
Highly Undecidable Questions for

Process Algebras ?

Petr Jan�car1 and Ji�r�� Srba2

1 Department of Computer Science, Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava - Poruba, Czech Republic

Petr.Jancar@vsb.cz

2 BRICS??, Department of Computer Science, University of Aalborg,
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

srba@brics.dk

Abstract. We show �1
1 -completeness of weak bisimilarity for PA (pro-

cess algebra), and of weak simulation preorder/equivalence for PDA
(pushdown automata), PA and PN (Petri nets). We also show �1

1 -
hardness of weak !-trace equivalence for the (sub)classes BPA (basic
process algebra) and BPP (basic parallel processes).

1 Introduction

In the area of veri�cation, the possibilities of checking behavioural equivalences
and/or preorders of systems are a natural object to study, which includes various
decidability and complexity questions. A part of research e�ort has been aimed
at bisimulation equivalence (bisimilarity) and simulation preorder, since these
had been recognized as fundamental notions. We are interested in in�nite-state
systems, for which recent surveys of results have been given, e.g., in [2, 11, 17].

The systems we study can be uniformly de�ned by means of process rewrite
systems (PRS) | see Figure 1 for the PRS-hierarchy from [14]; the second and
the third level from the bottom is the focus of our interest. We now provide
a selection of some results relevant to our paper (all references can be found
in [17]).

(Strong) bisimilarity is already well known to be decidable for the
class BPA (basic process algebra, or basic sequential processes), i.e., the
class of labelled transition systems generated by left-most derivations of
context-free grammars in Greibach normal form; the states correspond to �-
nite sequences of nonterminals which are composed sequentially and only
the �rst one, say X , can be rewritten according to a rule X

a
�! �

while emitting an action a (so for a state X� we have X�
a
�! ��).

? Both authors are partly supported by the Grant Agency of the Czech Rep., grant
No. 201/03/1161.

?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

PRS

~~
~~ @@

@@

PAD

~~
~~ @@

@@
PAN

~~
~~ @@

@@

PDA PA PN

BPA

@@@@
~~~~

BPP

@@@@
~~~~

FS

@@@@
~~~~

Fig. 1. PRS-hierarchy

Bisimilarity is also known to be decidable for
BPP (basic parallel processes); the only dif-
ference with BPA is that nonterminals are
viewed as composed in parallel, i.e., each can
be rewritten. (We can mention also the re-
cent result [10] showing the decidability for
the union of BPA and BPP.) An involved re-
sult by S�enizergues (later strengthened and
simpli�ed by Stirling) showed the decidabil-
ity even for PDA { labelled transition systems
generated by pushdown automata (where a
state (p; �) comprises a control state and
a sequence of stack symbols). For PN (la-
belled place/transition Petri nets) bisimilarity
is known to be undecidable; this even holds for the subclass PPDA (pushdown
automata with stack symbols composed in parallel), which lies strictly between
BPP and PN. For the class PA (where the right-hand sides of grammar rules can
contain a mixture of sequential and parallel compositions), the decidability ques-
tion is still open. (Strong) simulation preorder is undecidable (already) for both
BPA and BPP { as well as classical language equivalence and its modi�cation
called trace equivalence.

We can naturally ask similar questions for models with silent (internal) ac-
tions, and explore weak bisimilarity and weak simulation. Decidability of weak
bisimilarity is still open for both BPA and BPP. From [18] it is known to be
highly undecidable for PDA and PN, more precisely, complete for the level �1

1 of
the analytical hierarchy (i.e., it can be described by a formula 9X:�(: : : ; X; : : : )
where � is a �rst-order arithmetical formula containing the predicate X ; we refer
to [16] for further details about arithmetical and analytical hierarchies). For PA,
weak bisimilarity was recently proved undecidable in [19] but the absence of a
control unit seemed to prevent a reduction showing �1

1 -hardness; so this prob-
lem was left open. In fact, such questions might not seem very relevant from the
`practical' point of view, nevertheless we believe that categorizing undecidable
problems according to their degrees of undecidability is still useful for deeper
understanding of the studied problems. We can also recall the general experi-
ence that the `natural' undecidable problems (in computer science) are either
on the lowest levels of the arithmetical hierarchy or on the lowest levels of the
analytical hierarchy (see, e.g., [5]).

In this paper we succeeded in modelling a suÆcient fragment of the (missing)
�nite-control unit, which enabled us to show �1

1-completeness of weak bisimi-
larity also for PA.

We then use some modi�cations of the developed reductions to show �1
1 -

completeness of weak simulation preorder/equivalence for all the classes PDA,
PA and PN (in fact, again even for PPDA).

Weak trace preorder/equivalence is easily shown to be in �0
1 , i.e., (very) low

in the arithmetical hierarchy. This seems to contradict the experience from the



strong case (without silent actions) where the complexity increases in the direc-
tion: bisimulation { simulation { trace. We give some results indicating that when
taking in�nite traces (!-traces) into account, the mentioned `contradiction' dis-
appears; in particular we show�1

1 -hardness of weak !-trace preorder/equivalence
for both BPA and BPP.

We also show that weak regularity checking (checking if a given system is
weakly bisimilar to some �nite-state one) is `easier', by which we mean at most
hyperarithmetical, for any reasonable process algebra. Finally we add a few ob-
servations about �1

1 -completeness of branching bisimilarity for PDA and PPDA.

The last section presents a short summary of known results for weak equiv-
alences on the studied classes.

2 Basic De�nitions

A labelled transition system (LTS) is a triple (S;Act;�!) where S is a set of
states (or processes), Act is a set of labels (or actions), and �!� S�Act�S is a

transition relation; for each a 2 Act, we view
a
�! as a relation on S where �

a
�!

� i� (�; a; �) 2�!. We assume that Act contains a distinguished silent action

� . The weak transition relation =) is de�ned by
a

=)
def
= (

�
�!)�Æ

a
�! Æ(

�
�!)� for

a 2 Actr f�g, and
a

=)
def
= (

�
�!)� for a = � .

Given (S;Act;�!), a binary relation R � S � S is a weak simulation i�

for each (�; �) 2 R, a 2 Act, and �0 such that �
a
�! �0 there is �0 such that

�
a

=) �0 and (�0; �0) 2 R. A weak bisimulation is a weak simulation which is a
symmetric relation. We say that a process � is simulated by a process �, denoted
� vs �, if there is a weak simulation containing (�; �). Processes � and � are
simulation equivalent, denoted � =s �, if � vs � and � vs �. Processes � and �
are weakly bisimilar, denoted � � �, if there is a weak bisimulation containing
(�; �).

We shall use standard game-theoretic characterizations of the introduced
notions [21, 20]. A (weak) bisimulation game on a pair of processes �1 and �2
is a two-player game between `Attacker' and `Defender'. The game is played in
rounds. In each round the players change the current states �1 and �2 (initially
�1 and �2) according to the following rule:

1. Attacker chooses i 2 f1; 2g, a 2 Act and �0i 2 S such that �i
a
�! �0i .

2. Defender responds by choosing �03�i 2 S such that �3�i
a

=) �03�i.

3. States �01 and �
0

2 become the current states.

A play is a maximal sequence of pairs of states formed by the players according
to the rule described above, starting from the initial states �1 and �2. Defender
is the winner in every in�nite play. A �nite play is lost by the player who is
stuck.

A (weak) simulation game is played similarly, the only change is that Attacker
is always bound to choose i = 1 (thus playing in the \left process" only).



Proposition 1. It holds that �1 � �2 (resp. �1 vs �2) i� Defender has a
winning strategy in the bisimulation (resp. simulation) game starting from �1
and �2.

In other words, �1 6� �2 (resp. �1 6vs �2) i� Attacker has a winning strategy.

2.1 PA-processes

Let Const be a set of process constants. The class of process expressions over
Const is given by E ::= � j X j E:E j EjjE where `�' is the empty process,
X ranges over Const, `:' is the operator of sequential composition, and `jj' stands
for a parallel composition. We do not distinguish between process expressions
related by a structural congruence, which is the smallest congruence respecting
that `:' is associative, `jj' is associative and commutative, and `�' is a unit for `:'
and `jj'. We shall adopt the convention that the sequential operator binds tighter
than the parallel one. Thus, for example, X:Y jjZ means (X:Y )jjZ.

A PA process rewrite system ( (1; G)-PRS in the terminology of [14] ) � is

a �nite set of rules of the form X
a
�! E, where X 2 Const, a 2 Act and E

is a process expression. Let us denote the set of actions and the set of process
constants that appear in � as Act(�) and Const(�), respectively. (Note that
these sets are �nite).

A PA system � determines a labelled transition system where the process
expressions over Const(�) are the states and Act(�) is the set of labels. The
transition relation is the least relation satisfying the following SOS rules (recall
that `jj' is commutative):

(X
a
�! E) 2 �

X
a
�! E

E
a
�! E0

E:F
a
�! E0:F

E
a
�! E0

EjjF
a
�! E0jjF

A process constant D 2 Const(�) is called a deadlock i� � contains no rule

D
a
�! E for any E. In the usual presentation of PA it is often assumed that �

contains no deadlocks.
Later on we use the following obvious proposition:

Proposition 2. Given a PA system, if E � F then Ejj � F jj for any .

2.2 PDA, PPDA, BPA and BPP processes

Let Q = fp; q; : : :g, � = fX;Y; : : :g and Act = fa; b; : : :g be �nite sets of control
states, stack symbols and actions, respectively, such that Q\� = ; and � 2 Act
is the distinguished silent action. A PDA system (or a pushdown automaton)

� is a �nite set of rewrite rules of the type p
a
�! q� or pX

a
�! q� where

a 2 Act, p; q 2 Q, X 2 � and � 2 � �. Such a PDA system generates a labelled
transition system where Q � � � is the set of states3, Act is the set of actions,

3 We write p� instead of (p; �) 2 Q�� � where p is a control state and � is the stack
content. A state p� 2 Q� � �, where � stands for the empty stack, is written as p.



and the transition relation is de�ned by pre�x-rewriting rules: (p
a
�! q�) 2 �

( (pX
a
�! q�) 2 � ) implies p

a
�! q� ( pX

a
�! q� ) for all  2 � �.

A PPDA system (a parallel pushdown automaton) is de�ned in the same
way as a PDA system but the composition of stack symbols is now viewed
as commutative, i.e., `parallel'. (So each symbol stored in the stack is directly
accessible and the stack can be viewed as a multiset of stack symbols.)

A PDA (resp. PPDA) system is called BPA for basic process algebra (resp.
BPP for basic parallel processes) whenever the set of control states is singleton.

The classes BPA, BPP, PDA and PA correspond directly to the classes from
the PRS hierarchy in Figure 1. The class PPDA is positioned strictly between
BPP and PN. Hence all the lower bounds we shall prove for PPDA immediately
apply also to PN.

2.3 Defender's Choice Technique

In what follows we shall frequently use a technique called `Defender's Choice'
(abbreviated by DC). The idea is that Attacker in the (bi)simulation game start-
ing from � and � can be forced by Defender to play a certain transition in the
following sense: if Attacker takes any other available transition, Defender can an-
swer in such a way that the resulting processes are guaranteed to be (bi)similar
(and hence Attacker loses).

a) �

a

����
��

��
a

��
a

��
22

22
22

22
22

22

a

�&
EE

EE
EE

EE
E

EE
EE

EE
EE

E �

a

��
a

��
22

22
2

22
22

2

a

�&
EE

EE
EE

EE
E

EE
EE

EE
EE

E

�0 �1 �2 : : : �1 �2 : : :

b) �

a

����
��

��
b

��

c

��2
22

22
22

�

a

����
��
�� b;c

��2
22

22
2

�0 �1 �2 �0 U

a;b;c

rr

Fig. 2. Defender's Choice

A typical situation in the
case of bisimilarity may look
like in Figure 2 part a) where
�i � �i for all i � 1 (very
often �i and �i will be even
syntactically equal). It is easy
to see that in the bisimulation
game starting from � and �

Attacker is forced (DC) to

take the transition �
a
�! �0.

In all other possible moves he
loses.

In the case of simulation
game, Defender can also use
another way to force Attacker
to perform a certain move.
Defender can threaten to en-
ter a universal state, i.e., a state where all available actions are constantly en-
abled. The situation may look like in Figure 2 part b).

Obviously Attacker who is playing in the left process is forced (DC) to per-
form the action a to which Defender can answer only by the same action; the
players then continue from the pair �0 and �0. Should Attacker play b or c in the
�rst round, Defender answers by the same action and enters the universal state
U . From now on Defender can answer to all Attacker's moves and clearly wins.



3 �
1

1
-completeness of weak (bi)similarity problems

From [18] we know that weak bisimilarity is �1
1 -complete on PDA and PPDA.

For PA only undecidability was known [19] and it was not clear how to simulate
\�nite-control unit features" which would allow to derive high undecidability as
well. Here we answer this question by showing �1

1-completeness also for PA. We
then add the �1

1 -completeness results for weak simulation preorder (and equiv-
alence) on all the classes PDA, PA and PPDA. Finally we sketch an extension
of the results to branching bisimilarity on PDA and PPDA.

We �rst observe that the mentioned problems are in�1
1 : the expression \there

exists a set of pairs which contains (P1; P2) and is a weak bisimulation (a weak
simulation)" can be routinely transformed into a �1

1 -formula. For this, it is

suÆcient that the relations
a
�! and

a
=) are arithmetical (which is obviously

true for any reasonable process algebra like PRS); in fact, these relations are
even decidable for the classes PDA, PA and PPDA which we are primarily
interested in.

The �1
1-hardness results are achieved by (algorithmic) reductions from suit-

able problems which are known to be �1
1-complete. One of them is the following:

Problem: Recurrent Post's correspondence problem (rPCP)
Instance: Two sequences A = [u1; u2; : : : ; un], B = [v1; v2; : : : ; vn] (n �
1) of nonempty words over an alphabet � such that juij � jvij for all i,
1 � i � n.
Question: Is there an in�nite sequence of indices i1; i2; i3; : : : from the set
f1; 2; : : : ; ng in which the index 1 appears in�nitely often and for which
the in�nite words ui1ui2ui3 � � � and vi1vi2vi3 � � � are equal ?

Such an in�nite sequence i1; i2; i3; : : : is called a solution of the instance
(A;B). Any �nite sequence i1; i2; : : : ; im is called a partial solution of (A;B)
i� ui1ui2 � � �uim is a pre�x of vi1vi2 � � � vim .

Remark 1. The problem rPCP is usually de�ned without the condition juij �
jvij; we have included this additional requirement since it is technically conve-
nient and can be easily shown not to a�ect the following theorem.

Theorem 1. [5] Problem rPCP is �1
1 -complete.

Let us now �x an instance (A;B) of rPCP, over an alphabet �, where
A = [u1; : : : ; un] and B = [v1; : : : ; vn] : A solution of (A;B), if it exists,
can be naturally represented by an in�nite sequence of process constants from
fV1; V2; : : : ; Vng; the sequence can be divided into �nite segments, where a seg-
ment is de�ned as a sequence from fV2; V3; : : : ; Vng� � fV1g . We note that an
in�nite sequence composed from segments represents a solution of (A;B) i� all
its �nite pre�xes represent partial solutions, which is equivalent to saying that
in�nitely many of its �nite pre�xes represent partial solutions.

A general idea behind our reductions can be described as the following game
(which is then concretely implemented in the particular cases we study). Starting



from the empty sequence (viewed as a partial solution), Attacker can repeatedly
request Defender to prolong the so far constructed partial solution by adding a
further segment (for which the implementations will use sequences of � -moves).
Besides the mentioned request, Attacker has also a possibility to enter a checking
phase to verify that the (so far) constructed sequence indeed represents a partial
solution { if it does not then Attacker wins, and if it does then Defender wins.
This means that Defender has a winning strategy if and only if there is an
(in�nite) solution of the (A;B)-instance.

We now describe a concrete implementation for weak bisimilarity of PA. We
show an (algorithmic) construction of a PA system � with a pair of processes
P1 and P2 such that

(A;B) has a solution () P1 � P2 : (1)

We present � in a stepwise manner, always giving a piece of it together with
several useful observations (which should make the veri�cation of the desired
property straightforward).

In the construction we use a distinguished process constant D which is a
deadlock, i.e., there are no rules with D on the left-hand side. Particularly useful
for us is to note that �:D:� jj  � � jj . Later on we show that using the
deadlock is not essential (just technically convenient).

Our �rst intention is to arrange that the bisimulation game will start
from the pair (X;X 0) and continue through some pairs (X:�1; X

0:�1),
(X:�2:�1; X

0:�2:�1), (X:�3:�2:�1; X
0:�3:�2:�1), . . . where �i's are reversed seg-

ments which are chosen by Defender (using DC, i.e. Defender's Choice tech-
nique). Let us look at the rules in the groups I and II. The bisimulation game
starting from (X:�;X 0:�) is depicted in Figure 3.

I X
a
�! X 0

1 X 0
a
�! X 0

1

X 0

1
�
�! X 0

1:Vi for each i 2 f2; 3; : : : ; ng

X
a
�! Y X 0

1
�
�! Y 0:V1

II Y
a
�! Y1:D Y 0

a
�! Y1:D

Y1
�
�! Y1:Vi for each i 2 f2; 3; : : : ; ng

Y1
�
�! X:V1 Y 0

a
�! X 0

According to these rules, when starting from the pair (X:�;X 0:�), Attacker is

forced (DC) to perform X:�
a
�! Y:�, otherwise Defender can reach a syntactic

equality. Defender can be then viewed as forced to respond by X 0
a

=) Y 0:�:�

for a (reversed) segment � of his choice. If he does not �nish by using the rule

X 0

1
�
�! Y 0:V1, Attacker can perform a move according to this rule in the next

round | thus installing a pair (Y:�; Y 0:�:�) anyway.

Rules in II make clear that Attacker is now forced (DC) to move Y 0:�:�
a
�!

X 0:�:� and Defender can respond by Y:�
a

=) X:�:�:D:�; since D is a deadlock,
we can view the installed pair as (X:�:�;X 0:�:�). Similarly as above, Defender

cannot gain by not using the rule Y1
�
�! X:V1. As we shall see later, he neither

can gain by installing X: for  6= �:� .



X:�

a

��

a

,,YYYYYYYYYYYYYYYYYYYYYYY X 0:�

a��
X 0

1:�

���
Y:�

a
��

Y 0:�:�
a

uullllllll

a

��

Y1:D:�

�
��

� Y1:D:�:�

X:�:�:D:�

77

c
��

X 0:�:�

gg

c

��

R1:D: � � �

� ��
R2:Uim :Uim�1

: : : Ui1 :D

� ��
Z:La1La2 : : : La` :Uim :Uim�1

: : : Ui1

�

uullllllll

z

��

Z:Vj
m0
:Vj

m0
�1

: : : Vj1
�

uullllllll

z

��

D: � � � D: � � �

La1La2 : : : La` :Uim :Uim�1
: : : Ui1 Vj

m0
:Vj

m0
�1

: : : Vj1

Fig. 3. Generation of a partial solution, assuming that �:� � Vj
m0
:Vj

m0
�1

: : : Vj1

To enable Attacker to enter the checking phase, we add the following rules.

III X
c
�! R1:D X 0

c
�! R1:D

X 0 c
�! Z

R1
�
�! R1:Ui for all i 2 f1; 2; : : : ; ng

R1
�
�! R2

R2
�
�! R2:Ls for all s 2 �

R2
�
�! Z

Having a pair (X:�;X 0:�), Attacker can thus also choose to play a c-action

(instead of an a-action); in this case he is obviously forced (DC) to playX 0:�
c
�!

Z:�. Defender can respond by X:�
c

=) Z::D:� for some  2 fLs j s 2 �g� �
fU1; U2; : : : ; Ung

� where Ls and Ui are new process constants (we recall that �
is the alphabet of the instance (A;B)). In the whole PA system �, there will be

only one rule with the action d, namely Z
d
�! Z (in group V). By inspecting

the rules it is easy to verify that if Defender chooses not to �nish his move by

using the rule R2
�
�! Z, Attacker can play Z

d
�! Z in the next round and thus,

in fact, force reaching a pair (Z::D:�; Z:�):



We now want to arrange that the above mentioned Defender's response
(X:�

c
=) Z::D:�) can be successful if and only if � = Vim :Vim�1

: : : : :Vi1
represents a partial solution; and in this case the response must be such that
 = La` :La`�1 : : : : :La1 :Uim :Uim�1

: : : : :Ui1 where

ui1ui2 : : : uima1a2 : : : a` = vi1vi2 : : : vim : (2)

In order to achieve that, we de�ne the set T
def
= fTw j w is a suÆx of some (ui)

R

or (vi)
R g of new process constants (where (:)R denotes the reversal operation),

and we add the following rules.

IV Uk
�k�! � Vk

�k�! � for each k 2 f1; 2; : : : ; ng

Uk
�
�! T(uk)R Vk

�
�! T(vk)R for each k 2 f1; 2; : : : ; ng

Tsw
s
�! Tw Tsw

�
�! Tw for Tsw 2 T and s 2 �

T�
�
�! �

Ls
s
�! � Ls

�
�! � for all s 2 �

We can easily verify that a necessary condition for the processes
La` :La`�1 : : : : :La1 :Uim :Uim�1

: : : : :Ui1 and Vj
m0
:Vj

m0
�1
: : : : :Vj1 to be weakly

bisimilar is that m = m0, i1 = j1; i2 = j2; : : : ; im = jm, and (2) holds. But
due to the possible mixing of `letter-actions' and `index-actions', the condition is
not suÆcient. That is why the above processes are preceded by Z in our bisim-
ulation game. If Z can be somehow used to implement a `switch' for Attacker
by which he binds himself to checking either only the index-actions or only the
letter-actions then our goal is reached.

We �rst note that the outcomes of such switching can be modeled by com-
posing in parallel either a process constant C1 (which masks all letter-actions)
or C2 (which masks all index-actions). So we add the rules for C1, C2, and also
all the rules for Z (whose meaning will become clear later).

V C1
s
�! C1 for each s 2 �

C2
�k�! C2 for each k 2 f1; 2; : : : ; ng

Z
z
�! �

Z
�
�! D

Z
d
�! Z

The following propositions are now easy to verify.

Proposition 3. It holds that Z:La` :La`�1 : : : La1 :Uim :Uim�1
: : : Ui1 jj C1 �

Z:Vj
m0
:Vj

m0
�1
: : : Vj1 jj C1 if and only if m = m0 and ik = jk for all k, 1 � k � m.

Proposition 4. It holds that Z:La` :La`�1 : : : La1 :Uim :Uim�1
: : : Ui1 jj C2 �

Z:Vj
m0
:Vj

m0
�1
: : : Vj1 jj C2 if and only if ui1ui2 : : : uima1a2 : : : a` = vj1vj2 : : : vjm0

.

In order to realize the above discussed `switch', we add the �nal group of rules.



VI C
c1�! C1 C

c2�! C2 C
z
�! CjjW

W
�
�!W:Uk W

�
�!W:Vk for each k 2 f1; 2; : : : ; ng

W
�
�!W:Ls for all s 2 �

W
�
�! �

Now the pair of processes (X jjC, X 0jjC) is the pair (P1; P2) we were aiming
to construct according to equation (1). This is con�rmed by the following two
lemmas.

Lemma 1. If the rPCP instance (A;B) has no solution then X jjC 6� X 0jjC.

Proof. Assume that (A;B) has no solution. We show a winning strategy for
Attacker from the pair (X jjC;X 0jjC).

As described above, Attacker can force the game to go through some pairs
(X jjC; X 0jjC); (X:�1jjC; X 0:�1jjC); (X:�2jjC; X 0:�2:�1jjC); etc., where �i's are
(reversed) segments selected by Defender. (Sequences �i , also chosen by De-
fender, play no role in the current analysis.) Since (A;B) has no solution, even-
tually a pair

(X:�jjC; X 0:Vj
m0
:Vj

m0
�1
: : : Vj1 jjC)

must be reached where j1; j2; : : : ; jm0 is not a partial solution. Attacker can now
force reaching a pair

(Z:La`La`�1 : : : La1 :Uim :Uim�1
: : : Ui1 jjC; Z:Vjm0

:Vj
m0

�1
: : : Vj1 jjC)

(as was described previously, also with help of the rule Z
d
�! Z).

Now Attacker chooses either C
c1�! C1 or C

c2�! C2 (to which Defender has
to respond by the same move in the other process) so that the installed pair is
not weakly bisimilar (due to Propositions 3 or 4). ut

Lemma 2. If the rPCP instance (A;B) has a solution then X jjC � X 0jjC.

Proof. Assuming that (A;B) has a solution, we describe Defender's winning
strategy starting from the pair (X jjC;X 0jjC).

First we note that every process reachable from X jjC can be naturally viewed
as a parallel composition �jj where � is an \X-successor" and  is a \C-
successor"; similarly every process reachable from X 0jjC can be written as �0jj0

where �0 is an \X 0-successor" and 0 is a \C-successor". Defender's strategy
responds to each Attacker's move from the C-successor on one side by the same
move (from the C-successor) on the other side, which means that Attacker can-
not win by moving only in C-successors (Defender keeps  = 0). For the moves
in X- and X 0-successors our previous observations easily con�rm that Defender
has a strategy to generate a representation of (an increasing pre�x of) an (A;B)-
solution, which we assume to exist.

So we have only to examine what happens when Attacker decides to check the
(so far) generated partial solution. Attacker has to use (DC) the rule X 0

c
�! Z

to which Defender responds by installing a pair

(Z:La`La`�1 : : : La1 :Uim :Uim�1
: : : Ui1 jj; Z:Vim :Vim�1

: : : Vi1 jj)



such that the condition (2) holds. (We omitted the parts starting with D.)
We now observe that  necessarily contains exactly one of the constants C,

C1 or C2 (as a parallel component). If C1 (or C2) occurs in  then we reached a
weakly bisimilar pair due to Propositions 2 and 3 (or 4).

So it remains to examine the situation  = Cjj0. The only interesting case

is when Attacker performs Z:�jjCjj0
z
�! �jjCjj0; here � denotes the relevant

sequence (composed from constants Ui and Ls, or from Vi). The other possible
moves are safely handled by Defender's playing the same move in the other
process.

Defender's response to the above move uses the rules Z
�
�! D, C

z
�! CjjW

and the (� -)rules forW so that he performs Z:!jjCjj0
z

=) D:!jjCjj�jj0; ! denotes
the other relevant sequence (composed from Ui and Ls, or from Vi). Hence a
weakly bisimilar pair is reached. ut

Now we state the main theorem, which assumes the usual class PA, i.e.,
without deadlocks.

Theorem 2. Weak bisimilarity on PA is �1
1 -complete.

Proof. The membership in �1
1 was already discussed; �1

1 -hardness follows from
the construction we described and from Lemmas 1 and 2 { on condition
that we handle the question of deadlocks. However, there is a straightforward
(polynomial-time) reduction from weak bisimilarity of PA with deadlocks to PA
without deadlocks (described in [19]). ut

Combining with the results of [18] (for PDA and PPDA), we can conclude
that weak bisimilarity problems for all PRS-classes on the third level of the
hierarchy (and above) are �1

1 -complete. Using a similar general strategy, we can
show the same results also for weak simulation preorder and equivalence:

Theorem 3. Weak simulation preorder/equivalence on PDA, PA and PPDA is
�1
1-complete.

The constructions are more straightforward in this case, where each player
is given a �xed system to play in. Here Defender can inuence Attacker's moves
by threatening to enter a `universal' process, which enables all actions forever.
Problem rPCP is convenient for reductions in the cases of PDA and PA; in
the case of PPDA, the recurrent problem for nondeterministic Minsky machines
is more suitable. (It asks whether there is an in�nite computation which uses
a distinguished instruction in�nitely often.) A detailed proof is given in the
appendix.

A natural conjecture is now that all relations subsuming weak bisimilarity
and being subsumed in weak simulation preorder are also �1

1-hard. Such claims,
for general relations R1 � R2 are usually proven by reduction (from a suitable
problem P) constructing two processes P1 and P2 such that (P1; P2) 2 R1 if the
answer (for the instance of P being reduced) is YES and (P1; P2) 62 R2 if the
answer is NO.



So far we do not see how to modify our constructions to satisfy this. However,
in the case of PDA and PPDA, we could in this way derive �1

1 -hardness for
all relations between weak bisimilarity and branching bisimilarity. A branching
bisimulation (as introduced by van Glabbeek and Weijland, see, e.g., [24]) is
a symmetric relation R where, for each (�; �) 2 R, each (Attacker's) move

�
a
�! �0 can be matched by a (Defender's) move �

�
�!

�

�1
a
�! �2

�
�!

�

�0

where we require (�0; �0) 2 R and also (�; �1) 2 R, (�0; �2) 2 R; Defender's
move can be empty in the case a = � (then (�0; �) 2 R).

Claim. All relations subsuming branching bisimilarity and being subsumed in
weak bisimilarity are �1

1 -hard on PDA and PPDA.

We do not provide a detailed proof since it would require to repeat the construc-
tions used in [18], with some slight modi�cations. The point is that the long
� -moves (of Defender) can be made reversible (e.g., for setting a counter value
there are � -actions for both increasing and decreasing). This can be achieved
easily in the presence of a �nite-control unit (like in case of PDA and PPDA).
Such a reversibility is not present in our construction for PA, and it is unclear
whether PA processes can model these features in an alternative way.

4 Other semantic equivalences

A natural question to ask is about the complexity of other well-known semantic
equivalences (like those in [23] or, more relevantly for us, in [22]). Of particular
interest is the question whether some other equivalences are also highly undecid-
able (i.e., beyond (hyper)arithmetical hierarchy). We provide a few results and
notes about this.

For a �nite or in�nite w = a1a2 : : : we write �0
w
=) i� there are �1; �2; : : :

such that �i
ai+1
=) �i+1 for all i = 0; 1; 2; : : : . The coarsest equivalence among the

studied action-based semantic equivalences is the trace equivalence: two pro-
cesses � and � are weakly trace equivalent i� 8w 2 (Actrf�g)� : �

w
=), �

w
=)

(i.e., � and � enable the same �nite observable traces).
We can immediately see that the problem is at a very low level in the arith-

metical hierarchy even for very general classes of labelled transition systems. We
call a labelled transition system (LTS) recursively enumerable if the set of states
S and the set of actions Act are both (represented as) recursively enumerable
sets of strings in some �nite alphabets and the set f (�; a; �) j �; � 2 S; a 2

Act; �
a
�! � g is also recursively enumerable. The respective algorithms (Turing

machines) can serve as �nite descriptions of such an LTS.
We can easily observe that given a recursively enumerable LTS (where Act

includes �), the set f (�;w) j w 2 (Act r f�g)�; �
w
=)g is also recursively enu-

merable. More generally, the set of all triples (L; �;w), where L is (a description
of) a recursively enumerable LTS, � one of its states and w a �nite sequence

of its (observable) actions such that �
w
=) (in L), can be de�ned by some �0

1 -
formula 9x:�(L; �;w; x) where � is recursive (with the parameters coded by
natural numbers).



Proposition 5. The set of all triples (L; �; �), where L is (a description of)
a recursively enumerable LTS and �; � two weakly trace equivalent states, is in
�0

2 .

Proof. Having the above mentioned formula 9x:�(L; �;w; x), we can de�ne the
formula

 (L; �; �),df

8w:
�
9x:�(L; �;w; x)^9x:�(L; �; w; x)

�
_
�
8x::�(L; �;w; x)^8x::�(L; �; w; x)

�

which can be easily transformed into the �0
2 -form. ut

Remark 2. In fact, for the classes like PDA, PA and PN the set f(L; �;w) j

�
w
=)g is even recursive. For PDA and PA this follows, e.g., from [1] and [13]

and for PN it can be decided by standard constructions from Petri net theory
(reducing to the coverability problem). This means that weak trace equivalence
for such classes is in �0

1 .

For other equivalences based on trace-like �nite behaviours (sometimes called
`decorated traces'), i.e., failure equivalence, ready equivalence, ready-trace equiv-
alence etc., we can make similar observations. This means that in fact all these
(weak) equivalences are very low in the arithmetical hierarchy.

In some sense, this might seem as a surprising fact. In the strong case (with-
out � -actions), complexity of the equivalence problems is decreasing in the di-
rection: trace { simulation { bisimulation. On the other hand in the weak case
the situation now seems to look di�erent. However, the right way for such a
comparison is to take also in�nite traces (i.e., !-traces) into account. Then the
above complexity-decreasing chain is restored as illustrated below.

Remark 3. For image-�nite labelled transition systems (like those generated by
PRS systems in the strong case), the �nite-trace equivalence implies also the !-
trace equivalence. This is, however, not true for non-image-�nite systems, which
are easily generated by PRS systems in the weak case.

We shall focus on the classes BPP and BPA. For BPP weak bisimilarity is
known to be semidecidable [3], so it belongs to the class �0

1 . In fact, it seems even
well possible that the problem is decidable (see [8] where PSPACE-completeness
of strong bisimilarity is established). Simulation preorder/equivalence (as well
as trace preorder/equivalence) is undecidable even in the strong case [7]. Weak
simulation preorder/equivalence is surely in �1

1 (the best estimate we can derive
at the moment) while we can prove that weak !-trace preorder/equivalence is
�1

1 -hard:

Theorem 4. Weak !-trace preorder/equivalence on BPP is �1
1 -hard.

Given a nondeterministic Minsky machine, the nonexistence of an in�nite
computation using instruction 1 in�nitely often can be reduced to the weak !-
trace preorder (equivalence) problem. In order to prove this we modify a known



construction showing undecidability of trace preorder in the strong case (which
can be found in [6]). A more detailed sketch of the proof is in the appendix.

For BPA, the situation is roughly similar though a bit more unclear. Both
weak bisimilarity and weak similarity are surely in �1

1 but otherwise we only
know that weak bisimilarity is EXPTIME-hard [15] and weak similarity unde-
cidable; the latter follows from undecidability of (even) strong similarity [4].
There are some reasons to conjecture that weak bisimilarity of BPA might be
decidable. The (obvious) membership in �1

1 thus seems to be a very rough up-
per bound, and one might start to try to strenghten this by showing that the
problem is in the hyperarithmetical hierarchy, i.e., in the intersection of �1

1 and
�1

1 . Nevertheless, it seems that a deeper insight would be needed even for this
less ambitious goal.

The undecidability of strong trace equivalence for BPA follows easily from
classical results for context-free langauges. Moreover, similarly as in the case of
BPP, we can show:

Theorem 5. Weak !-trace preorder/equivalence on BPA is �1
1 -hard.

The theorem holds even when one BPA-process is a �xed �nite-state process.
The proof uses the recurrent problem for nondeterministic Turing machines and
builds on the classical context-free grammar generating all words which do not
correspond to correct computations of a Turing machine (where all even con�g-
urations are written in the reverse order). More details are in the appendix.

We also add a straightforward analogy to Proposition 5:

Proposition 6. The set of all triples (L; �; �), where L is (a description of) a
recursively enumerable LTS and �; � two weakly !-trace equivalent states, is in
�1

2 .

Proof. An in�nite sequence of (observable) actions can be coded as a set W of
pairs (i; a) (i 2 N, a 2 Act) where each i 2 N appears exactly once; similarly
we can code in�nite sequences of states. The set of triples (L; �;W ), where
� enables the !-trace coded by W , can be then obviously de�ned by some
formula 9X:�(L; �;W;X) where � is surely arithmetical (when X;W are taken
as predicates). Now we can take  as in the proof of Proposition 5 while replacing
the number variables x and w with the set variables X and W , respectively. ut

5 Regularity is in the hyperarithmetical hierarchy

Here we look at some more specialized problems, namely the question of equiv-
alence (of a general process) with a given �nite-state process, and the question
of regularity, which asks whether a given (general) process is equivalent (weakly
bisimilar in our case) to an (unspeci�ed) �nite-state process. These question
were studied, e.g., in [9], from where the next (easy) lemma follows.

To state the lemma, we need to de�ne weak bisimilarity approximants �i

(i = 0; 1; 2; : : : ):



{ � �0 � for all �; � ;

{ � �i+1 � i� � �i � and for all a 2 Act:

� if �
a

=) �0 then �
a

=) �0 for some �0 such that �0 �i �
0, and

� if �
a

=) �0 then �
a

=) �0 for some �0 such that �0 �i �
0.

Lemma 3 ([9]). Assume that g is a state in a general (in�nite) labelled transi-
tion system and f is a state in a �nite-state system F with k states. Then g � f
i�

{ g �k f , and

{ for every g0 which is reachable from g there is a state f 0 in F such
that g0 �k f

0.

Let us now consider recursively enumerable labelled transition systems. In this
case the reachability relation as well as the relations

a
=) are clearly semidecid-

able.

In such a case, for given g and f from Lemma 3, we can construct a formula
� in �0

2k+2 such that � is true i� g � f . The idea is that g �k f can be shown

to be in �0
2k by writing it as a formula g �k�1 f ^ 8a8g09f 0 : (g

a
=) g0) )�

f
a

=) f 0^g0 �k�1 f
0
�
^ 8a8f 09g0 : (f

a
=) f 0))

�
g

a
=) g0^g0 �k�1 f

0
�
: From

the inductive assumption that �k�1 is in �
0
2(k�1) and from the fact that

a
=) is

semidecidable, the containment in �0
2k immediately follows. The other condition

of Lemma 3 can be expressed by a formula 8g09f 0 : (g �!� g0) ) (g0 �k f
0
�
.

As shown above, g0 �k f
0 is in �0

2k and hence the second formula is in �0
2k+2.

It thus follows easily that the problem g � f is recursive in (reducible to) the
set TA which consists of (the codes of) all true �rst-order sentences in arithmetic.
Since the question of weak regularity of g can be formulated as \is there a number
x coding a �nite-state system F and its state f such that g � f ?", this problem
is recursively enumerable in TA (which is taken as oraculum), and hence (at
most) hyperarithmetical.

Denoting the collection of all sets which are recursive (recursively enumer-
able) in TA by �0

! (by �0
!+1, respectively), we have shown:

Proposition 7. The problem of weak regularity of recursively enumerable la-
belled transition systems is in �0

!+1.

Though the stated result is not too practical, it still separates weak bisimilarity
checking from weak regularity checking for the classes like PDA, PA and PPDA
(because �0

!+1 is a proper subclass of �1
1 \ �

1
1 ). Recalling the general experi-

ence that natural problems (in computer science) are either at low levels of the
arithmetical hierarchy or at low levels of the analytical hierarchy, we have at
least some indication in what direction the results for regularity in the summary
table of the next section can be possibly strengthened.



6 Summary

In the following table we provide a summary of the known upper and lower
bounds for weak equivalence problems on BPA, BPP, PDA, PA and PPDA/PN.
For more references and updated overviews of the results we refer the reader
to [17].

weak BPA BPP PDA PA PPDA/PN

bisimilarity
in �1

1

exptime-hard

in �0
1

pspace-hard
�1
1 -complete �1

1 -complete �1
1 -complete

simulation
in �1

1

�0
1 -hard

in �1
1

�0
1 -hard

�1
1 -complete �1

1 -complete �1
1 -complete

(�nite) trace �0
1 -complete �0

1 -complete �0
1 -complete �0

1 -complete �0
1 -complete

!-trace
in �1

2

�1
1 -hard

in �1
2

�1
1 -hard

in �1
2

�1
1 -hard

in �1
2

�1
1 -hard

in �1
2

�1
1 -hard

regularity
in �0

!+1

exptime-hard

in �0
!+1

pspace-hard

in �0
!+1

exptime-hard

in �0
!+1

exptime-hard

in �0
!+1

�0
1 -hard

�0
1 -hard

References

[1] J.R. B�uchi. Regular canonical systems. Arch. Math. Logik u. Grundlagen-
forschung, 6:91{111, 1964.

[2] O. Burkart, D. Caucal, F. Moller, and B. Ste�en. Veri�cation on in�nite struc-
tures. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process
Algebra, chapter 9, pages 545{623. Elsevier Science, 2001.

[3] J. Esparza. Petri nets, commutative context-free grammars, and basic parallel
processes. Fundamenta Informaticae, 31:13{26, 1997.

[4] J.F. Groote and H. H�uttel. Undecidable equivalences for basic process algebra.
Information and Computation, 115(2):353{371, 1994.

[5] D. Harel. E�ective transformations on in�nite trees, with applications to high
undecidability, dominoes, and fairness. Journal of the ACM (JACM), 33(1):224{
248, 1986.

[6] Y. Hirshfeld. Deciding equivalences in simple process algebras. Technical report
ECS-LFCS-94-294, Department of Computer Science, University of Edinburgh,
1994.

[7] H. H�uttel. Undecidable equivalences for basic parallel processes. In Proceedings
of the 2nd International Symposium on Theoretical Aspects of Computer Software
(TACS'94), volume 789 of LNCS, pages 454{464. Springer-Verlag, 1994.

[8] P. Jan�car. Strong bisimilarity on basic parallel processes is PSPACE-complete. In
Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science
(LICS'03), pages 218{227. IEEE Computer Society Press, 2003.

[9] P. Jan�car, A. Ku�cera, and R. Mayr. Deciding bisimulation-like equivalences with
�nite-state processes. Theoretical Computer Science, 258(1{2):409{433, 2001.

[10] P. Jan�car, A. Ku�cera, and F. Moller. Deciding bisimilarity between bpa and bpp
processes. In Proceedings of the 14th International Conference on Concurrency
Theory (CONCUR'03), volume 2761 of LNCS, pages 159{173. Springer-Verlag,
2003.



[11] A. Ku�cera and P. Jan�car. Equivalence-checking with in�nite-state systems: Tech-
niques and results. In Proceedings of the 29th Annual Conference on Current
Trends in Theory and Practice of Informatics (SOFSEM'02), volume 2540 of
LNCS, pages 41{73. Springer-Verlag, 2002.

[12] H.R. Lewis and Ch.H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall PTR, 1997.

[13] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on pa-processes. Theoret-
ical Computer Science, 274(1{2):89{115, 2002.

[14] R. Mayr. Process rewrite systems. Information and Computation, 156(1):264{286,
2000.

[15] R. Mayr. Weak bisimilarity and regularity of BPA is EXPTIME-hard. In Proc-
cedings of the 10th International Workshop on Expressiveness in Concurrency
(EXPRESS'03), pages 160{143, 2003. To appear in ENTCS.

[16] H. Rogers. Theory of Recursive Functions and E�ective Computability. McGraw-
Hill, 1967.

[17] J. Srba. Roadmap of in�nite results. Bulletin of the European Association for The-
oretical Computer Science (Columns: Concurrency), 78:163{175, October 2002.
Updated online version: http://www.brics.dk/�srba/roadmap.

[18] J. Srba. Completeness results for undecidable bisimilarity problems. In Proceed-
ings of the 5th International Workshop on Veri�cation of In�nite-State Systems
(INFINITY'03), pages 9{22, 2003. To appear in ENTCS.

[19] J. Srba. Undecidability of weak bisimilarity for PA-processes. In Proceedings of
the 6th International Conference on Developments in Laguage Theory (DLT'02),
volume 2450 of LNCS, pages 197{208. Springer-Verlag, 2003.

[20] C. Stirling. Local model checking games. In Proceedings of the 6th International
Conference on Concurrency Theory (CONCUR'95), volume 962 of LNCS, pages
1{11. Springer-Verlag, 1995.

[21] W. Thomas. On the Ehrenfeucht-Fra��ss�e game in theoretical computer science
(extended abstract). In Proceedings of the 4th International Joint Conference
CAAP/FASE, Theory and Practice of Software Development (TAPSOFT'93),
volume 668 of LNCS, pages 559{568. Springer-Verlag, 1993.

[22] R.J. van Glabbeek. The linear time { branching time spectrum II (the semantics
of sequential systems with silent moves). In Proceedings of the 4th International
Conference on Concurrency Theory (CONCUR'93), volume 715 of LNCS, pages
66{81. Springer-Verlag, 1993.

[23] R.J. van Glabbeek. The linear time - branching time spectrum I: The semantics
of concrete, sequential processes. In J. Bergstra, A. Ponse, and S. Smolka, editors,
Handbook of Process Algebra, chapter 1, pages 3{99. Elsevier Science, 2001.

[24] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555{600, 1996.



A Appendix

A nondeterministic Minsky machine R with two non-negative counters c1 and
c2 is a �nite sequence of labelled instructions R = (1 : I1; 2 : I2; : : : ; n : In)
such that n � 1 and every instruction Ii, 1 � i � n, is in one of the following
three forms:

increment cr := cr + 1; goto j

test and decrement if cr = 0 then goto j else cr := cr � 1; goto k

nondeterm. branching goto (j or k)

where 1 � r � 2 and 1 � j; k � n.
A con�guration of R is a triple (i; v1; v2) 2 f1; : : : ; ng�N�N where i is

the label of the instruction to be executed, and v1 and v2 are the values of the
counters c1 and c2, respectively.

The following recurrence problem is �1
1 -complete [5].

Problem: Recurrence Problem for Minsky Counter Machines (rMCM)
Instance: A nondeterministic Minsky machine R.
Question: Is there an in�nite computation ofR starting at the instruction
label 1 with both counters zero such that the instruction I1 is executed
in�nitely often ?

Theorem 3. Weak simulation preorder/equivalence on PDA, PA and PPDA is
�1
1-complete.

Proof. The membership of the problems in �1
1 was already discussed in the

main text. We shall focus on showing �1
1-hardness of weak simulation preorder

on PDA, PA and PPDA. By standard techniques weak simulation preorder can
be then reduced to weak simulation: let P

�
�! P1 and P

�
�! P2, then P1 vs P2

if and only if P =s P2.
We start by reducing the rPCP problem to weak simulation preorder on PDA

processes. We pay a special attention to the fact that this construction should
be easily reusable in order to work also for PA. Finally, we establish �1

1-hardness
of weak simulation preorder for PPDA by reduction from the rMCM problem.

Let us �x an (A;B)-instance of rPCP. We construct a PDA system � and a
pair of processesX:S (in fact only a BPA process) and pX 0 such thatX:S vs pX

0

i� the (A;B)-instance has a solution. The aims of the players in the weak simu-
lation game will be the same as in the case of weak bisimilarity (see Section 3).
Without loss of generality we may assume that if an in�nite solution of the
(A;B)-instance exists then it starts with the index 1.

The system � is provided in Table 1 (the rules Vi
vR
i�! � and p2Ui

uR
i�! p2 in

fact represent several rewrite rules which enable to perform exactly the whole
visible sequences vRi and uRi respectively; no � -rules are involved here and (:)R

denotes the reversal operation as before). The rules are divided into Attacker's
rules (playing in the left process) and Defender's rules (playing in the right
process); the state pU is called a universal state, which means that all actions



Attacker's rules (BPA process)

X
a
�! Y

Y
�i�! X:Vi for all i, 1 � i � n

X
b
�! Z

Z
c1�! � Z

c2�! �

S
stop
�! S

Vi
�i�! � Vi

vR
i�! � for all i, 1 � i � n

Defender's rules (PDA process)

pX 0 a
�! pY 0

i for all i, 2 � i � n

pX 0 a
�! pX 0

1

pX 0

1

�
�! pX 0

1X
0 pX 0

1

�
�! pY 0

1

pY 0

i

�i�! p for all i, 1 � i � n

pY 0

i
x
�! pU for all x 2 Act(�)r f�i; �g

pX 0 �
�! pX 0

2S

pX 0

2

�
�! pX 0

2Ui for all i, 1 � i � n

pX 0

2

�
�! pX 0

3

pX 0

3

�
�! pX 0

3Ls for all s 2 �

pX 0

3

b
�! p

p
c1�! p1 p

c2�! p2

p1
s
�! pU for all s 2 �

p2
�i�! pU for all i , 1 � i � n

p1S
stop
�! p1S p2S

stop
�! p2S

p1Ui
�i�! p1 p2Ui

uR
i�! p2 for all i, 1 � i � n

p1Ls
�
�! p1 p2Ls

s
�! p2 for all s 2 �

pU
x
�! pU for all x 2 Act(�)

Table 1. Rewrite rules for weak simulation of PDA

from Act(�)
def
= fa; b; c1; c2; stop; �g [ f�i j 1 � i � ng [ fs j s 2 �g are forever

enabled when starting in pU .

The simulation game starts from the processes X:S and pX 0. Whenever At-
tacker's process starts with the process constant X , he can either perform the
action b (this is discussed later on) or the action a. In case that he decides for the
action a and moves to a process starting with Y , Defender can answer by moving
to a state starting with pY 0i . In this move one process constant X 0 is removed
from the stack, apart from the case where Defender enters a state starting with
pY 01 because by using the � -rules he can generate an arbitrary number of process



constants X 0. (This means that after �nitely many rounds Defender is forced
to reach a state starting with pY 0

1 , otherwise he removes all constants X 0 from
the stack and loses.) Also note that Defender's answer to Attacker's �rst move

under the action a cannot use the � -rule pX 0
�
�! pX 0

2S because no a-action can
be performed after this choice.

So after the �rst round the players are in the states starting with Y and pY 0

i .

Attacker is now forced (DC) to play using the rule Y
�i�! X:Vi and Defender can

answer only by pY 0i
�i�! p. This means that Defender forced Attacker to add the

process constant Vi to Attacker's stack. Should Attacker play again the action
a, the whole game repeats according to the schema above.

To sum up, Attacker can repeatedly invite Defender to select Vi for some i,
1 � i � n, and Defender's selection is remembered on Attacker's stack. Moreover,
frequently (i.e. after �nitely many steps) Defender has to include the process
constant V1, which concludes the generation of one segment.

From a pair of processes starting with X and pX 0 Attacker can also perform

a move according to the rule X
b
�! Z and enter the phase where he checks

whether the (so far) generated partial solution is valid. In this case Defender
answers by removing the content of the current stack by pushing the unnormed
process constant S and continues by generating a sequence of process constants
Ui, followed by a sequence of process constants Ls. Finally he performs the ac-
tion b and the players continue from the processes Z:Vim :Vim�1

: � � � :Vi1 :S and
pLa`La`�1 � � �La1Uj

m0
Uj

m0
�1
� � �Uj1S. The intuition is that Defender should win

from this pair if and only if both processes can generate exactly the same se-
quence of indices and the same sequence of letters from �. In the next round
Attacker performs the action (i) c1 or (ii) c2 in order to verify this property.

In case (i), after performing the action c1, Attacker is forced to play only the
actions corresponding to indices, otherwise Defender threatens (DC) to enter
a universal state. None of the players may skip any �i action and only after
performing all of them, the action stop becomes enabled. Hence Defender wins
in case (i) if and only if the processes represent the same sequence of indices.

In case (ii), after performing the action c2, Attacker can only play the actions
from �, otherwise Defender threatens (DC) to enter a universal state. Defender
is �rst responding by removing the process constants Ls, and then performs
the sequence of actions uRj

m0
uRj

m0
�1
� � �uRj1 and only after performing all of them,

the action stop becomes enabled. Defender wins in case (ii) if and only if the
processes represent the same sequences over �, followed by the action stop.

This all together gives that if the rPCP instance has a solution, the game is
either in�nite or Attacker must (after a certain generated pre�x of the in�nite
solution) perform the action b but then he loses anyway because Defender can
make sure that it is a valid partial solution. On the other hand, if the rPCP
instance has no solution, after �nitely many rounds Defender cannot extend the
so far generated partial solution any further and he loses in the checking phase
later on. This proves the correctness of the reduction in case of PDA.

We shall now slightly modify the presented construction to show �1
1-hardness

of weak simulation also for PA.



Since Attacker's process uses no control states (it is a BPA process), no
modi�cation is needed here. Defender's process uses the control state p during
the generation phase and later on in the checking phase two extra states p1 and
p2 are used. We simply keep all the rules containing only the control state p and
the rest of the rules is replaced by

C
c1�! C1 C

c2�! C2

C1
s
�! U for all s 2 �

C2
�i�! U for all i, 1 � i � n

S
stop
�! S

Ui
�i�! � Ui

uR
i�! � for all i, 1 � i � n

Ls
�
�! � Ls

s
�! � for all s 2 �.

The weak simulation game now starts from the pair X and X 0jjC. The parallel
component C serves as a switch during the checking phase of the game and
replaces the control states p1 and p2. The correctness of such a modi�cation is
easy to verify.

We �nish the proof of this theorem by showing that weak simulation preorder
of PPDA is also �1

1-complete. In this case we provide a reduction from the
recurrence problem of nondeterministic Minsky counter machines (rMCM).

Given an instance R of rMCM we construct a PPDA system � and a pair
of processes p and p01 such that the answer to the problem R is yes if and only
if p vs p

0

1.

Remark 4. Let A be a process constant and i be a non-negative integer. We shall

use the notation Ai for a parallel composition of i occurrences of A, i.e., A0 def
= �

and Ai+1 def
= AjjAi.

The intuition is that a con�guration (i; v1; v2) of R corresponds to a pair of
PPDA processes p(Cv1

1 jjC
v2
2 ) and p0i(C

v1
1 jjC

v2
2 jjX

`) where the values of counters
are represented by the number of occurrences of C1 and C2, and ` (the number
of occurrences of the process constant X) represents the upper bound on the
number of computational steps before the �rst instruction is executed. Attacker
is playing in the process p(Cv1

1 jjC
v2
2 ) and he stores only the information about

the current counter values. Defender answers in the process p0i(C
v1
1 jjC

v2
2 jjX

`);
apart from the values stored in the counters he also remembers the label i of the
instruction to be executed.

In the rules from Table 2 the indices i and r range over the sets f1; : : : ; ng
and f1; 2g, respectively. The state sU is the universal state, which means that

all actions from Act(�)
def
= fa; b; inc1; inc2; dec1; dec2; z1; z2; �g are constantly

enabled in sU .
The game starts from the states p and p01. During the game the players are

simultaneously either in the control states p and p0i, or q and \qi-like" states,
and the numbers of occurrences of C1 and C2 on both sides are equal.



Attacker's rules

p
a
�! q

q
incr�! pCr

qCr
decr�! p

q
b
�! p

qCr
zr�! qCr

Defender's rules

p0iX
a
�! qincrj if Ii� cr := cr + 1; goto j

p0iX
a
�! qzerorj if Ii� if cr = 0 then goto j else cr := cr � 1;goto k

p0iX
�
�! pdecrk if Ii� if cr = 0 then goto j else cr := cr � 1;goto k

pdecrk Cr
a
�! qdecrk

p0iX
a
�! q0j if Ii� goto (j or k)

p0iX
a
�! q0k if Ii� goto (j or k)

q0i
b
�! p0i

q0i
x
�! sU for all x 2 Act(�)r fb; �g

qincri

incr�! p0iCr

qincri

x
�! sU for all x 2 Act(�)r fincr; �g

qdecri

decr�! p0i
qdecri

x
�! sU for all x 2 Act(�)r fdecr; �g

qzerori

b
�! p0i

qzerori

x
�! sU for all x 2 Act(�)r fb; zr; �g

p01
�
�! p01X

sU
x
�! sU for all x 2 Act(�)

Table 2. Rewrite rules for weak simulation of PPDA

Let us assume a simulation game starting from a general pair p(Cv1
1 jjC

v2
2 )

and p0i(C
v1
1 jjC

v2
2 jjX

`) where v1, v2 and ` are non-negative integers.

Attacker can only start by playing according to the rule p
a
�! q. Should

` = 0 and i 6= 1, Defender immediately loses. If i = 1, Defender can answer
by

a
=): �rst using the � -moves he can generate an arbitrary large number of

the process constants X (as parallel components), followed by the execution of
an appropriate rule under the visible action a. On the other hand, whenever
Defender plays the action a from a process in control state p0i where 2 � i � n,
the number of occurrences of X is decreased by one. This ensures that Defender
must repeatedly visit the control state p01, otherwise he loses.

Let us so analyze the weak simulation game starting from the pair p(Cv1
1 jjC

v2
2 )

and p0i(C
v1
1 jjC

v2
2 jjX

`) such that ` is a positive integer and i 2 f2; 3; : : : ; ng. In

the �rst round, Attacker has only one possible move, namely p(Cv1
1 jjC

v2
2 )

a
�!



q(Cv1
1 jjC

v2
2 ) to which Defender can answer according to the type of the instruction

Ii.

{ If Ii� cr := cr +1; goto j then Defender has to play pi(C
v1
1 jjC

v2
2 jjX

`)
a
�!

qincrj (Cv1
1 jjC

v2
2 jjX

`�1). In the second round starting from q(Cv1
1 jjC

v2
2 )

and qincrj (Cv1
1 jjC

v2
2 jjX

`�1) Attacker is forced (DC) to play the move

q(Cv1
1 jjC

v2
2 )

incr�! p(Cvr+1
r jjC

v3�r
3�r ), otherwise Defender threatens to enter the

universal state sU . Defender can answer only by qincrj (Cv1
1 jjC

v2
2 jjX

`�1)
incr�!

p0j(C
vr+1
r jjC

v3�r
3�r jjX

`�1).
{ If Ii � if cr = 0 then goto j else cr := cr � 1; goto k then Defender
has two possibilities:

� If it is the case that vr � 1 then Defender can play p0i(C
v1
1 jjC

v2
2 jjX

`)
a

=)
qdecrk (Cvr�1

r jjC
v3�r
3�r jjX

`�1). In the next round Attacker is forced (DC) to

play q(Cv1
1 jjC

v2
2 )

decr�! p(Cvr�1
r jjC

v3�r
3�r ) and Defender can only answer by

the move qdecrk (Cvr�1
r jjC

v3�r
3�r jjX

`�1)
decr�! p0k(C

vr�1
r jjC

v3�r
3�r jjX

`�1).
Another possibility for Defender in the �rst move (while still assuming

that vr � 1) is to answer by p0i(C
v1
1 jjC

v2
2 jjX

`)
a
�! qzerorj (Cv1

1 jjC
v2
2 jjX

`�1).
This does not correspond to a faithful simulation of the Minsky machine
R and Attacker can punish such a move by playing q(Cv1

1 jjC
v2
2 )

zr�!
q(Cv1

1 jjC
v2
2 ) to which Defender has no answer.

� If it is the case that vr = 0, the only possible answer for Defender
is p0i(C

v1
1 jjC

v2
2 jjX

`)
a
�! qzerorj (Cv1

1 jjC
v2
2 jjX

`�1). In the next round At-
tacker is forced (DC) to take the action b, Defender has only one answer
to this move and hence the players necessarily continue from the pair
p(Cv1

1 jjC
v2
2 ) and p0j(C

v1
1 jjC

v2
2 jjX

`�1).

{ If Ii� goto (j or k) then Defender can choose either p0i(C
v1
1 jjC

v2
2 jjX

`)
a
�!

q0j(C
v1
1 jjC

v2
2 jjX

`�1) or p0i(C
v1
1 jjC

v2
2 jjX

`)
a
�! q0k(C

v1
1 jjC

v2
2 jjX

`�1). In the next

round Attacker is forced (DC) to play q(Cv1
1 jjC

v2
2 )

b
�! p(Cv1

1 jjC
v2
2 ) and De-

fender answers either by playing q0j(C
v1
1 jjC

v2
2 jjX

`�1)
b
�! p0j(C

v1
1 jjC

v2
2 jjX

`�1)

or by q0k(C
v1
1 jjC

v2
2 jjX

`�1)
b
�! p0k(C

v1
1 jjC

v2
2 jjX

`�1). Hence Defender decided
whether the game continues from the label j or k.

The situation is completely similar when the game starts from p(Cv1
1 jjC

v2
2 ) and

p01(C
v1
1 jjC

v2
2 jjX

`) for a non-negative integer `, apart from the fact that Defender
can add an arbitrary large number of process constants X in the �rst round.

To sum up, the players can force one another to faithfully simulate one partic-
ular computation of the Minsky machine R and Defender decides all the nonde-
terministic choices. Because of the process constant X , Defender is forced during
every in�nite game to reach the control state p01 in�nitely often, otherwise he
loses.

It is now easy to see that the Minsky machine R has an in�nite computation
where the �rst instruction is executed in�nitely many times if and only if De-
fender has a winning strategy in the weak simulation game from p and p01. ut



Theorem 4. Weak !-trace preorder/equivalence on BPP is �1
1 -hard.

Proof. It is enough to show the result for !-trace preorder. This immediately
implies the hardness also for the equivalence as discussed before.

The idea is to start from an instance R of rMCM (recurrent Minsky counter
machine), and to construct two BPP processes � and � such that if there is an
in�nite computation of R (starting with zeros in the counters c1 and c2) which
uses the instruction 1 in�nitely often then � has an !-trace (corresponding to
that computation) which � does not have; otherwise all !-traces (as well as �nite
traces) of � are contained in the (!-)trace set of �.

Hirshfeld [6] describes in detail, given a deterministic Minsky machine R0,
how to construct BPP-processes � and � (which model R0 in a sense). Process
� has a (corresponding) trace for each pre�x of the (correct) computation of R0

and also some other (`incorrect') traces; if the computation halts, � can �nish
the corresponding trace with a special `halting' action. Process � has also such
a corresponding trace for each pre�x of the (correct) computation (but without
the halting action), and all `incorrect' traces.

In fact, the construction can be directly applied also to our nondeterministic
machine R (omitting the mentioned halting action). We just add the following
modi�cation into the construction: we model a third counter c3 in �, which can
be in the beginning set to any (�nite) number by a sequence of � -moves. We
also arrange that after every execution of the instruction 1 the counter c3 is
necessarily decreased by one. This can be done by a special action which (the
appropriate derivative of) � can perform in the relevant moment.

So if R has an in�nite computation performing instruction 1 in�nitely often
then the corresponding !-trace is performable from � but not from �. If there
is no such computation, then each (!-)trace of � is either incorrect (i.e., has a
pre�x with an `error') { and so it is also performable from � (via the universal
state) { or it is correct but contains the instruction 1 only �nitely many times {
and so it is performable from � as well. ut

Theorem 5. Weak !-trace preorder/equivalence on BPA is �1
1 -hard.

Proof. We shall adapt a classical idea from language theory used in showing the
undecidability of the universality problem for context-free grammars (as can be
found, e.g., in [12]).

Let Act
def
= f!; ; a; b; 0; 1;#; �g. One process in our preorder/equivalence

checking will be the `universal' one-state process U :

U
x
�! U for all x 2 Act.

Given now a nondeterministic Turing machine with alphabet fa; bg, the initial
state denoted 0 and additional k control states denoted 1; 11; 111; : : : ; 1k , each
con�guration C can be naturally represented as a word u0v or u1iv where u; v 2
fa; bg� and 1 � i � k. Each (in�nite) computation can be then described as a
sequence # ! C1#  (C2)

R# ! C3#  (C4)
R : : : of con�gurations where

every even con�guration is written in the reverse order; the arrow preceding a
con�guration indicates if this is odd or even.



Following the idea of a context-free grammar (in Greibach normal form)
generating all incorrect descriptions of computations, we can construct a process
constant F and the appropriate rules so that the following holds:

{ each action sequence enabled from F is of the form #w where w contains at
most one #

{ F
u
�! � exactly for the sequences u of the form #u1#u2 which witness an

`error', i.e.:
there is no v s.t. #u1#u2v = # ! C#  (C 0)R or #u1#u2v =
#  (C)R# ! C 0 for some (valid) con�gurations C and C 0 such
that C 0 is a successor of C.

We also construct F0 which is a (simple) variant of F where each such sequence
is bound to start with # ! 0#. Let us now de�ne the following BPA rewrite
rules (using actions from Act and constants U and F , F0 from above).

X
�
�! F0:U X

#
�! X1 X

x
�! U for all x 2 Actr f#; �g

X1
!

�! X2 X1
x
�! U for all x 2 Actr f!; �g

X2
0
�! F:U X2

0
�! X3 X2

x
�! U for all x 2 Actr f0; �g

X3
#
�! X 0:F:U X3

x
�! U for all x 2 Actr f#; �g

X 0
�
�! X 0:Y X 0

�
�! �

Y
x
�! � for all x 2 Act

Y
x
�! Y for all x 2 Actr f0g

We now compare the processes U and X . It can be easily veri�ed that X en-
ables all !-traces which either do not start with #! 0# or contain only �nitely
many occurrences of 0 or contain an `error', i.e., do not correspond to the correct
description of an in�nite computation of the given nondeterministic Turing ma-
chine. So X enables all !-traces unless there is an in�nite computation, starting
with the blank tape, which visits the initial state in�nitely often. This question
is, however, �1

1-complete [5]; therefore both weak !-trace preorder and equiv-
alence between a �xed (universal) �nite-state process and a BPA process are
�1

1 -hard. ut


