, qo) infinitely often, we can conclude that 7 [~ FGa, and the run (sps1)“ can
be used as a diagnostic counterexample.

2.4 Petri Nets

A Petri net (with inhibitor arcs) is a 4-tuple N = (P, T, W, I) where

— P is a finite set of places,

— T is a finite set of transitions such that PNT = 0,

W (P xT)U(T x P) — N is the arc weight function, and
I:(PxT)— NU{oo} is the inhibitor arc weight function.

A marking is a function M : P — N° assigning to each place a number of
tokens. We write M(N) to denote the set of all markings of Petri net N. The
semantics of a Petri net N = (P,T,W,I) is given by the transition relation

between markings such that M L M if for all p € P we have M(p) > W (p,t),
M(p) < I(p,t), and M'(p) = M(p) — W(p,t) + W(t,p).

For x € PUT, we write *xz to mean {y € TU P | W(y,z) > 0}, called
the preset, and z* to mean {y € TU P | W(z,y) > 0}, called the postset.
We straightforwardly extend this to sets X C T and X C P such that *X =
U,ex *z and X® = J, x 2°. For a place p € P we define the increasing preset
of pas tp = {t € *p | W(t,p) > W(p,t)}, and the decreasing postset of p as
p- ={t €p® | W(t,p) < W(p,t)}. The inhibitor postset of p € P is p° = {t €
T | I(p,t) < oo} and the inhibitor preset of t € T is °t = {p € P | I(p,t) < oo}

A net N = (P, T,W,I) gives rise to an LTS T = (M(N),T,—, L, My) where
My is a designated initial marking and the set AP of atomic propositions is
formed by the grammar

az=t|eXey

ex=plclerDey
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where t € T,p€ P,ce N0, e {<,<,#,=,>,>}, and @ € {-,+,—}. Given
a Petri net N = (P, T, W, 1), the satisfaction of a marking M € M(N) of an
atomic proposition a € AP is given by

M=tiff M5

M = eq xeq iff evalps(er) xievalps(es)

and where evaly(p) = M(p), evaly(c) = ¢ and evalys(e; @ ex) = evalpy(er) @
evalps(ea).

For t € T, the fireability proposition ¢ can be rewritten into the cardinality
proposition A c.;(p > W(p,t)) AN co;(p < I(p,t)) requiring that all pre-places
of t are sufficiently marked and no inhibitor arc of ¢ is sufficiently marked. In
the following, we assume that all propositions are cardinality propositions.

3 Automata-Guided Partial Order Reduction

Partial order reductions are techniques that address the state space explosion
problem by reducing the number of interleavings of concurrent actions and
exploring only their representative permutations; this can result in exponen-
tial reductions in the size of the state space (see e.g. [40,42]). We shall now
present our approach improving the classical stubborn set partial order tech-
nique [40,41] for LTL without the next operator. We adapt and extend the
ideas of the reachability-preserving stubborn set construction from [34,4,7] to
automata-driven technique for the full LTL logic. First, we prove the formal cor-
rectness of the method on the low level formalism of labelled transition systems
and later on we specialize it to Petri nets.

3.1 Automata-Driven Stubborn Set Method for LTL

The basic idea of our approach is to apply the reachability-preserving stub-
born set method from [34,4,7], where the reachability problem is the proposition
\/beprog(q) b for Biichi state ¢. In order to make this work for the full LTL logic,
we have to do further considerations.

In the rest of this section, let Sink(q) = —(Vyepyog(q) 0 V Ret(q)) be the sink
state proposition. We note that (Vieprog(q)b) VRet(q) v Sink(q) = # for any Biichi
state ¢. In order to preserve correctness of the method for LTL, we require that
our stubborn sets do not contain unsafe actions, which are actions that can cause
some progressing proposition to become satisfied.

Definition 2 (Safe action). Let T = (S, X, —, L, sq) be an LTS and let A =
(Q,9,Q0, F) be an NBA. For a state s € S and proposition b € B(AP), a set
Safe(s,b) C X is safe wrt. b if for all a € Safe(s,b) and all w € (X\ {a})*,
if s 2 s, s 2% 5, and s’ W~ b, then s” [~ b. For states s € S and q € Q,
a set Safe(s,q) C X is safe wrt. q if Safe(s,b) C Safe(s,q) for all propositions
b € Prog(q) U {Sink(q)}. Actions from the set Safe(s,q) are called safe in the
product state (s,q).
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The property of a safe action « is that if in a state s of an LTS we execute
a sequence of actions w after which we do not satisfy b then executing « first
followed by w does not satisfy b either. In particular, when w is empty, if s |~ b
and 5 = &', then s’ [~ b. The idea of safe actions is inspired by a stubborn set
technique for games [7] but adapted to our LTL model checking problem.

The main characteristics of our automata-driven method is that the partial
order reduction no longer only depends on the current LTS state, but we also
consider the NBA state we are in at the moment. For this reason, we formally
define a reduction on the product state space.

Definition 3 (Product reduction). Let T = (S, X, —, L, s9) be an LTS and
A=(Q,0,Qo, F) be an NBA. A product reduction is a function St : SxQ — 2% .
Let T ®g4 A be the reduced product of the product T ® A restricted by St such
that (s,q) —st (s',¢") in T ®s¢ A if and only if (s,q) — (s',¢) in T ® A and
s % s for some o € St(s,q).

We can now present the list of axioms required by our stubborn set method
for LTL model checking.

Definition 4 (Axioms on product reduction). Let T = (S, X, —, L, sg) be
an LTS, A= (Q,6,Qo, F) be an NBA and let St : S x Q — 2% be a product re-
duction. The following four azioms are defined as follows (universally quantified
foralls € S and all g € Q):

=7 \F L.y

COM If a € St(s,q) and a1, q,...,an, € St(s,q) and s Z="% ' then
g 2Hdng o

R Ifay...apn € St(s,q)* and for allb € Prog(q) we have s [~ b then s ~2=2 o/
implies that s' = b for all b € Prog(q).

SAFE Fither en(s) N St(s,q) C Safe(s,q) and s & b for all propositions b €
Prog(q) U {Sink(q)}, or St(s,q) = X.

KEY Ifen(s) # 0 and q € F, then there is some key action ouey € St(s,q)

Qkey

such that whenever s “2=%"s s for ay,...,a, € St(s, q)* then s, —.

Axioms COM and R are adapted from the standard reachability-preserving
stubborn set methods, see e.g. [4,34], and made sensitive to preserve at least one
execution (under the stubborn actions from the set St(s, q)) to each configuration
where some of the progressing formulae becomes enabled. The axiom SAFE
ensures that we do not prune any outgoing transition (St(s,q) = X) if some
unsafe stubborn action is enabled or if some progressing proposition is already
satisfied. Note that while the sink state proposition is important for the axiom
SAFE, it is not important for R. Finally, the axiom KEY asserts that there
is a key stubborn action in accepting Biichi states, ensuring that we preserve at
least one infinite accepting run.

We are now ready to prove the main correctness theorem for our stubborn
set method for LTL model checking.
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Theorem 3. Let T = (S, X, —, L, sq) be an LTS, A= (Q,6,Qo, F) be an NBA,
St : S xQ — 2% be a product reduction satisfying COM, R, SAFE, and KEY,
and T ®g¢ A be the reduced state space of T QA given by St. Then T @A contains
an accepting run if and only if T ®g¢ A contains an accepting run.

3.2 Stubborn Sets for LTL Model Checking on Petri Nets

We now present a syntax-driven method for efficiently computing stubborn sets
for markings in a Petri net. We start by defining a COM-saturated set of Petri
net transitions, using the increasing presets and decreasing postsets of transitions
(see also [4]).

Definition 5 (COM-saturation). Let N = (P,T,W,I) be a Petri net and
M € M(N) be a marking. We say that a set T" C T is COM-saturated in M if

1. forallt €T, if M L then
— for all p € *t where t € p~ we have p®* CT’, and
— for all p € t* where t € Tp we have p° C T, and
2. forallteT, if M 72> then
— there exists a p € *t such that M(p) < W(p,t) and Tp CT’, or
— there exists a p € °t such that M (p) > I(p,t) and p— CT'.

Intuitively, Condition 1 requires that if ¢ is enabled and decreases the number
of tokens in the place p € *t, then any ¢’ that has p as a pre-place, i.e. p € *tN°¢’,
is in conflict with ¢ since ¢ can disable ' and must be a part of the set T". Likewise
if ¢t increases the number of tokens in a place p with outgoing inhibitor arcs, the
transitions inhibited by p are also in conflict with ¢ and must be a part of T".
Condition 2 states that a transition ¢’ that can cause a disabled transition ¢ to
become enabled cannot be commuted with ¢ and must be added to T”. This is
the case if either ¢’ adds tokens to some insufficiently marked pre-place p € *t or
if ¢ removes tokens from a sufficiently marked place p € °t that has an inhibitor
arc to t.

The following lemma states that transitions from a COM-saturated set 7"
can be commuted with any sequence of transitions that are not in 7", or in
other words that T satisfies the COM axiom. The lemma moreover shows that
an enabled stubborn transition cannot be disabled by firing any sequence of
nonstubborn transitions.

Lemma 1. Let N = (P,T,W,I) be a Petri net, let M € M(N) be a marking
and let T" C T be COM-saturated in M. For allt € T' and all tq,...,t, € T\T'

a) if M Dbl AL then M 2t MY and
b) if M Lt M and M L then M' L.
The conditions in Definition 5 give rise to a straightforward closure algo-

rithm that starting from some set of transitions 7" iteratively includes additional
transitions as required by Conditions 1 and 2 until the set of transitions gets
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saturated, however, due to the choice of the place p in Condition 2, it is not
guaranteed that we always get the same COM-saturated set.

The next definition of increasing and decreasing transitions of an arithmetic
expression is needed for constructing safe stubborn sets and for axiom R.

Definition 6 (Increasing/decreasing transitions). Let N = (P, T, W, I) be
a Petri net and let e € E be an arithmetic expression. The sets of increasing
transitions incr(e) and decreasing transitions decr(e) are recursively defined by:
incr(p) = Tp, decr(p) = p~, incr(c) = decr(c) = @, incr(e; + ez) = incr(er) U
incr(ez), decr(e; + e2) = decr(ey) Udecr(eg), incr(e; — ez) = incr(ey) U decr(ez),
decr(e; — e2) = decr(ey) U incr(es), decr(e; - e2) = incr(ey - e3) = incr(e;) U
incr(ez) U decr(eq) U decr(eq).

The sets incr(e) and decr(e) contain all transitions that can possibly increase,
resp. decrease the value of the expression e € F; this is formalized as follows.

Lemma 2 [4]. Let N = (P,T,W,I) be a Petri net, let e € E be an expression,

and let M, M’ € M(N) be markings such that M LAESING V] forty,....t, €T.
If evalyr(e) < evalpss(€) then there is i such that t; € incr(e), and if evalp(e) >
evalyss(e) then there is @ such that t; € decr(e).

In order to preserve the axiom SAFE, we shall define the notion of strictly
interesting transitions, i.e. those transitions that have the potential to change
a value of a given Boolean combination of atomic propositions. The purpose of
the set of strictly interesting transitions AL given in the following definition is
to efficiently compute syntactic over-approximations of all unsafe transitions in
a marking M.

Definition 7 (Strictly interesting transitions). Let N = (P,T,W,I) be a
Petri net and let b € B(AP) be a proposition. For a marking M € M(N) the
set A7, (b) C T of strictly interesting transitions of b is defined as

AR, () = A3 () =0
Al (e1 < e2) = Af(e1 < eg) = decr(er) Uiner(es)
Al (e1 > e2) = Af(e1 > ea) = incr(er) U decr(es)

A} (er = e2)

decr(ey) Uincr(eg) if evalps(er) > evalps(ez)
incr(eq) Udecr(eg) if evalps(er) < evalps(ez)

Al (e1 # ez) = incr(e;) U decr(ez) U decr(eq) Uiner(es)
AX/[(bl V bg) = A+(b1 VAN bz) = AX/[(bl) @] Axf(bg)

Af(=(er < eg)) = Afy(er > e) AT (=(e1 < ea)) = Af (er > e)
Ajr(=(er > e2)) = Aysler < e2) Ajr(=(er > e2)) = Ajy(er < e2)
Afr(=(er = e2)) = Aj (er # e2) Afr(—(e1 # e2)) = Afy(er = e2)
A"A'/[(—\(bl Aby)) = AL(ﬂbl V —bs) Aﬁ(ﬂ(bl Vby)) = A-}\;[(_‘bl A —bg)
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Lemma 3. Let N = (P,T,W,I) be a Petri net and b € B(AP) be a proposition.
Then for any marking M € M(N) where M = b, the set T'\ A}, (b) is safe wrt.
b, i.e. for any t ¢ AL, (b) and any w € (T\ {t})*, if M > M', M 5 M, and
M’ £ b, then M W= b.

In order to satisfy axiom R, we can define a weaker notion of interesting
transitions as used in [4].

Definition 8 (Interesting transitions). Let N = (P,T,W,I) be a Petri net
and let b € B(AP) be a proposition. For a marking M € M(N) the set Ap(b) C
T of interesting transitions of b is defined inductively as Apr(b) =0 if M = b,
and otherwise

Apr(b;)  for some i where M [~ b; if b= by A by
Am(d) =4 [} .

Ay (b)  otherwise.
Lemma 4 [4]. Let N = (P,T,W,I) be a Petri net, let M € M(N) be a marking,
and let b € B(AP) be a proposition. If M = b and M > M’ for some w €
Ay (D), then M’ b b.

We now state our main theorem that allows for a syntax-driven implemen-
tation of automata-driven stubborn set reduction for full LTL on Petri nets.

Theorem 4. Let N = (P,T,W,I) be a Petri net, A = (Q,0,Qo,F) be an
NBA, and St : M(N) x Q — 2T be a product reduction that for all markings
M € M(N) and states q € Q satisfies

1. St(M,q) is a COM-saturated set in M, and

2. Upeprog(q) Am (b) € St(M, q), and

3. either en(M) N St(M,q) € T\ Af;(b) and M £ b for all b € Prog(q) U
{Sink(q)}, or St(M,q) =T, and

4. ifen(M) # 0 and q € F then en(M) N St(M,q) # 0.

Then St satisfies the axioms COM, R, SAFE and KEY.

Proof. By Lemma 3, Condition 3 ensures axiom SAFE. By Lemma 4, Condi-
tion 2 ensures R, and by Lemma 1 part a) our Condition 1 ensures COM. Con-
dition 4 ensures KEY by Lemma 1 part b) as St(M, q) is COM-saturated. [

Hence by Theorem 3, any reduction satisfying the conditions of Theorem 4 is
LTL-preserving stubborn set reduction. The theorem also provides an algorith-
mic way to generate the LTL-preserving stubborn set St(M, q). First, if some
progressing proposition b € Prog(q) U {Sink(q)} is satisfied by M, then the set
of all transitions is returned. Otherwise, the COM-saturation algorithm is run
on Aps(b) for b € Prog(q) to obtain a stubborn set satisfying COM and R. To
ensure SAFE is satisfied, the resulting stubborn set is checked for whether there
is any overlap with enabled strictly interesting transitions, in which case the set
of all transitions is returned, otherwise the computed stubborn set is returned.
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N |
l ps>1
p (O (v)

(a) Petri net (b) NBA

Fig. 3: Example of our stubborn set method applied to Petri nets

If g € F and en(M) N St(M,q) = 0, an arbitrary enabled transition is added to
St(M, q) to ensure KEY is not violated, and the previous checks for COM and
SAFE are repeated.

Ezample 4. We shall now give an example of the computation of a stubborn set
for the Petri net shown in Figure 3a (here we use the classical graphical notation
for Petri nets where circles represent places and rectangles transitions; the default
weight of all arcs is 1) and the NBA in Figure 3b. In the initial marking M,
the enabled transitions are en(My) = {t1,t2,t4}. When computing the stubborn
set St(My, q1) we note that the progressing formula py > 1 is not satisfied, and
the sink formula is ff, so a reduction is possible. First, we determine the set of
interesting transitions

Ay (pa > 1) = incr(pg) Udecr(1) = {3} U0 = {t3} .

Next, we determine a COM-saturated set that contains ¢3 which turns out to be
St(Mo, q1) = {t1,t2,t3}. We now ensure that none of the enabled transitions in
this set are strictly interesting. Indeed, the only interesting transition t3 is not
enabled, thus en(My) N St(My,q1) C T\ ALO (ps > 1) and therefore SAFE is
satisfied. We can so conclude that St(My,q1) = {t1,%2,t3} is a valid stubborn
set. Since the enabled transition ¢4 is not in the stubborn set, we avoid exploring
the interleavings with the transition t4, reducing the size of the state space that
we search.

4 Automata-Driven Guided Search

When performing explicit state model checking using depth-first search algo-
rithms, such as the on-the-fly variant of Tarjan’s algorithm [18,37] used for LTL
model checking, the order in which we explore the successors may significantly
influence how fast we can find an accepting cycle and possibly avoid exploring
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dist(M, Qyp, negated) = dist
dist(M, Gy, negated) = dist
dist(M, ¢1 U @2, negated) = dist(M, p2, negated)
dist(M, ¢, negated) = dist(M, p, “negated)

) M, p,negated), if Q € {A,F, X}

)

)=

)
dist(M, o1 A @2, ff) = dist(M, 1, ff) + dist(M, @2, ff)

I =

) =

) =

)=

(
(

M, p, negated)

dist(M, 1 V @2, in(dist(M, ¢1, ff), dist(M, @2, f))

dist(M, o1 A @2, (dist(M, o1, tt), dist (M, pa, tt))

dist(M, p1 V @2, dist(M, o1, tt) + dist(M, po, t)
dist(M, e1 < ez, negated A(>q, evalas(e1), evalas(ez2), negated)

B E

1
in

for N E {<7 S7#7 :7 >7 Z}

A(=,v1,v2, ff) = |v1 — v2| A(=,v1,v2, ) = A(F,v1,v2, ff)
A 01,09 ﬁ)_{l if v1 = vo A(#,v1,v2, 1) = A=, v1,v2, ff)

T 0 otherwise A<, v1, 02, 1) = A(>, v1,v2, ff)
A(<,v1,v2, ff) = max(vi — v2 + 1,0) A(>,v1, 02, ) = A(S, 01,02, ff)
A(<, v1,v2, ff) = max(v1 — v2,0) A(S 01,02, ) = A(>, 01,02, )
A(>,v1,02, ff) = A(<, v2, 01, ff) Az, o1, 02, 1) = A(<, 01,02, ff)
A(>,v1,02, ff) = A(S, v2, 01, ff)

Fig. 4: Heuristic distance function between a marking and a LTL formula

parts of the state space where such a cycle is not present. We shall now design an
automata-driven heuristic approach that aims to guide the search to the parts
of the state space where a cycle is more likely to be present.

In a marking M, the heuristic function assigns a nonnegative number to each
M’ where M — M’ such that the markings with smaller numbers are explored
first as they are believed to be more likely to lead us to an accepting cycle.

We first extend the distance-based heuristic for reachability [24] to the full
LTL logic. The idea of this heuristic is to provide a distance from one marking to
another by counting how many tokens must be added/removed in order to make
the two markings equal—this idea is then extended to the atomic propositions.
Our distance measure is calculated using the recursive function dist given in
Figure 4. For a Petri net N, an LTL formula ¢, and a marking M € M(N)
our heuristic function dist(M, ¢, #) returns the distance of the marking M to
satisfying the LTL formula ¢.

The following example shows that the distance-based heuristic can be already
useful by itself for guiding the state space search, even without considering the
current state in the Biichi automaton.

Ezxample 5. Consider the Petri net N in Figure 5a and the LTL formula ¢ =
=F(po > 3AXFp; > 3). We want to determine whether N = ¢. We let M; denote
the marking we reach after firing the transition ¢;. Then dist(My, ¢, #) = 4,
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ta p1 t1 Po to p2
HO—1—¢_F—O

(a) Petri net

—po > 3 -p1 >3 t

(b) NBA corresponding to the LTL formula F(po > 3 A XFp1 > 3)

Fig. 5: Example system where heuristics are advantageous when considering the
LTL formula ¢ = =F(py > 3 A XFp; > 3).

dist(My, @, tt) = 4, and dist(Ma, ¢, #t) = 3. The heuristic prioritises to first follow
the transition ¢5, leading us one step closer to satisfying Fp; > 3. Repeating the
procedure, after three additional firings of to, we end up in a marking with
M (p1) = 4 where we satisfy the LTL formula.

As a next step, we use the distance metrics to design a more efficient
automata-driven heuristic technique that takes the current Biichi state into
consideration. Instead of looking at the entire LTL formula, we consider the
progressing formulae of the current state in the NBA. The main idea of this
approach is that if we are not in an accepting state then we try to leave the
current state as fast as possible in order to move closer to an accepting Biichi
state. As such, we prioritise transitions that are more likely to enable progressing
formulae, including the consideration how far is the resulting NBA state from
some accepting state.

Let N be a Petri net, 7 = (M(N),T, —, L, My) be an LTS, A = (Q, 0, Qo, F)
be an NBA, and for ¢ € @ let BFS(g) be the shortest path distance from ¢ to
some ¢’ € F (if ¢ € F then BFS(g) = 0). Then given a state (M,q) in T ® A
where ¢ ¢ F, we calculate the heuristic for each successor marking M’ of M as

the minimum of (1 + BFS(¢')) - dist(M’, b, ff) over all ¢ € Q where ¢ LN q.

Ezxample 6. Let us again consider the Petri net in Figure 5a, and the NBA cor-
responding to -, presented in Figure 5b. In the product construction given in
Definition 1, we create the initial Biichi states of the product state space; as the
initial marking satisfies the progressing proposition py > 3 but not the retarding
proposition —pg > 3, there is only one initial product state (where the Biichi au-
tomaton is in the state ¢1). Now we calculate the heuristic value where, as before,
M; is the marking resulting from firing the transition ¢;. There is only one pro-
gressing proposition, so the heuristic value is given by (1+BFS(q;))-dist(M;, p1 >
3, ff). This gives the values 2-dist(My, p1 > 3, ff) = 8, 2-dist(M1,p1 > 3, ff) =0,
and 2 - dist(Maz,p1 > 3, ff) = 6 for the transitions tg, t; and t9, respectively. The
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transition with the highest priority is ¢; which immediately leads to a marking
satisfying p; > 3 and we move to the accepting state. This illustrates the ad-
vantage of automata-driven heuristics over the distance-based one relying on the
whole LTL formula, namely that it can disregard parts of the formula that are
not relevant at the moment.

5 Experimental Evaluation

We shall now evaluate the performance of our automata-driven techniques for
partial order reduction and guided search on the benchmark of Petri net mod-
els and LTL formulae from the 2021 edition of the Model Checking Contest
(MCC) [25]. The benchmark consists of 1181 P/T nets modelling academic and
industrial use cases, each with 32 LTL formulae split evenly between cardinality
formulae and fireability formulae. This gives a total of 37792 queries for our
evaluation, each executed with 15 min timeout and 16 GiB of available memory
on one core of an AMD Opteron 6376 processor.

We implemented our automata-driven techniques described in this paper
as an extension of the verification engine verifypn [24] that is a part of the
TAPAAL model checker [11]. Our LTL engine uses version 2.9.6 of the Spot
library [12] for translating LTL formulae into NBAs, and a derivative of Tarjan’s
algorithm [18,37] for searching for accepting cycles. To speed up the verification,
we also employ the query simplifications from [5] and most of the structural
reductions from [4]. We moreover implemented within the verifypn engine the
classical partial order reduction of Valmari [40,41] (referred to as Classic POR)
as well as the automata-based reduction of Liebke [27] (referred to as Liebke
POR) that has been theoretically studied but so far without any implementation
nor experimental evaluation. In our experiments, we benchmark the baseline
implementation (without any partial order reduction nor heuristic search) and
our stubborn set reduction (referred to as automata-driven POR) against Classic
POR and Liebke POR, both using the standard depth-first search as well as
our heuristic search technique (referred to as HPOR). We also provide a full
reproducibility package [19].

According to [28], the MCC benchmark contains a large number of trivial
instances that all model checkers can solve without much computation effort, as
well as instances that are too difficult for any model checker to solve. In our first
experiment, we thus selected a subset of interesting/nontrivial instances such
that our baseline implementation needed at least 30 seconds to solve them and
at least one of the methods provided an answer within 15 minutes. This selection
resulted in 3508 queries on which we evaluate the techniques.

Table 1a shows the number of answers obtained for each method without em-
ploying the heuristic search and Table 1b with heuristic search (we report here
on the automata-driven heuristics only as it provides 233 additional answers
compared to the distance-based one). The first observation is that our heuristic
search technique gives for all of the partial order methods about 20% improve-
ment in the number of answered queries. Second, while both classic and Liebke’s
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Table 1: Number of answered positive and negative queries, total number of
queries and percentage compared to number of solved queries by at least one
method (3508 in total)

(a) Partial order reductions without heuristic search

Positive Negative Total Solved

Baseline (no POR) 501 1708 2209 61.5%
Classic POR 527 1846 2373 66.1 %
Liebke POR 551 1868 2419 67.3%
Automata-driven POR 564 2004 2568 71.5%

(b) Partial order reductions with heuristic search

Positive Negative Total Solved
Baseline (heuristic) 496 2463 2959 82.4%
Classic HPOR 523 2530 3053 85.0 %
Liebke HPOR 555 2512 3067 85.4%
Automata-driven HPOR 565 2640 3205 89.2 %

partial order reduction techniques (that are essentially comparable when using
heuristic search and without it Liebke solves 1.2% more queries) provide a sig-
nificant 3-6% improvement in the number of answered queries over the baseline
(both with and without the heuristic), our method achieves up to 10% improve-
ment.

While in absolute numbers the additional points are primarily due to negative
answers (where an accepting cycle exists), we can see also a similar trend in the
increased number of positively answered queries. In general, positive answers are
expected to be harder to obtain than negative answers, as they require disproving
the existence of any counter example and hence full state space search. This
is also the reason why adding a heuristic search on top of the partial order
techniques can have a negative effect on the number of answered positive queries;
here the search order does not matter but the heuristic search method has an
overhead for computing the distance functions in every discovered marking.

Overall, while the baseline method solved only 61.5% of queries, our par-
tial order technique in combination with the automata-driven heuristic search
now answers 89.2% of queries, which is a considerable improvement and shows
that the two techniques can be applied in combination in order to increase the
verification performance.

In Figure 6 we focus for each method on the most difficult 1500 queries
from the benchmark. For each method, we independently sort the running times
(plotted on the y-axis, note the logarithmic scale) in increasing order for all
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Fig.6: Comparison of the different methods versus the baseline; on x-axis all

instances sorted by the increasing running time (independently per method); on
y-axis the running time (in seconds and logarithmic scaling)

Table 2: Number of answers in the MCC setup.

Positive Negative Total Solved

TAPAAL 9415 26219 35629 94.3%
TAPAAL (no POR, no heuristic) 9345 25 865 35210 93.2%
ITS-Tools 8395 24775 33170 87.8%

the query instances (plotted on the x-axes). Hence the plot does not provide a
running time comparison per instance (in fact there are even a few queries that
the baseline answers but not our heuristic POR method), however, it shows the
overall performance trends on the whole dataset. The plot confirms with the
general observation we made on the number of answered queries and moreover
shows that without the heuristic search (thinner lines in the left part of the plot)
Liebke’s method is in general performing faster than the classic method. The
addition of the heuristic search to the partial order reduction makes a significant
improvement, as shown by the thick curves in the right part of the plot. Here
the classic and Liebke’s have more similar performance, whereas our automata-
driven method most significantly profits from the addition of heuristic search.

Finally, in Table 2 we provide the comparison with the model checker ITS-
Tools [38] that was second after TAPAAL in the 2021 edition of the Model Check-
ing Contest [25]. In the MCC, 16 queries are verified in parallel with a 1 hour
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time out, 16 GiB memory limit and 4 available cores. The scripts that execute
the verification are taken from the available virtual machines (for the details
of the setup consult the MCC webpage!) and executed on the total of 37792
queries in the batches of 16 queries. While ITS-tools can solve 87.8% of all
queries, TAPAAL (the winner in 2021 contest) without partial order reduction
and heuristic search answers 93.2% of all queries. The addition of our automata-
driven techniques improves the score to 94.3% of answered queries, which is a
very satisfactory improvement given that the MCC benchmark contains a signif-
icant percentage of models and queries that are beyond the reach of the current
model checkers.

6 Conclusion

We presented two automata-driven techniques, stubborn set partial order reduc-
tion and a heuristic search method, for improving the performance of LTL model
checking. The common element in these methods is that we exploit the fact that
states in the product system (where we search for an accepting cycle) contain
also the information about the current state of Biichi automaton. Recent work
by Liebke [27] suggests a similar approach trying to weaken the classical LTL
axioms for partial order reduction; we instead extend the reachability-preserving
axioms to the full LTL logic. Our approach is presented first in a general way
and then specialized to the Petri net model.

We implemented both the baseline Tarjan’s algorithm for LTL model check-
ing, the classical and Liebke’s partial order reductions as well as our automata-
driven methods and compare them on a large benchmark of LTL models from
the 2021 Model Checking Contest. The conclusion is that while both the classical
and Liebke’s methods provide a significant performance improvement over the
baseline algorithm, our automata-driven partial order technique improves the
state-of-the-art techniques by another degree. Moreover, our heuristic search is
clearly beneficial in combination with all partial order methods and our current
best implementation in the tool TAPAAL beats the second best tool in the yearly
Model Checking Contest by the margin of 6.5%.

In the future work we plan to further improve the performance of our method
for example for the subclass of weak Biichi automata and extend the ideas to
other logics like CTL.

Acknowledgments. We thank to Yann Thierry-Mieg for creating the oracle
database of correct answers for queries from the model checking contest that
we used extensively for testing our implementation.
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A Proofs for Section 3 (Automata-Guided Partial Order
Reduction)

Theorem 3. Let T = (S, X, —, L, sq) be an LTS, A= (Q,0,Qo, F) be an NBA,
St : S xQ — 2% be a product reduction satisfying COM, R, SAFE, and KEY,
and T ®@gt A be the reduced state space of T®.A given by St. Then T @A contains
an accepting run if and only if T @g¢ A contains an accepting run.

Proof. “ <= ": Let m = (s0,90){s1,¢1) ... be an accepting run in the reduced
state space T ®g¢ A. If 7 contains no state (s;, ¢;) where s; is a deadlock state,
then 7 is also an accepting run in the full state space since the reduction St
can only remove some actions but does not add new ones. If 7 contains a state
(8i,¢;) where s; is a deadlock state in the reduced state space then since the
run is accepting, either (i) g; is accepting or (ii) some progressing proposition
b € Prog(g;) is satisfied by s;. In case (i) we know by axiom KEY that s; is
also a deadlock in the full state space. In case (ii) we get by axiom SAFE that
St(s;,q;) contains all actions and hence s; is also a deadlock in the full state
space. This implies that 7 is an accepting run in 7 ® A.

“ = ": Let us assume that the full state space 7 ® A contains an accepting
run 7 = (Sg,qo)($1,¢1) - . . and we shall construct an accepting run in the reduced
state space T ®g; A. If the first step in the run 7 is executable also in T ®g; A,
then we execute this step until we arrive to the first step that is not executable.
Let us so w.l.o.g. assume that the first step in 7 from (sg, go) is not executable
in T ®s¢ A, meaning that St(sp,qo) # . There are two cases, either gy ¢ F or
q € F.

— In case ¢o ¢ F, the run m must change the NBA state at some point
and no progressing proposition of gg is satisfied in sp (otherwise by ax-
iom SAFE necessarily St(sop,qo) = X which we assume is not the case).

Let w = ajas...q; € X* be a sequence of actions such that (sg,qo) —

(s1,q1) 22 .- 25 (s;,¢;) is an execution on a prefix of 7 such that ¢; # qo
and g; = qo for all 0 < j < 4. Since ¢; # qo, some s; must satisfy a pro-

gressing proposition b where ¢q i), so by axiom R there must be a stubborn
action a € St(sp,qp) in w. Let w = uav such that u € St(so,qo)* and
o € St(s,q). By axiom COM, we know that the fact sg — s > s;
implies that so = s = s % s;. Additionally, since St(sg,qo) # ¥ and
« is enabled in sg, by axiom SAFE we know that « is a safe action, so
by Definition 2 we get that s satisfies neither Sink(gg) nor any progressing
proposition of gg. Since u does not contain any stubborn actions, o was a
safe action, and s} does not satisfy any progressing proposition, by axioms
R and SAFE we know that no intermediate states along the run s} — '
satisfy any progressing proposition or sink state proposition either. By re-
peating the argument, we conclude that (sg,qo) —s¢ (s71,90) =% (s',4q0)
and we are able to extend the prefix of run 7 to be executable also in the
reduced state space T ®g: A; now from (s, go) we can repeat the arguments
in this proof on the suffix of 7.
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— In case qy € F, there are two situations. Either the NBA state changes
again during the run = (and in this situation the previous case applies and
we can extended the run as above) or it does not. Let us so assume that
T = (S0,90){51, q0){S2, o) - - . that can be executed by the sequence of actions
(50,q0) ~% (51,q0) —2 (52,q0) — --- and in case there exists an index i
such that «; € St(sp, qo), we can extend the run in the reduced state space as
shown in the previous case. Let us assume so that «; ¢ St(so, o) for all i. By
our assumption that St(sg,qo) # X and by axiom SAFE, we know that all
stubborn actions in (sg, qo) are safe and by axiom KEY we know that for an
arbitrarily long prefix aj s . . . a,, We can execute some stubborn key actions
from s,. Let a be a key action that can be executed after infinitely many
such prefixes (there must be one as there are only finitely many actions).
We claim that the run obtained by executing the actions aajas ... is also
an accepting run, implying that by repeating this process, we can obtain
an infinite accepting run also in the reduced state space 7 ®g; A. In order
to argue that the sequence of actions induces an accepting run, we need to
argue that (i) the actions ajas ... can be executed after first performing «
and that (ii) the sequence cajas... can be executed without leaving the
accepting Biichi state gg. The claim (ii) follows from the earlier observation
that all stubborn actions in (sg, go) (including the key action «) are safe.
For the sake of contradiction, assume that claim (i) does not hold. Let the
aaias ... ay be the longest sequence that can be executed, after which ay, 11
cannot be executed. However, as ajas ... is executable there must be an
index m > n such that from s,, the key action « is enabled (recall that «
is enabled infinitely many times along this sequence). However, by axiom
COM we can now commute the action a to the beginning of the sequence
and conclude that the sequence aaias .. . ay, is executable. This contradicts
our assumption that cajas ..., was the longest such sequence (note that
n < m). We have now showed that also in this case we are able to extend
the run in the reduced state space.

We are hence in any situation able to extend the given run 7 to a run in
the reduced state space, which implies to existence of an accepting run in 7 ®g;

A. O

Lemma 1. Let N = (P,T,W,I) be a Petri net, let M € M(N) be a marking
and let T" C T be COM-saturated in M. For allt € T' and allty,... t, € T\T'

a) if M Letnb AL then M 2t MY and
b) if M 2t M and M 5 then M' L.

Proof. Let us first argue for the part a) of the claim. Assume M Ditng M, SN
M’ for t € T and ty,...,t, € T\ T, and assume for the sake of contradiction
that M 2. Then there must be (i) some p € *t such M(p) < W(p,t) and
Tp C T, or (ii) some p € °t such that M(p) > I(p,t) and p~ C T".
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(i) Since M, i>, for all p where M(p) < W(p,t) some ¢; must have increased
the number of tokens in p, i.e. t; € Tp for some i < n. However, by Condition
2 we have Tp C T”, so t; ¢ Tp, hence no t; increased the number of tokens
in p. This is a contradiction.

(i) Since M, L for all p where M(p) > I(p,t) some t; must have decreased
the number of tokens in p, i.e. t; € p~. However, by Condition 2 we have
p~ CT',sot; ¢ p~, hence no t; decreased the number of tokens in p. Again,
this is a contradiction.

We can so conclude that M . Now let M % M;. We want to show that
M, Betng Ap Assume for the sake of contradiction that some t; cannot be
fired. Then there must either be a place p € *t; such that M(p) > M;(p) and
thus ¢t € p~, or some p € °t; such that M(p) < M;(p) and thus t € Tp. In the
former case, by Condition 1 we get p® C T, so since ¢; ¢ T" we have t; ¢ p®, and
in the latter case by Condition 1 we get p° C T”, so since t; ¢ T" we have t; ¢ p°.
In both cases ¢ cannot disable t;, so t; can be fired, which is a contradiction. In
conclusion, we argued that M LN M; and M, REEEING Ve

For the part b) of the claim, we assume that M 2% A7 and that ¢ is
enabled in M. Clearly, as t1,...,t, € T\T", the firing of any of the ¢; transitions
cannot disable the enabledness of t as all transitions that can possibly disable ¢
are added to the set 7" by Condition 1. O

Lemma 3. Let N = (P,T,W,I) be a Petri net and b € B(AP) be a proposition.
Then for any marking M € M(N) where M = b, the set T \ A}, (b) is safe wrt.
b, i.e. for any t ¢ A}, (b) and any w € (T'\ {t})*, if M <> M', M 2 M", and
M' V£ b, then M" £ b.

Proof. We proceed by structural induction on the proposition b. Let ¢t ¢ A}, (b)
and w € (T \ {t})*, and assume M } b, M % M’', M’ - b, and M *% M.
By induction hypothesis we assume that for any subproposition o’ of b, the fact
M’ £ b implies that M” £ b, i.e. t is safe wrt. any subproposition b’ of b.

b=e1; <eg Since M [~ b then evalpy(e;) > evalpy(ez). By the definition of
A}, we have decr(eq) U incr(eg) C A, (b), hence t ¢ decr(er) U incr(es).
Thus when M - M, by Lemma 2 we know that ¢ ¢ decr(e;) implies
evalpr(er) < evaly,(e1), and t ¢ incr(es) implies evalys(ea) > evalyy, (e2).
Hence evalys (e1) < evalpv(e1) and evalpys (e2) > evalys(e2), so since M’ j=
b we also have M" [~ b.

b=-e; <ey Analogoustob=-¢e; <ey+1.

b=e; > ey Analogous to b= ey < €.

b=e; > ey Analogous to b=es <e; + 1.

b=e; = ey Ifevaly(e1) > evalps(ez) then the argument proceeds as for e; < es.
If evalpr(e1) < evalpr(es) then the argument proceeds as for e; < e;.

b=e;1 # ey Since incr(er) Udecr(er) Uiner(ex) Udecr(ex) € A, (b), if M 5 M,
then evalyy, (e1) = evalys(e1) and evalyy, (e2) = evalps(es). Therefore M’ F£ b
implies that M" [~ b.
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b=0b; ANbs Since M’ [~ b we have M’ [~ by or M’ [~ by. By definition of AL,
the transition ¢ is not strictly interesting wrt. either of b; or by. Hence,
if M’ B~ by, by the inductive hypothesis M” [ by, and if M’ [~ by then
M F£ by. In both cases we get M" [~ by A bs.

b=0by Vby Since M’ £ bthen M’ |~ by and M’ £ by. By the induction hypoth-
esis on by and by, we get that M"” F£ by and M [~ by, implying M” B~ by Vbs.

We have thus demonstrated that if M (£ b, any transition ¢ € T'\ A}, (b) is safe
wrt. b. 0
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