
Elimination of Detached Regions in
Dependency Graph Verification

Peter Gjøl Jensen, Kim Guldstrand Larsen, Jǐŕı Srba, and Nikolaj Jensen Ulrik

Department of Computer Science
Aalborg University, Denmark
{pgj,kgl,srba,njul}@cs.aau.dk

Abstract. The formalism of dependency graphs by Liu and Smolka is a
well-established method for on-the-fly computation of fixed points over
Boolean domains with numerous applications in e.g. model checking,
game synthesis, bisimulation checking and others. The original Liu and
Smolka on-the-fly algorithm runs in linear time, and several extensions
and improvements to this algorithm have recently been studied, includ-
ing the notion of negation edges, certain-zero early termination as well as
extensions towards abstract dependency graphs. We present a novel im-
provement for computing the least fixed-point assignment on dependency
graphs, with the goal of avoiding the exploration of detached subgraphs
that cannot contribute to the assignment value of the root node. We
also experimentally evaluate different ways of resolving nondeterminism
in the algorithm and execute experiments on CTL formulae from the
annual Petri net model checking contest as well as on synthesis problems
for Petri games. We find out that our algorithm significantly improves
the state-of-the-art.

1 Introduction

Within the fields of formal verification and model checking, the efficient compu-
tation of fixed points is of great importance for solving many problems, such as
bisimulation checking [26] or model checking Computation Tree Logic (CTL) [7]
or the modal µ-calculus [22]. Unfortunately, the naive approaches to computing
such fixed points are prone to state space explosion as they require the entire
state space to be available before verification can be done, which is often not a
feasible option.

The formalism of Dependency Graphs (DGs), developed by Liu and
Smolka [24], is a general formalism that encodes dependencies among the dif-
ferent nodes in the graph and allows for efficient, on-the-fly fixed-point com-
putations. A dependency graph is a directed graph with hyperedges, i.e. edges
that can have multiple targets. Figure 1b shows an example of a dependency
graph that encodes the problem of checking whether the Kripke structure shown
in Figure 1a satisfies the CTL formula E(a ∨ b) U c using the encoding of [10].
Hyperedges are drawn as branching from a mid-point, for example there is a
hyperedge from v0 with v2 and v3 as targets. An assignment of the dependency

2 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

s0{a}

s1{b}

s2{c}

(a) Kripke Structure

s0, φ ≡ E(a ∨ b) U c

v0

s0, c

v1

•

s0, a ∨ b

v2
∅

s1, φ

v3

s1, c

v4

•

s1, a ∨ b

v5

∅

s2, φ

v6

•

s2, c

v7

∅

(b) DG encoding of model checking s0 |= E(a ∨ b) U c

Iteration A(v0) A(v1) A(v2) A(v3) A(v4) A(v5) A(v6) A(v7)

0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 1

2 0 0 1 0 0 1 1 1

3 0 0 1 1 0 1 1 1

4 1 0 1 1 0 1 1 1

5 1 0 1 1 0 1 1 1

(c) Fixed-point computation on the DG

Fig. 1: Example of dependency graph encoding a CTL model checking problem

graph is a function that assigns to each node in the graph the value 0 (false) or
1 (true). The goal of dependency graph verification is to compute the minimum
fixed-point assignment A (given by Tarski’s fixed point theorem [27]). This com-
putation is shown in Figure 1c by starting from the assignment where all nodes
have the value 0 and iteratively performing the following saturation procedure:
if there is a hyperedge from a node v such that all the targets of the hyperedge
already have the value 1, then v also gets the value 1. A hyperedge with the
empty set of targets is interpreted as a vacuous truth and propagates the value 1
to its source, whereas if a node does not have any outgoing hyperedges, its value
remains 0. We can see that the saturation procedure stabilizes after the fourth
iteration and reaches the minimum fixed point where A(v0) = 1, meaning that
s0 |= E(a ∨ b) U c.

The success of dependency graphs is due to an efficient, on-the-fly and local
algorithm for computing the least fixed-point assignment [24], meaning that the
full state space is not necessarily needed before the fixed-point computation can
start. More recently, a distributed version of the algorithm was developed [8], and
the formalism of dependency graphs was extended to support negation edges [9].

Elimination of Detached Regions in Dependency Graph Verification 3

Dependency graphs have shown great success in bisimulation checking [2] and
model checking of recursive Hennessy-Milner logic [2] and CTL [10], and vari-
ations of dependency graphs have been applied to strategy synthesis of Timed
Games [6] and model checking of weighted CTL [18], probabilistic CTL [25] and
the modal µ-calculus [23]. For an overview of different applications of dependency
graphs to model checking, consult [13].

In this paper, we present a novel improvement to the dependency graph veri-
fication algorithm. Our contribution is two-fold. First, we extend the dependency
graph algorithm with an optimization that allows us to prune detached regions
of the dependency graph (parts of the graph that were scheduled for exploration
but which during the fixed-point computation became irrelevant for the fixed-
point assigment of the root node) and hence to improve the running time of
the computation. We experimentally demonstrate that this improvement sig-
nificantly helps in solving CTL model checking and games synthesis problems.
Second, we investigate and discuss in detail the impact of different choices of
implementation of the general nondeterministic algorithm, in particular wrt.
the search order used by the algorithm, and provide an extensive experimential
evaluation.

Related Work. Dependency graphs found great success through Liu and Smolka’s
on-the-fly, linear-time algorithm for computing fixed-points [24]. This algorithm
includes early termination when a value of 1 is computed for the designated root
node of the dependency graph. Early termination was later extended with the
certain-zero optimization [10], which also allows propagation of the value 0 in
cases where it provably cannot be improved anymore. Other improvements and
extensions include negation edges [10], distributed verification [8] of dependency
graphs and most recently the development of abstract dependency graphs [15].
However, most of these additions do not address the issue that the algorithm has
a risk of spending time exploring detached regions of the dependency graphs, i.e.
regions where improving the fixed-point assignment will not lead to improvement
of the root node value. The algorithm of [15] attempts to address the detached
regions issue, however, in a manner which proved inefficient in practice (requiring
a potentially expensive recursive propagation of information about detached
regions). In contrast, our method of addressing the problem captures a high
number of detached regions but with a minimal overhead.

Dependency graphs are used by the verification engines of several tools. The
tool Caal [2] uses dependency graphs for bisimulation checking and model
checking of recursive Hennessy-Milner logic on CCS [26] processes. Uppaal
TiGa [3] supports controller synthesis for games on Timed Automata [1], and the
tool Tapaal [11] supports strategy synthesis for Petri net games as well as CTL
model checking on Petri nets, all using dependency graphs. Additionally, depen-
dency graphs have been applied to probabilistic [25] and weighted [18] domains.
The formalism of Boolean Equations Systems, which are very similar to depen-
dency graphs, are used for various verification tasks within the µCRL2 [5] and
CADP [16] tools. We believe that our technique for detached regions detection
can contribute to improved verification performance of such tools.

4 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

In [14], it was observed that the basic principles behind the dependency graph
algorithms used in different application areas are not very different, except that
they generalize the assignments from Boolean values to more complex domains,
for example to weighted domains. This prompted the theory of abstract depen-
dency graphs, which encompasse all the aforementioned application areas. In [15]
this formalism is extended to include nonmonotonicity, which generalises the no-
tion of negation edge which was developed for CTL model checking in [10]. Our
work focuses on the traditional dependency graph formalism with assignments
over Boolean domain, leaving the extension towards more general domains for
future work.

2 Dependency Graphs

We shall now introduce the formalism of dependency graphs together with
Boolean valued assignments to its nodes and define the minimum fixed-point
assignment.

Definition 1 (Dependency graph). A DG is a pair G = (V,E) where V is
a finite, nonempty set of configurations (nodes) and E ⊆ V × 2V is a set of
hyperedges.

For a hyperedge e = (v, T) ∈ E, we call v the source of e and u ∈ T the
targets of e. We let sucs(v) denote the set of hyperedges with v as the source
configuration, i.e. sucs(v) = {(v, T) | (v, T) ∈ E}.

Each configuration of a DG is associated with a Boolean function defined by
a disjunction over each hyperedge, and each hyperedge is a conjunction over the
set of target configurations. The semantics of a DG is given by Boolean-valued
assignments such that the Boolean function on each configuration is satisfied.

Definition 2 (Assignment). Let G = (V,E) be a DG. An assignment on G is
a function A : V → {0, 1}, and the set of all assignments on G is denoted AG.
For A,A′ ∈ AG, let A ⪯ A′ iff for all v ∈ V we have A(v) ≤ A′(v), and let A⊥
denote the assignment such that A⊥(v) = 0 for all v ∈ V . An assignment A on
G is a solution (fixed-point assignment) iff for all v ∈ V we have

A(v) =
∨

(v,T)∈E

∧
u∈T

A(u)

where we define the empty conjunction to be 1 (true) and the empty disjunction
to be 0 (false).

Note that for any DG G, (AG,⪯) is a complete lattice with least element A⊥.
We can express solutions as fixed points of the function F : AG → AG defined
by

F (A)(v) = A(v) ∨
∨

(v,T)∈E

∧
u∈T

A(u) . (1)

Elimination of Detached Regions in Dependency Graph Verification 5

⊥

?

0 1

Fig. 2: Illustration of the certain-zero partial order.

Clearly F is monotonic, so by Tarski’s fixed-point theorem [27] the function F
has a minimum fixed point, and furthermore there exists an i ≥ 0 such that
F i(A⊥) = F i+1(A⊥), in which case F i(A⊥) is a minimal solution on G. We
write Amin to refer to the minimum fixed-point solution F i(A⊥). An example
of the iterative computation of the minimum fixed point (also referred to as the
global algorithm) is depicted in Figure 1c.

Remark 1. For sake of simplicity, we omit methods of dealing with negation
in verified properties. The paper [10] extends DGs with negation edges and
shows a correct encoding of CTL properties, assuming that negation edges are
explored exactly when all configurations below have been explored, and only
then. Our experimental evaluation includes a benchmark of CTL queries, so our
implementation supports negation edges. As also shown in [15], this works near
trivially if the DG is explored depth-first. We refer to [10] and [15] for a proper
treatment of negation.

3 Local Algorithm with Detached Regions Detection

For a DG G = (V,E), our goal is to compute Amin(v0) for a distinguished config-
uration v0 ∈ V . The original algorithm for doing this efficiently was published by
Liu and Smolka [24] and later on extended with the notion of certain-zero [10],
demonstrating significant improvement in verification times. The Liu and Smolka
algorithm explores the dependency graph in a forward manner, starting from the
root v0, and backpropagates the value 1 along the hyperedges whenever possible.
The certain-zero extension allows the algorithm to also backpropagate the value
0 when it can prove that the value of a configuration cannot be improved to 1
anymore. In effect, the certain-zero improvement extends the Boolean domain
to the simple partial order of assignment values depicted in Figure 2. Here, the
value ⊥ means that a configuration has not been discovered yet, ? means that
a discovered configuration waits to be processed but its value is not determined
yet, and the values 1 and 0 are final configuration values in the minimum fixed-
point assignment. Our new improvement to the algorithm is an additional check
whether a configuration can be ignored in the situations where its backpropaga-
tion only affects configurations that are already fully resolved.

Algorithm 1 shows the procedure in pseudocode. If all lines highlighted in
gray are removed, then the algorithm corresponds to the original algorithm by

6 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

Algorithm 1 Improved certain-zero algorithm

foo bar

Input: DG G = (V,E) and a root configuration v0 ∈ V .
Output: Least fixed-point value Amin(v0).

1: W ← sucs(v0)
2: for all v ∈ V do
3: D(v)← ∅
4: A(v)← ⊥
5: A(v0)← ?
6: while W ̸= ∅ do
7: e← (v, T) ∈W
8: W ←W \ {e}
9: if v ̸= v0 and (A(v) ∈ {0, 1} or ∀(w, T ′) ∈ D(v) . A(w) ∈ {0, 1}) then
10: if A(v) /∈ {0, 1} then A(v)← ⊥
11: goto line 6

12: if ∀u ∈ T .A(u) = 1 then
13: if v = v0 then return 1

14: if A(v) ̸= 1 then
15: A(v)← 1; W ←W ∪D(v)

16: elseif ∃u ∈ T .A(u) = 0
17: if A(v) ̸= 0 then
18: E ← E \ {e}
19: if sucs(v) = ∅ then
20: if v = v0 then return 0

21: A(v)← 0; W ←W ∪D(v)

22: else
23: pick u ∈ T such that A(u) /∈ {0, 1}
24: D(u)← D(u) ∪ {e}
25: if A(u) = ⊥ then
26: A(u)← ?
27: if sucs(u) = ∅ then
28: if u = v0 then return 0

29: A(u)← 0; W ←W ∪D(u)
30: else
31: W ←W ∪ {(u, T ′) | (u, T ′) ∈ E}
32: return 0 ▷ v0 did not receive value, so must be 0.

Liu and Smolka. If the light gray lines (lines 16–21 and 27–29) are included, we
obtain a single-core version of the certain zero optimization suggested in [10].
The dark gray lines 9–11 are our additional optimization to the algorithm.

The algorithm maintains a waiting list of hyperedges to be explored as well as
for each v ∈ V a set D(v) of parent hyperedges that are dependent on the value
of v. In the initialization step, all outgoing edges (v0, T) ∈ E from v0 are pushed
to the waiting-list, and D(v) is initialised to the empty set for all v ∈ V . During
each iteration of the while-loop at line 6, an edge e = (v, T) is picked from the
waiting list. If all the target configurations u ∈ T have assignment 1 on line 12,

Elimination of Detached Regions in Dependency Graph Verification 7

then the value is assigned to A(v) and the set D(v) of hyperedges dependent
on v are inserted into the waiting list. If some target configuration u ∈ T has
value 0 (certain-zero) on line 16 then the edge is deleted from the DG, and if
now v has no outgoing edge, a value of 0 is assigned to v and all dependents in
D(v) are added to the waiting-list. If the configuration that was just assigned
a final value is v0 then we can terminate early, on lines 13 and 20. As observed
in [13], the checks on lines 14 and 17 are important to ensure termination of the
algorithm. If neither of the above cases were true, there must be some successor
node u ∈ T such that A(u) ∈ {?,⊥}, among which we select one on line 23. We
update D(u) to also contain e, and if A(u) = ⊥, i.e. it is not discovered yet, we
set A(u)← ? and push all outgoing edges (u, T ′) ∈ E to the waiting list.

The lines 9–11 are our proposed improvement. The motivation is that we want
to avoid spending time exploring detached regions of the dependency graph,
i.e. configurations that cannot possibly help conclude the value of v0 at the
current point in execution. The test we implement here checks whether all edges
e = (u, T) ∈ D(v) have a final value 1 or 0 assigned to their source, as this
means the value of v will not contribute to any further knowledge about the
fixed-point assignment on G. In this case, we simply skip the edge, remove it
from the waiting list. Since there may be previously unknown edges that will
need the value A(v) in a later iteration, we set A(v) = ⊥ to indicate that it
should be expanded again when found in the future during the forward search.

Remark 2. We can formalize the notion of detached regions as follows. Let Dep :
V ×V be a relation such that for v, u ∈ V , Dep(v, u) holds if and only if there is
(u, T) ∈ D(v) such that A(u) /∈ {0, 1}. We say that v ∈ V is detached if (v, v0) /∈
Dep∗, where Dep∗ is the transitive closure of Dep. Conversely, v ∈ V is not
detached if (v, v0) ∈ Dep∗, indicating that there is some chain of dependencies
from v to v0 that does not contain any configurations that are assigned 0 or 1.

The test on lines 9–11 does not detect all detached regions. One approach
to detect all detached regions can be obtained with a slight modification to
Algorithm 1 of [15], calling UpdateDependents on line 11 of that algorithm.
We implemented this in our tool, measuring significantly worse results than even
the Certain-Zero algorithm, as we will detail in Section 5.

Example 1. Figure 3 shows different means of computing the least fixed-point
value Amin(v0) of the DG depicted in Figure 3a. Figure 3b shows the computa-
tion of the minimum fixed-point assignment using the global algorithm given by
Equation 1. Each row corresponds to one iteration of the algorithm, terminating
on iteration 4 since F 4(A⊥) = F 3(A⊥). We notice that in the global algorithm
we iterate over all nodes in the dependency graph.

Figure 3c shows the computation using the local algorithm with the certain-
zero extension and Figure 3d shows the computation using our improved version
of the local algorithm, each with the same search order (the choice being the
right-most available configuration, and nodes v with A(v) = ? have priority).

For iterations 1–4, the certain-zero algorithm simply searches through the
graph in a forward fashion. Once e3 is checked in iteration 3, we set A(a) = 1

8 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

v0

a

b

•

cd

∅

f

∅

e1

e2

e3

e4

e5

e6

(a) Dependency graph (the dashed
region eventually becomes detached)

Iteration A(v0) A(a) A(b) A(c) A(d) A(f)

0 0 0 0 0 0 0

1 0 1 0 0 0 1

2 1 1 0 1 0 1

3 1 1 0 1 0 1

4 1 1 0 1 0 1

(b) Execution of the global algorithm

Iteration W e ∈ (v, T) u ∈ T A(v0) A(a) A(b) A(c) A(d) A(f)

0 {e1} ? ⊥ ⊥ ⊥ ⊥ ⊥
1 {e1} e1 a ? ? ⊥ ⊥ ⊥ ⊥
2 {e2, e3} e2 b ? ? ? ⊥ ⊥ ⊥
3 {e3, e4} e4 a ? ? ? ⊥ ⊥ ⊥
4 {e3} e3 — ? 1 ? ⊥ ⊥ ⊥
5 {e4, e1} e4 c ? 1 ? ? ⊥ ⊥
6 {e1, e5} e5 f ? 1 ? ? ⊥ ?

7 {e1, e6} e6 — ? 1 ? ? ⊥ 1

8 {e1, e5} e5 — ? 1 ? 1 ⊥ 1

9 {e1, e4} e4 d ? 1 ? 1 0 1

10 {e1, e4} e4 — ? 1 0 1 0 1

11 {e1} e1 — 1 1 ? 1 0 1

(c) Iterations of the local certain-zero algorithm

Iteration W e ∈ (v, T) u ∈ T A(v0) A(a) A(b) A(c) A(d) A(f)

0 {e1} ? ⊥ ⊥ ⊥ ⊥ ⊥
1 {e1} e1 a ? ? ⊥ ⊥ ⊥ ⊥
2 {e2, e3} e2 b ? ? ? ⊥ ⊥ ⊥
3 {e3, e4} e4 a ? ? ? ⊥ ⊥ ⊥
4 {e3} e3 — ? 1 ? ⊥ ⊥ ⊥
5 {e4, e1} e4 — ? 1 ? ⊥ ⊥ ⊥
6 {e1} e1 — 1 1 ? ⊥ ⊥ ⊥

(d) Iterations of our improved local algorithm

Fig. 3: Dependency graph and fixed-point computations. The search order is
depth-first, choosing the right-most hyperedge and rightmost configuration in
each step.

Elimination of Detached Regions in Dependency Graph Verification 9

and re-add edges e1 and e4 to the waiting list in hopes that the value can be
backpropagated further. The certain-zero algorithm picks the configuration c
to be expanded. This enters the region consisting of the configurations c and
f , which is detached since all paths back to v0 contain some configuration u
such that A(u) ∈ {0, 1}. From c the search continues through edges e5 and e6,
which eventually backpropagates the value 1 to A(c). Finally on iteration 9, the
configuration d is expanded and receives a value of certain-zero since it has no
outgoing hyperedges, and on iteration 10 this is backpropagated to b.

On the other hand, our improved algorithm detects on iteration 5 that all
configurations depending on b have been assigned, so there is no need to evaluate
the edge e4. Thus it avoids exploring the detached region, saving a total of 5
iterations over the certain-zero algorithm. We also notice that while the global
algorithm takes fewer iterations to complete than the local algorithms, in each
iteration the assignment of each configuration is checked, which is an expensive
operation if the DG is large.

4 Correctness of the Algorithm

We now proceed to show correctness of the full updated algorithm, i.e. the al-
gorithm including all lines, starting with some technical lemmas. The proofs are
adapted from the certain-zero algorithm [10], with several differences that origi-
nate from the improvements in our algorithm, in particular from the possibility
to assign the value ⊥ to nodes that already had the value ? before.

Lemma 1. For each v ∈ V , A(v) is assigned a value x ∈ {0, 1} at most once.

Proof. First we observe that for any configuration v ∈ V , whenever A(v) ∈
{0, 1}, neither ? nor ⊥ are ever assigned to it, since the value ? is only assigned
on line 26, which can only be reached if A(v) = ⊥, and the value ⊥ is only
assigned on line 10, but only if A(v) /∈ {0, 1}.

Any v ∈ V is assigned a value x ∈ {0, 1} on one of lines 15, 21, and 29. Con-
sider the case of line 15. For this line to be reached, the condition on line 9 must
evaluate to false, which means either v = v0 or A(v) /∈ {0, 1}. If A(v) /∈ {0, 1}
then clearly the configuration v was not assigned before, so after assignment
it has been assigned exactly once. If v = v0, then the condition on line 13 is
true, causing early termination and thus no further assignment of values to v. A
similar argument holds for both line 21 and 29.

Lemma 2. Each edge e = (v, T) ∈ E is picked on line 8 at most O(|V | + |E|)
times.

Proof. Let e = (v, T) ∈ E be any edge. There are two ways for e to be added
to W : either e ∈ D(v′) for some other configuration v′ ∈ T and was added on
one of lines 15, 21, or 29, or v is the target of some other edge e′ that is being
explored and was added on line 31.

We consider each case in turn.

10 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

– If e is added at line 15, 21, or 29 then it is dependent on some v′ ∈ T . By
Lemma 1, this can happen at most once for each v ∈ V and hence e can be
added to W this way at most |T | times.

– The edge e is added at line 31, i.e. there is a previously selected edge e′ =
(v′, T ′) such that v ∈ T ′. Therefore, A(v) was ⊥ before this iteration of the
algorithm, and is ? afterwards, so in order for e′ to add e again in this way,
line 10 must be reached while A(v) = ?. However, since e′ ∈ D(v), this can
only happen if A(v′) ∈ {0, 1}, in which case it cannot reach line 31. Hence e
is added to W at line 31 at most once for each e′ = (v′, T ′) such that v ∈ T ′,
or a total of |E| times.

In conclusion, e is added to W at most O(|V |+ |E|) times, and thus also selected
from W O(|V |+ |E|) times.

As the while-loop contains no loops or recursion and DGs are finite, we get
the following corollary.

Corollary 1. Algorithm 1 terminates.

We now state three important invariants of the main while-loop of the al-
gorithm.

Lemma 3 (Loop invariant). The following is a loop invariant for the while-
loop of Algorithm 1.

1. For all v ∈ V , if A(v) ∈ {0, 1} then A(v) = Amin(v).
2. For all v ∈ V and e = (u, T) ∈ E, e ∈ D(v) implies that v ∈ T .
3. For all v ∈ V , if A(v) = ? then for all edges e = (v, T) ∈ E, either e ∈ W

or there exists u ∈ V such that e ∈ D(u) and A(u) = ?.

Proof. We prove these invariants in turn.

1. Let e = (v, T) be the edge picked on line 8. We focus on the places where
values are assigned. If A(v) is assigned on Line 15, then we immediately
know that for all u ∈ T , A(u) = 1 so the algorithm sets A(v) = 1. By the
invariant, we also know for all u ∈ T that Amin(u) = 1, so Amin(v) = 1. If
A(v) is assigned on either of lines 21 or 29, then there are no successors to v
that could backpropagate value 1, so Amin(v) = 0 hence the invariant holds.

2. The only place where D(u) is updated for any u ∈ V is on line 24. On this
line, D(u) is updated to include edge e = (v, T), but since u was selected on
line 23, u ∈ T so the invariant is maintained.

3. Let v ∈ V be a configuration such that A(v) = ?, and assume that the edge
selected on line 8 is e = (v, T). If the algorithm assigns A(v) = x where
x ∈ {0, 1} in this iteration then the invariant clearly holds, so we are left
with the following cases.
– If the condition on line 9 is true, then A(v) is set to ⊥, so the invariant is

preserved wrt. v, and furthermore for each e′ = (u, T ′) ∈ D(v) we have
A(u) ∈ {0, 1}, so the invariant also holds for each such u.

Elimination of Detached Regions in Dependency Graph Verification 11

– Otherwise on line 23 we pick a configuration u ∈ T such that A(u) /∈
{0, 1} and add e to D(u). If A(v) = ? at this point, then either sucs(u) =
∅ so A(u) is assigned 0 and e is added to W , in which case the invariant
holds, or A(u) is set to ? and each e′ ∈ sucs(u) are added to the waiting
list, so the invariant holds.

With the help of the previous lemmas we can now prove the correctness of
Algorithm 1.

Theorem 1 (Correctness). Algorithm 1 terminates, with return value 1 iff
Amin(v0) = 1.

Proof. Termination is provided by Corollary 1, and clearly if A(v0) was assigned
x ∈ {0, 1} while running the algorithm, then A(v) = Amin(v0) by Condition 1 of
Lemma 3.

We now argue that if the algorithm terminates on line 32, then Amin(v0) = 0.
First we note that at this point A(v0) = ?, as A(v0) is initialised to ? before the
while-loop, and if A(v0) was assigned value x ∈ {0, 1} then we would have
terminated early. To demonstrate that Amin(v0) = 0 we construct a assignment
B defined as

B(v) =

{
0 if A(v) ∈ {0, ?}
1 if otherwise.

In words, this assignment promotes ? to 0. We wish to prove that B is a fixed-
point assignment in a subgraph of G that contains v0. The region of interest is
given by a set Q, which we define as the least set such that

– v0 ∈ Q, and
– if v ∈ Q then for all u ∈ V such that there exists an edge e = (v, T) ∈ D(u)

and A(u) = ? we have u ∈ Q.

In words, Q is the set of configurations reachable from v0 via only configurations
with value ?. We show that B is a fixed-point assignment over all v ∈ Q, i.e. for
all v ∈ V we have

B(v) =
∨

(v,T)∈E

∧
u∈T

B(u) .

For the sake of contradiction, assume that there is some configuration v ∈ Q
such that B(v) = 0 but there exists a hyperedge e = (v, T) such that B(u) = 1
for all u ∈ T . Due to Condition 1 of Lemma 3, it cannot be the case that B(v) = 0
because A(v) = 0, so A(v) = ?. Thus by Condition 3 of Lemma 3 we have either
that e ∈W or there exists u ∈ V such that e ∈ D(u) and A(u) = ?, but since the
algorithm terminated outside the while-loop, W = ∅, hence e ∈ D(u) for some u
where A(u) = ?. By Condition 2 we also have u ∈ T . But we have B(u) = 0 and
u ∈ T , which contradicts our assumption that for all u ∈ T we have B(u) = 1.

Because of this, B is a fixed-point assignment on the subgraph induced by
Q ∪ {u ∈ V | v → u for some v ∈ Q}. Since Amin is the least fixed-point
assignment and B(v0) = 0, Amin(v0) = 0, so we are done.

12 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

5 Implementation and Experiments

We implement Algorithm 1 as an extension to the verification engine verifypn
of the tool Tapaal [11], a Petri net model checker written in C++. In doing so,
the nondeterminism at lines 8 and 23 needs to be resolved.

DFS vs. BFS In order to resolve the nondeterminism at line 8, we need to
select an e ∈ W to process, or in other words, we should select a suitable
data structure for representing the set W . We implement W as two sets, Wf

containing edges inserted during the forward exploration, and Wb containing
edges inserted due to the backpropagation. Edges are added to Wf on lines 1
and 31, and to Wb on lines 15, 21, and 29. When selecting an edge on
line 8, we select first from Wb if possible, and from Wf otherwise. During our
experiments, we experience that the underlying structure of Wb makes little
difference, so we keep it as a stack. For Wf we evaluate two choices:
– Wf is a stack, which we refer to as DFS.
– Wf is a queue, which we refer to as BFS.

Eager vs. Lazy At line 23, we need to select an u ∈ T that is not fully as-
signed. We evaluate the following two options for partially resolving this
nondeterminism.
– We can prioritise configurations u such that A(u) = ?, i.e. configurations

that were visited before but not fully assigned. We refer to this choice
as lazy.

– We can prioritise configurations u such that A(u) = ⊥, i.e. configurations
that were not yet explored. We refer to this choice as eager.

In either case, if there is more than one configuration with the prioritised
value, we pick an arbitrary one.

We shall now experimentally evaluate the new algorithm and the different
implementation choices described above. We evaluate it against the CTL bench-
mark of the Model Checking Contest (MCC) 2021 [20] data set, which consists
of 1181 Petri nets which are each associated with 16 CTL formulae for a total
of 18 896 problem instances, as well as against benchmarks of Petri net games
detailed in [4] and [12]. We name the different versions by using the naming
introduced above. If our improvement starting at line 9 is enabled, we append
an asterisk (*) to the configuration name, otherwise the improvement is not en-
abled. For example, DFS-lazy* denotes that Wf is a stack, configurations with
A(v) = ? are prioritised and it is our improved version of the algorithm. We do
not compare against other tools, since Tapaal significantly outperformed other
competitors of the MCC’21 [20] and MCC’22 [21] even without the present im-
provement. A reproducibility package containing the data, raw results, binaries,
and scripts used for running and analysing the experiments can be found at [17].

5.1 CTL Benchmark

For the CTL evaluation, we run the engine on each formula in the benchmark,
with a time limit of 5 minutes and memory limit of 15 GiB per formula, using

Elimination of Detached Regions in Dependency Graph Verification 13

5500 6000 6500 7000 7500 8000 8500 9000
Instances

1

10

100

T
im

e
(s

)

DFS-eager

DFS-eager*

DFS-lazy

DFS-lazy*

(a) Performance comparison for DFS

4000 4500 5000 5500 6000 6500 7000
Instances

1

10

100

T
im

e
(s

)

BFS-eager

BFS-eager*

BFS-lazy

BFS-lazy*

(b) Performance comparison for BFS

Fig. 4: Experiments for CTL model checking

AMD Opteron 6376 Processors. Figures 4a and 4b show cactus plots, where
for each experimental configuration, the runtime (on y-axis) for each instance
is sorted in ascending order independent of the other configurations, and the
instances are plotted in this order on the x-axis (we only show the most difficult
instances here). Notice that the running times are plotted using a logarithmic
scale. All running times refer only to time used in the verification algorithm. We
observe that when using DFS, our new algorithm (shown in the plots as dashed
lines) improves the average performance by about a factor 5 when using the lazy
setup, and a factor 3 when using the eager setup. A more modest improvement
can be seen also when using the BFS strategy and also here the eager strategy
performs better. Overall, the DFS solves the largest number of CTL queries
within the 5 minute timeout.

Table 1 shows the number of unique answers between each pair of experimen-
tal configurations, such that each row entry indicates the number of exclusive

14 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

Table 1: Exclusive answers, all CTL comparisons. Each row entry is the number
of unique answers of the row configuration relative to the corresponding column
configuration.

D
F
S-eager

D
F
S-eager*

D
F
S-lazy

D
F
S-lazy*

B
F
S-eager

B
F
S-eager*

B
F
S-lazy

B
F
S-lazy*

DFS-eager 0 1 5 0 2102 2026 1872 1788

DFS-eager* 516 0 460 1 2570 2460 2307 2183

DFS-lazy 650 590 0 0 2737 2656 2084 1995

DFS-lazy* 1212 698 567 0 3259 3148 2596 2441

BFS-eager 329 282 319 274 0 13 25 25

BFS-eager* 380 299 365 290 140 0 133 29

BFS-lazy 786 706 353 298 712 693 0 8

BFS-lazy* 874 754 436 315 884 761 180 0

answers compared to the configuration in the corresponding column. For exam-
ple, DFS-lazy gains 590 answers relative to DFS-eager* but loses 460 answers. In
the top left quadrant, we observe that DFS-lazy* is clearly superior to all other
three DFS strategies. In the lower right quadrant, we see a similar trend where
BFS-lazy* is also the best configuration based on the BFS search strategy. Com-
paring the two remaining quadrants, we observe that using DFS gains between
2000–3000 unique answers over using BFS. Among these are 77 answers that
were obtained only by DFS-lazy* and no other configuration. However, BFS also
gains 300–800 unique answers compared to DFS, a considerable number. This
indicates that both search strategies are useful and thus an ideal approach will
run these strategies in parallel.

Remark 3. The full check of detached regions described in Remark 2 has 16
exclusive answers compared to DFS-lazy*, but loses 2923 answers due to the
excessive overhead of rigorously keeping dependencies fully synchronised.

5.2 Games Synthesis Benchmark

We further implemented our improved algorithm in the Petri net games verifica-
tion engine, which is also a part of the verifypn engine. Based on the experience
from CTL experiments, we only implemented the best performing configuration
using the DFS search order. We evaluate this algorithm on the game synthesis
benchmarks presented in [4] and [12].

The benchmark of [4] includes 6 scalable case studies. Each model in the
case study is given 1 hour and 32 GiB memory. Out of the 6 case studies, on
4 of them we observed minimal difference between the original and improved
algorithm, while on the Producer/Consumer systems and on the model of the

Elimination of Detached Regions in Dependency Graph Verification 15

0 1 2 3 4 5 6
Instances

0.1

1

10

100
T

im
e

(s
ec

on
d

s)

Baseline

Improved

(a) Producer/consumer experiment

0 1 2 3 4 5
Instances

1

10

100

1000

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(b) Lyngby station experiment

700 750 800 850 900 950 1000
Instances

0.1

1

10

100

1000

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(c) Update synthesis experiments on topology zoo benchmark

Fig. 5: Petri games experiments

Lyngby Train Station we noticed significant improvements up to two orders of
magnitude, as shown in Figure 5a and Figure 5b.

The topology zoo benchmark of [12] (originally described in [19]) consists of
261 real network topologies of up to 700 nodes as well as nestings and concate-
nations of these, for a total of 1035 problem instances. Our evaluation is based
on the problem of synthesis of network updates, encoded as Petri net games.
Figure 5c shows a cactus plot with the results. Our improved algorithm gains
about 80 answers over the certain-zero baseline algorithm and performs better
by over an order of magnitude on harder problem instances. This demonstrates
that our detached regions elimination technique is applicable to a range for de-
pendency graphs coming from both the model checking domain as well as from
strategy synthesis for games.

6 Conclusion

We presented a novel improvement to the local Liu and Smolka’s algorithm used
for verification of dependency graphs. Our algorithm detects detached regions

16 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

in the dependency graph in order to speedup the performance of the fixed-point
computation. We proved that our improved algorithm is correct and provided its
efficient implementation, as part of the tool Tapaal, both for CTL model check-
ing and Petri games synthesis. We evaluated the performance of our algorithm
on benchmarks of Petri games and CTL formulae on Petri nets, demonstrating
noticeable improvements in verification speed (compared to the state-of-the-art
approaches, including the most recent certain-zero algorithm) with only negligi-
ble overhead. We also observed that the depth-first search strategy is the most
beneficial one, however, breadth-first search should be also considered as it can
provide a large number of unique answers.

In the future work, we can consider extending the algorithm to the more
general abstract dependency graphs and further improvements to the fixed-point
algorithm, including e.g. the detection of loops in dependency graphs. The exact
asymptotic running time of the algorithm is left as an open question.

Acknowledgements

We would like to thank the anonymous reviewers for their feedback and sugges-
tions. This work was supported by the S40S Villum Investigator Grant (37819)
from VILLUM FONDEN.

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) Automata, Languages and Programming. pp. 322–335. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1990)

2. Andersen, J.R., Andersen, N., Enevoldsen, S., Hansen, M.M., Larsen, K.G., Olesen,
S.R., Srba, J., Wortmann, J.K.: Caal: Concurrency workbench, aalborg edition. In:
Leucker, M., Rueda, C., Valencia, F.D. (eds.) Theoretical Aspects of Computing -
ICTAC 2015. pp. 573–582. Springer International Publishing, Cham (2015)

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-tiga: Time for playing games! In: Computer Aided Verification, pp. 121–
125. Springer Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-
3 14, https://doi.org/10.1007/978-3-540-73368-3_14

4. Bønneland, F., Jensen, P., Larsen, K., Muniz, M., Srba, J.: Partial order reduction
for reachability games. In: Proceedings of the 30th International Conference
on Concurrency Theory (CONCUR’19). LIPICS, vol. 140, pp. 23:1–23:15.
Dagstuhl Publishing (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.23,
please note that the paper contains an error that is fixed here:
https://arxiv.org/abs/1912.09875

5. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink,
E.P., Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for
analysing concurrent systems. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, pp. 21–39. Springer International Publishing
(2019). https://doi.org/10.1007/978-3-030-17465-1 2, https://doi.org/10.1007/
978-3-030-17465-1_2

https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2

Elimination of Detached Regions in Dependency Graph Verification 17

6. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly al-
gorithms for the analysis of timed games. In: Lecture Notes in Computer Science,
pp. 66–80. Springer Berlin Heidelberg (2005). https://doi.org/10.1007/11539452 9,
https://doi.org/10.1007/11539452{_}9

7. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Workshop on Logic of Programs. pp.
52–71. Springer (1981)

8. Dalsgaard, A., Enevoldsen, S., Larsen, K., Srba, J.: Distributed computation of
fixed points on dependency graphs. In: Proceedings of Symposium on Depend-
able Software Engineering: Theories, Tools and Applications (SETTA’16). LNCS,
vol. 9984, pp. 197–212. Springer (2016). https://doi.org/10.1007/978-3-319-47677-
3 13

9. Dalsgaard, A.E., Enevoldsen, S., Fogh, P., Jensen, L.S., Jepsen, T.S., Kaufmann,
I., Larsen, K.G., Nielsen, S.M., Olesen, M.C., Pastva, S., Srba, J.: Extended depen-
dency graphs and efficient distributed fixed-point computation. In: van der Aalst,
W., Best, E. (eds.) Application and Theory of Petri Nets and Concurrency. pp.
139–158. Springer International Publishing, Cham (2017)

10. Dalsgaard, A.E., Enevoldsen, S., Fogh, P., Jensen, L.S., Jensen, P.G., Jepsen, T.S.,
Kaufmann, I., Larsen, K.G., Nielsen, S.M., Olesen, M.C., et al.: A distributed
fixed-point algorithm for extended dependency graphs*. Fundamenta Informaticae
161(4), 351–381 (Jul 2018). https://doi.org/10.3233/FI-2018-1707, https://doi.
org/10.3233/FI-2018-1707

11. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K., Møller, M., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Proceedings of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS‘12). LNCS, vol. 7214, p. 492–497.
Springer-Verlag (2012)

12. Didriksen, M., Jensen, P., Jønler, J., Katona, A.I., Lama, S., Lottrup, F., Shajarat,
S., Srba, J.: Automatic synthesis of transiently correct network updates via Petri
games. In: Proceedings of the 42nd International Conference on Application and
Theory of Petri Nets and Concurrency (Petri Nets’21). LNCS, vol. 12734, pp.
118–137. Springer-Verlag (2021). https://doi.org/10.1007/978-3-030-76983-3 7

13. Enevoldsen, S., Larsen, K., Mariegaard, A., Srba, J.: Dependency graphs with
applications to verification. International Journal on Software Tools for Technology
Transfer (STTT) 22, 635–654 (2020). https://doi.org/10.1007/s10009-020-00578-9

14. Enevoldsen, S., Larsen, K., Srba, J.: Abstract dependency graphs and their
application to model checking. In: Proceedings of the 25th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’19). LNCS, vol. 11427, pp. 316–333. Springer-Verlag (2019).
https://doi.org/10.1007/978-3-030-17462-0 18

15. Enevoldsen, S., Larsen, K., Srba, J.: Extended abstract dependency graphs. In-
ternational Journal on Software Tools for Technology Transfer (STTT) 24, 49–65
(2022). https://doi.org/10.1007/s10009-021-00638-8

16. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: Cadp 2011: a toolbox for the con-
struction and analysis of distributed processes. International Journal on Software
Tools for Technology Transfer 15(2), 89–107 (2013)

17. Gjøl Jensen, P., Larsen, K.G., Srba, J., Jensen Ulrik, N.: Reproducibility pack-
age: Elimination of detached regions in dependency graph verification (Mar 2023).
https://doi.org/10.5281/zenodo.7712764

https://doi.org/10.1007/11539452{_}9
https://doi.org/10.1007/11539452{_}9
https://doi.org/10.1007/978-3-319-47677-3_13
https://doi.org/10.1007/978-3-319-47677-3_13
https://doi.org/10.3233/FI-2018-1707
https://doi.org/10.3233/FI-2018-1707
https://doi.org/10.3233/FI-2018-1707
https://doi.org/10.1007/978-3-030-76983-3_7
https://doi.org/10.1007/s10009-020-00578-9
https://doi.org/10.1007/978-3-030-17462-0_18
https://doi.org/10.1007/s10009-021-00638-8
https://doi.org/10.5281/zenodo.7712764

18 P. G. Jensen, K. G. Larsen, J. Srba, N. J. Ulrik

18. Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Efficient model-
checking of weighted CTL with upper-bound constraints. International Jour-
nal on Software Tools for Technology Transfer 18(4), 409–426 (Nov
2016). https://doi.org/10.1007/s10009-014-0359-5, https://doi.org/10.1007/

s10009-014-0359-5

19. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE Journal on Selected Areas in Communications 29(9), 1765–
1775 (2011). https://doi.org/10.1109/JSAC.2011.111002

20. Kordon, F., Bouvier, P., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Amat., N.,
Amparore, E., Berthomieu, B., Biswal, S., Donatelli, D., Galla, F., , Dal Zilio, S.,
Jensen, P., He, C., Le Botlan, D., Li, S., , Srba, J., Thierry-Mieg, ., Walner, A.,
Wolf, K.: Complete Results for the 2020 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2021/results.php (June 2021)

21. Kordon, F., Bouvier, P., Garavel, H., Hulin-Hubard, F., Amat., N., Amparore, E.,
Berthomieu, B., Donatelli, D., Dal Zilio, S., Jensen, P., Jezequel, L., He, C., Li, S.,
Paviot-Adet, E., Srba, J., Thierry-Mieg, Y.: Complete Results for the 2022 Edition
of the Model Checking Contest. http://mcc.lip6.fr/2022/results.php (June 2022)

22. Kozen, D.: Results on the propositional µ-calculus. In: Automata, Lan-
guages and Programming, pp. 348–359. Springer Berlin Heidelberg (1982).
https://doi.org/10.1007/bfb0012782, https://doi.org/10.1007/bfb0012782

23. Liu, X., Ramakrishnan, C., Smolka, S.A.: Fully local and efficient evaluation of
alternating fixed points. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 5–19. Springer (1998)

24. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points.
In: Automata, Languages and Programming, pp. 53–66. Springer Berlin Hei-
delberg (1998). https://doi.org/10.1007/bfb0055040, https://doi.org/10.1007/
bfb0055040

25. Mariegaard, A., Larsen, K.G.: Symbolic dependency graphs for PCTL>
≤ model-

checking. In: Abate, A., Geeraerts, G. (eds.) Formal Modeling and Analysis of
Timed Systems. pp. 153–169. Springer International Publishing, Cham (2017)

26. Milner, R.: Communication and concurrency. Prentice Hall International series in
Computer Science, Prentice Hall (1989)

27. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific jour-
nal of Mathematics 5(2), 285–309 (1955)

https://doi.org/10.1007/s10009-014-0359-5
https://doi.org/10.1007/s10009-014-0359-5
https://doi.org/10.1007/s10009-014-0359-5
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1007/bfb0012782
https://doi.org/10.1007/bfb0012782
https://doi.org/10.1007/bfb0055040
https://doi.org/10.1007/bfb0055040
https://doi.org/10.1007/bfb0055040

Appendix

A Games results

0 1 2 3 4 5 6
Instances

0.1

1

10

100

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(a) Producer/Consumer System

0 1 2 3 4 5
Instances

1

10

100

1000

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(b) Lyngby Train Station

0 100 200 300 400
Instances

0.01

0.1

1

10

100

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(c) Autonomous Intersection Manage-
ment

0 100 200 300 400
Instances

0.00010

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(d) Nim Game

0 5 10 15 20
Instances

0.01

0.1

1

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(e) Manufacturing Workflow

0 5 10 15 20
Instances

1

10

100

T
im

e
(s

ec
on

d
s)

Baseline

Improved

(f) Order Workflow

Fig. 6: Cactus plots for games experiments. Benchmarks detailed in [4].

	Elimination of Detached Regions in Dependency Graph Verification

